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Use your mentality
Wake up to reality

—From the song, “I’ve Got You Under My Skin” by Cole Porter

KEY POINTS

◆ Secure Socket Layer (SSL) provides security services between TCP and
applications that use TCP. The Internet standard version is called Transport
Layer Service (TLS).

◆ SSL/TLS provides confidentiality using symmetric encryption and message
integrity using a message authentication code.

◆ SSL/TLS includes protocol mechanisms to enable two TCP users to deter-
mine the security mechanisms and services they will use.

◆ HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to
implement secure communication between a Web browser and a Web server.

◆ Secure Shell (SSH) provides secure remote logon and other secure
client/server facilities.

Virtually all businesses, most government agencies, and many individuals now have
Web sites.The number of individuals and companies with Internet access is expanding
rapidly and all of these have graphical Web browsers.As a result, businesses are enthu-
siastic about setting up facilities on the Web for electronic commerce. But the reality is
that the Internet and the Web are extremely vulnerable to compromises of various
sorts.As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this
chapter, we begin with a discussion of the general requirements for Web security
and then focus on three standardized schemes that are becoming increasingly
important as part of Web commerce and that focus on security at the transport
layer: SSL/TLS, HTTPS, and SSH.

5.1 WEB SECURITY CONSIDERATIONS

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets. As such, the security tools and approaches discussed
so far in this book are relevant to the issue of Web security. But, as pointed out in
[GARF02], the Web presents new challenges not generally appreciated in the con-
text of computer and network security.

• The Internet is two-way. Unlike traditional publishing environments—even
electronic publishing systems involving teletext, voice response, or fax-back—
the Web is vulnerable to attacks on the Web servers over the Internet.
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• The Web is increasingly serving as a highly visible outlet for corporate and
product information and as the platform for business transactions. Reputations
can be damaged and money can be lost if the Web servers are subverted.

• Although Web browsers are very easy to use, Web servers are relatively easy
to configure and manage, and Web content is increasingly easy to develop, the
underlying software is extraordinarily complex. This complex software may
hide many potential security flaws. The short history of the Web is filled with
examples of new and upgraded systems, properly installed, that are vulnerable
to a variety of security attacks.

• A Web server can be exploited as a launching pad into the corporation’s or
agency’s entire computer complex. Once the Web server is subverted, an
attacker may be able to gain access to data and systems not part of the Web
itself but connected to the server at the local site.

• Casual and untrained (in security matters) users are common clients for
Web-based services. Such users are not necessarily aware of the security
risks that exist and do not have the tools or knowledge to take effective
countermeasures.

Web Security Threats

Table 5.1 provides a summary of the types of security threats faced when using the
Web. One way to group these threats is in terms of passive and active attacks.
Passive attacks include eavesdropping on network traffic between browser and
server and gaining access to information on a Web site that is supposed to be
restricted. Active attacks include impersonating another user, altering messages in
transit between client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the
threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system secu-
rity; Part Four of this book addresses the issue of system security in general but is
also applicable to Web system security. Issues of traffic security fall into the category
of network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various
approaches that have been considered are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they differ with respect to their
scope of applicability and their relative location within the TCP/IP protocol stack.

Figure 5.1 illustrates this difference. One way to provide Web security is to use
IP security (IPsec) (Figure 5.1a). The advantage of using IPsec is that it is transpar-
ent to end users and applications and provides a general-purpose solution.
Furthermore, IPsec includes a filtering capability so that only selected traffic need
incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just
above TCP (Figure 5.1b). The foremost example of this approach is the Secure
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Figure 5.1 Relative Location of Security Facilities in the TCP/IP Protocol Stack

Sockets Layer (SSL) and the follow-on Internet standard known as Transport Layer
Security (TLS).At this level, there are two implementation choices. For full general-
ity, SSL (or TLS) could be provided as part of the underlying protocol suite and
therefore be transparent to applications. Alternatively, SSL can be embedded in
specific packages. For example, Netscape and Microsoft Explorer browsers come
equipped with SSL, and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular appli-
cation. Figure 5.1c shows examples of this architecture. The advantage of this
approach is that the service can be tailored to the specific needs of a given application.

Table 5.1 A Comparison of Threats on the Web

Threats Consequences Countermeasures

Integrity • Modification of user data

• Trojan horse browser

• Modification of memory

• Modification of message
traffic in transit

• Loss of information

• Compromise of machine

• Vulnerabilty to all other
threats

Cryptographic 
checksums

Confidentiality • Eavesdropping on the net

• Theft of info from server

• Theft of data from client

• Info about network
configuration

• Info about which client
talks to server

• Loss of information

• Loss of privacy

Encryption, Web 
proxies

Denial of
Service

• Killing of user threads

• Flooding machine with
bogus requests

• Filling up disk or memory

• Isolating machine by DNS
attacks

• Disruptive

• Annoying

• Prevent user from getting
work done

Difficult to prevent

Authentication • Impersonation of legitimate
users

• Data forgery

• Misrepresentation of user

• Belief that false information 
is valid

Cryptographic 
techniques
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Figure 5.2 SSL Protocol Stack

5.2 SECURE SOCKET LAYER AND TRANSPORT 
LAYER SECURITY

Netscape originated SSL. Version 3 of the protocol was designed with public review
and input from industry and was published as an Internet draft document.
Subsequently, when a consensus was reached to submit the protocol for Internet
standardization, the TLS working group was formed within IETF to develop a com-
mon standard. This first published version of TLS can be viewed as essentially an
SSLv3.1 and is very close to and backward compatible with SSLv3.

This section is devoted to a discussion of SSLv3. In the next section, the principal
differences between SSLv3 and TLS are described.

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service.
SSL is not a single protocol but rather two layers of protocols, as illustrated in
Figure 5.2.

The SSL Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which pro-
vides the transfer service for Web client/server interaction, can operate on top of
SSL. Three higher-layer protocols are defined as part of SSL: the Handshake
Protocol, The Change Cipher Spec Protocol, and the Alert Protocol. These SSL-
specific protocols are used in the management of SSL exchanges and are examined
later in this section.

Two important SSL concepts are the SSL session and the SSL connection,
which are defined in the specification as follows.

• Connection: A connection is a transport (in the OSI layering model defini-
tion) that provides a suitable type of service. For SSL, such connections are
peer-to-peer relationships. The connections are transient. Every connection is
associated with one session.

• Session: An SSL session is an association between a client and a server. Sessions
are created by the Handshake Protocol. Sessions define a set of cryptographic
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security parameters which can be shared among multiple connections. Sessions
are used to avoid the expensive negotiation of new security parameters for
each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the
pending states become the current states.

A session state is defined by the following parameters.

• Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

• Peer certificate: An X509.v3 certificate of the peer. This element of the state
may be null.

• Compression method: The algorithm used to compress data prior to encryption.
• Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES,

etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation.
It also defines cryptographic attributes such as the hash_size.

• Master secret: 48-byte secret shared between the client and server.
• Is resumable: A flag indicating whether the session can be used to initiate new

connections.

A connection state is defined by the following parameters.

• Server and client random: Byte sequences that are chosen by the server and
client for each connection.

• Server write MAC secret: The secret key used in MAC operations on data
sent by the server.

• Client write MAC secret: The secret key used in MAC operations on data
sent by the client.

• Server write key: The secret encryption key for data encrypted by the server
and decrypted by the client.

• Client write key: The symmetric encryption key for data encrypted by the
client and decrypted by the server.

• Initialization vectors: When a block cipher in CBC mode is used, an initializa-
tion vector (IV) is maintained for each key. This field is first initialized by the
SSL Handshake Protocol. Thereafter, the final ciphertext block from each
record is preserved for use as the IV with the following record.

• Sequence numbers: Each party maintains separate sequence numbers for
transmitted and received messages for each connection.When a party sends or
receives a change cipher spec message, the appropriate sequence number is set
to zero. Sequence numbers may not exceed 264 – 1.
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SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

• Confidentiality: The Handshake Protocol defines a shared secret key that is
used for conventional encryption of SSL payloads.

• Message Integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

Figure 5.3 indicates the overall operation of the SSL Record Protocol. The
Record Protocol takes an application message to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts,
adds a header, and transmits the resulting unit in a TCP segment. Received data are
decrypted, verified, decompressed, and reassembled before being delivered to
higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented
into blocks of 214 bytes (16384 bytes) or less. Next, compression is optionally
applied. Compression must be lossless and may not increase the content
length by more than 1024 bytes.1 In SSLv3 (as well as the current version of TLS),
no compression algorithm is specified, so the default compression algorithm
is null.

The next step in processing is to compute a message authentication code over
the compressed data. For this purpose, a shared secret key is used. The calculation is
defined as

1Of course, one hopes that compression shrinks rather than expands the data. However, for very short
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually
provide output that is longer than the input.

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

Figure 5.3 SSL Record Protocol Operation
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Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES 128, 256 RC4-40 40
IDEA 128 RC4-128 128
RC2-40 40
DES-40 40
DES 56
3DES 168
Fortezza 80

hash(MAC_write_secret || pad_2||
hash(MAC_write_secret || pad_1||seq_num ||
SSLCompressed.type || SSLCompressed.length ||
SSLCompressed.fragment))

where
|| = concatenation
MAC_write_secret = shared secret key
hash = cryptographic hash algorithm; either 

MD5 or SHA-1
pad_1 = the byte 0x36 (0011 0110) repeated 

48 times (384 bits) for MD5 and 40 
times (320 bits) for SHA-1

pad_2 = the byte 0x5C (0101 1100) repeated 48
times for MD5 and 40 times for SHA-1

seq_num = the sequence number for this message
SSLCompressed.type = the higher-level protocol used to process

this fragment
SSLCompressed.length = the length of the compressed fragment
SSLCompressed.fragment = the compressed fragment (if compression

is not used, this is the plaintext fragment)

Note that this is very similar to the HMAC algorithm defined in Chapter 3. The
difference is that the two pads are concatenated in SSLv3 and are XORed in HMAC.
The SSLv3 MAC algorithm is based on the original Internet draft for HMAC, which
used concatenation.The final version of HMAC (defined in RFC 2104) uses the XOR.

Next, the compressed message plus the MAC are encrypted using symmetric
encryption. Encryption may not increase the content length by more than 1024
bytes, so that the total length may not exceed 214 + 2048. The following encryption
algorithms are permitted:

Fortezza can be used in a smart card encryption scheme.
For stream encryption, the compressed message plus the MAC are encrypted.

Note that the MAC is computed before encryption takes place and that the MAC
is then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-
tion.The padding is in the form of a number of padding bytes followed by a one-byte
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indication of the length of the padding. The total amount of padding is the smallest
amount such that the total size of the data to be encrypted (plaintext plus MAC plus
padding) is a multiple of the cipher’s block length. An example is a plaintext (or
compressed text if compression is used) of 58 bytes, with a MAC of 20 bytes (using
SHA-1), that is encrypted using a block length of 8 bytes (e.g., DES). With the
padding-length byte, this yields a total of 79 bytes. To make the total an integer
multiple of 8, one byte of padding is added.

The final step of SSL Record Protocol processing is to prepare a header
consisting of the following fields:

• Content Type (8 bits): The higher-layer protocol used to process the enclosed
fragment.

• Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the
value is 3.

• Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value is 0.
• Compressed Length (16 bits): The length in bytes of the plaintext fragment (or

compressed fragment if compression is used). The maximum value is .

The content types that have been defined are change_cipher_spec,alert,
handshake, and application_data. The first three are the SSL-specific proto-
cols, discussed next. Note that no distinction is made among the various applications
(e.g., HTTP) that might use SSL; the content of the data created by such applications
is opaque to SSL.

Figure 5.4 illustrates the SSL record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three SSL-specific protocols that use
the SSL Record Protocol, and it is the simplest. This protocol consists of a single
message (Figure 5.5a), which consists of a single byte with the value 1. The sole pur-
pose of this message is to cause the pending state to be copied into the current state,
which updates the cipher suite to be used on this connection.

214+2048

Content
type

Major
version

Minor
version

Compressed
length

Plaintext
(optionally

compressed)

MAC (0, 16, or 20 bytes)

E
nc

ry
pt

ed

Figure 5.4 SSL Record Format
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(a) Change Cipher Spec Protocol
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(c) Handshake Protocol

1 byte

Length

3 bytes

Content

 ! 0 bytes

(d) Other Upper-Layer Protocol (e.g., HTTP)

Opaque content

! 1 byte

Level

(b) Alert Protocol

1 byte 1 byte

Alert

Figure 5.5 SSL Record Protocl Payload

Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with
other applications that use SSL, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes (Figure 5.5b).The first byte
takes the value warning (1) or fatal (2) to convey the severity of the message. If the
level is fatal, SSL immediately terminates the connection. Other connections on the
same session may continue, but no new connections on this session may be estab-
lished. The second byte contains a code that indicates the specific alert. First, we list
those alerts that are always fatal (definitions from the SSL specification):

• unexpected_message: An inappropriate message was received.
• bad_record_mac: An incorrect MAC was received.
• decompression_failure: The decompression function received improper

input (e.g., unable to decompress or decompress to greater than maximum
allowable length).

• handshake_failure: Sender was unable to negotiate an acceptable set of
security parameters given the options available.

• illegal_parameter: A field in a handshake message was out of range or
inconsistent with other fields.

The remaining alerts are the following.

• close_notify: Notifies the recipient that the sender will not send any
more messages on this connection. Each party is required to send a
close_notify alert before closing the write side of a connection.

• no_certificate: May be sent in response to a certificate request if no
appropriate certificate is available.

• bad_certificate: A received certificate was corrupt (e.g., contained a
signature that did not verify).

• unsupported_certificate: The type of the received certificate is not
supported.

• certificate_revoked: A certificate has been revoked by its signer.
• certificate_expired: A certificate has expired.
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• certificate_unknown: Some other unspecified issue arose in processing
the certificate, rendering it unacceptable.

Handshake Protocol

The most complex part of SSL is the Handshake Protocol. This protocol allows the
server and client to authenticate each other and to negotiate an encryption and
MAC algorithm and cryptographic keys to be used to protect data sent in an SSL
record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client
and server. All of these have the format shown in Figure 5.5c. Each message has
three fields:

• Type (1 byte): Indicates one of 10 messages. Table 5.2 lists the defined
message types.

• Length (3 bytes): The length of the message in bytes.
• Content ( bytes): The parameters associated with this message; these are

listed in Table 5.2.

Figure 5.6 shows the initial exchange needed to establish a logical connection
between client and server. The exchange can be viewed as having four phases.

PHASE 1. ESTABLISH SECURITY CAPABILITIES This phase is used to initiate a logical
connection and to establish the security capabilities that will be associated with it.
The exchange is initiated by the client, which sends a client_hello message with
the following parameters:

• Version: The highest SSL version understood by the client.
• Random: A client-generated random structure consisting of a 32-bit timestamp

and 28 bytes generated by a secure random number generator. These values
serve as nonces and are used during key exchange to prevent replay attacks.

Ú 0

Table 5.2 SSL Handshake Protocol Message Types

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value
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• Session ID: A variable-length session identifier. A nonzero value indicates
that the client wishes to update the parameters of an existing connection or to
create a new connection on this session. A zero value indicates that the client
wishes to establish a new connection on a new session.

• CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec; these are discussed subsequently.

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

finished

change_cipher_spec

finished

change_cipher_spec

certificate_verify

client_key_exchange

certificate

server_hello_done

certificate_request

server_key_exchange

certificate

server_hello

client_hello
T

im
e

Figure 5.6 Handshake Protocol Action



5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 151

• Compression Method: This is a list of the compression methods the client
supports.

After sending the client_hello message, the client waits for the
server_hello message, which contains the same parameters as the
client_hello message. For the server_hello message, the following conven-
tions apply. The Version field contains the lower of the versions suggested by the
client and the highest supported by the server. The Random field is generated by
the server and is independent of the client’s Random field. If the SessionID field of
the client was nonzero, the same value is used by the server; otherwise the server’s
SessionID field contains the value for a new session. The CipherSuite field contains
the single cipher suite selected by the server from those proposed by the client. The
Compression field contains the compression method selected by the server from
those proposed by the client.

The first element of the CipherSuite parameter is the key exchange method
(i.e., the means by which the cryptographic keys for conventional encryption and
MAC are exchanged). The following key exchange methods are supported.

• RSA: The secret key is encrypted with the receiver’s RSA public key.A public-
key certificate for the receiver’s key must be made available.

• Fixed Diffie-Hellman: This is a Diffie-Hellman key exchange in which the
server’s certificate contains the Diffie-Hellman public parameters signed by
the certificate authority (CA). That is, the public-key certificate contains the
Diffie-Hellman public-key parameters. The client provides its Diffie-Hellman
public-key parameters either in a certificate, if client authentication is
required, or in a key exchange message. This method results in a fixed secret
key between two peers based on the Diffie-Hellman calculation using the
fixed public keys.

• Ephemeral Diffie-Hellman: This technique is used to create ephemeral
(temporary, one-time) secret keys. In this case, the Diffie-Hellman public
keys are exchanged, signed using the sender’s private RSA or DSS key.
The receiver can use the corresponding public key to verify the signature.
Certificates are used to authenticate the public keys. This would appear to
be the most secure of the three Diffie-Hellman options, because it results in a
temporary, authenticated key.

• Anonymous Diffie-Hellman: The base Diffie-Hellman algorithm is used with
no authentication.That is, each side sends its public Diffie-Hellman parameters
to the other with no authentication. This approach is vulnerable to man-in-the-
middle attacks, in which the attacker conducts anonymous Diffie-Hellman with
both parties.

• Fortezza: The technique defined for the Fortezza scheme.

Following the definition of a key exchange method is the CipherSpec, which
includes the following fields.

• CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,
3DES, DES40, IDEA, or Fortezza
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• MACAlgorithm: MD5 or SHA-1
• CipherType: Stream or Block
• IsExportable: True or False
• HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes
• Key Material: A sequence of bytes that contain data used in generating the

write keys
• IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)

encryption

PHASE 2. SERVER AUTHENTICATION AND KEY EXCHANGE The server begins this phase
by sending its certificate if it needs to be authenticated; the message contains one or
a chain of X.509 certificates. The certificate message is required for any agreed-on
key exchange method except anonymous Diffie-Hellman. Note that if fixed Diffie-
Hellman is used, this certificate message functions as the server’s key exchange
message because it contains the server’s public Diffie-Hellman parameters.

Next, a server_key_exchange message may be sent if it is required. It
is not required in two instances: (1) The server has sent a certificate with fixed
Diffie-Hellman parameters or (2) a RSA key exchange is to be used. The
server_key_exchange message is needed for the following:

• Anonymous Diffie-Hellman: The message content consists of the two global
Diffie-Hellman values (a prime number and a primitive root of that number)
plus the server’s public Diffie-Hellman key (see Figure 3.12).

• Ephemeral Diffie-Hellman: The message content includes the three Diffie-
Hellman parameters provided for anonymous Diffie-Hellman plus a signature
of those parameters.

• RSA key exchange (in which the server is using RSA but has a signature-only
RSA key): Accordingly, the client cannot simply send a secret key encrypted
with the server’s public key. Instead, the server must create a temporary RSA
public/private key pair and use the server_key_exchange message to send
the public key. The message content includes the two parameters of the
temporary RSA public key (exponent and modulus; see Figure 3.10) plus a
signature of those parameters.

• Fortezza

Some further details about the signatures are warranted. As usual, a signature
is created by taking the hash of a message and encrypting it with the sender’s private
key. In this case, the hash is defined as

hash(ClientHello.random || ServerHello.random ||
ServerParams)

So the hash covers not only the Diffie-Hellman or RSA parameters but also the two
nonces from the initial hello messages. This ensures against replay attacks and
misrepresentation. In the case of a DSS signature, the hash is performed using the



5.2 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 153

SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1
hash are calculated, and the concatenation of the two hashes (36 bytes) is encrypted
with the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie-Hellman)
can request a certificate from the client. The certificate_request message
includes two parameters:certificate_type and certificate_authorities.
The certificate type indicates the public-key algorithm and its use:

• RSA, signature only
• DSS, signature only
• RSA for fixed Diffie-Hellman; in this case the signature is used only for

authentication, by sending a certificate signed with RSA
• DSS for fixed Diffie-Hellman; again, used only for authentication
• RSA for ephemeral Diffie-Hellman
• DSS for ephemeral Diffie-Hellman
• Fortezza

The second parameter in the certificate_request message is a list of the
distinguished names of acceptable certificate authorities.

The final message in phase 2, and one that is always required, is the
server_done message, which is sent by the server to indicate the end of the
server hello and associated messages. After sending this message, the server will
wait for a client response. This message has no parameters.

PHASE 3. CLIENT AUTHENTICATION AND KEY EXCHANGE Upon receipt of the
server_done message, the client should verify that the server provided a valid
certificate (if required) and check that the server_hello parameters are acceptable.
If all is satisfactory, the client sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by sending
a certificate message. If no suitable certificate is available, the client sends a
no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this
phase. The content of the message depends on the type of key exchange, as follows.

• RSA: The client generates a 48-byte pre-master secret and encrypts with the
public key from the server’s certificate or temporary RSA key from a
server_key_exchange message. Its use to compute a master secret is
explained later.

• Ephemeral or Anonymous Diffie-Hellman: The client’s public Diffie-Hellman
parameters are sent.

• Fixed Diffie-Hellman: The client’s public Diffie-Hellman parameters were
sent in a certificate message, so the content of this message is null.

• Fortezza: The client’s Fortezza parameters are sent.

Finally, in this phase, the client may send a certificate_verify message
to provide explicit verification of a client certificate. This message is only sent fol-
lowing any client certificate that has signing capability (i.e., all certificates except
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those containing fixed Diffie-Hellman parameters). This message signs a hash code
based on the preceding messages, defined as

CertificateVerify.signature.md5_hash=
MD5(master_secret || pad_2 || MD5(handshake_messages || 

master_secret || pad_1));
CertificateVerify.signature.sha_hash=

SHA(master_secret || pad_2 || SHA(handshake_messages || 
master_secret || pad_1));

where pad_1 and pad_2 are the values defined earlier for the MAC,
handshake_messages refers to all Handshake Protocol messages sent or
received starting at client_hello but not including this message, and
master_secret is the calculated secret whose construction is explained later in
this section. If the user’s private key is DSS, then it is used to encrypt the SHA-1
hash. If the user’s private key is RSA, it is used to encrypt the concatenation of the
MD5 and SHA-1 hashes. In either case, the purpose is to verify the client’s owner-
ship of the private key for the client certificate. Even if someone is misusing the
client’s certificate, he or she would be unable to send this message.

PHASE 4. FINISH This phase completes the setting up of a secure connection. The
client sends a change_cipher_spec message and copies the pending CipherSpec
into the current CipherSpec. Note that this message is not considered part of the
Handshake Protocol but is sent using the Change Cipher Spec Protocol. The client
then immediately sends the finished message under the new algorithms, keys, and
secrets. The finished message verifies that the key exchange and authentication
processes were successful.The content of the finished message is the concatenation of
two hash values:

MD5(master_secret || pad2 || MD5(handshake_messages || 
Sender || master_secret || pad1))

SHA(master_secret || pad2 || SHA(handshake_messages || 
Sender || master_secret || pad1))

where Sender is a code that identifies that the sender is the client and
handshake_messages is all of the data from all handshake messages up to but
not including this message.

In response to these two messages, the server sends its own
change_cipher_spec message, transfers the pending to the current CipherSpec,
and sends its finished message. At this point, the handshake is complete and the
client and server may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by means
of the key exchange and (2) the generation of cryptographic parameters from the
master secret.
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MASTER SECRET CREATION The shared master secret is a one-time 48-byte value
(384 bits) generated for this session by means of secure key exchange. The creation
is in two stages. First, a pre_master_secret is exchanged. Second, the
master_secret is calculated by both parties. For pre_master_secret
exchange, there are two possibilities.

• RSA: A 48-byte pre_master_secret is generated by the client, encrypted
with the server’s public RSA key, and sent to the server. The server decrypts
the ciphertext using its private key to recover the pre_master_secret.

• Diffie-Hellman: Both client and server generate a Diffie-Hellman public key.
After these are exchanged, each side performs the Diffie-Hellman calculation
to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret = MD5(pre_master_secret || SHA('A' || 
pre_master_secret || ClientHello.random ||
ServerHello.random)) || 

MD5(pre_master_secret || SHA('BB' || 
pre_master_secret || ClientHello.random ||
ServerHello.random)) || 

MD5(pre_master_secret || SHA('CCC' || 
pre_master_secret || ClientHello.random || 
ServerHello.random))

where ClientHello.random and ServerHello.random are the two
nonce values exchanged in the initial hello messages.

GENERATION OF CRYPTOGRAPHIC PARAMETERS CipherSpecs require a client write
MAC secret, a server write MAC secret, a client write key, a server write key, a client
write IV, and a server write IV, which are generated from the master secret in that
order.These parameters are generated from the master secret by hashing the master
secret into a sequence of secure bytes of sufficient length for all needed parameters.

The generation of the key material from the master secret uses the same format
for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret || SHA('A' || master_secret || 
ServerHello.random || ClientHello.random)) ||

MD5(master_secret || SHA('BB' || master_secret ||
ServerHello.random || ClientHello.random)) || 

MD5(master_secret || SHA('CCC' || master_secret || 
ServerHello.random || ClientHello.random)) || . . .

until enough output has been generated. The result of this algorithmic structure is a
pseudorandom function. We can view the master_secret as the pseudorandom
seed value to the function. The client and server random numbers can be viewed as
salt values to complicate cryptanalysis (see Chapter 9 for a discussion of the use of salt
values).
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5.3 TRANSPORT LAYER SECURITY

TLS is an IETF standardization initiative whose goal is to produce an Internet
standard version of SSL. TLS is defined as a Proposed Internet Standard in RFC
5246. RFC 5246 is very similar to SSLv3. In this section, we highlight the
differences.

Version Number

The TLS Record Format is the same as that of the SSL Record Format (Figure 5.4),
and the fields in the header have the same meanings. The one difference is in ver-
sion values. For the current version of TLS, the major version is 3 and the minor
version is 3.

Message Authentication Code

There are two differences between the SSLv3 and TLS MAC schemes: the actual
algorithm and the scope of the MAC calculation. TLS makes use of the HMAC
algorithm defined in RFC 2104. Recall from Chapter 3 that HMAC is defined as

HMACK(M)= H[(K
+ opad)||H[(K+ ipad)||M]]

where

H = embedded hash function (for TLS, either MD5 or SHA-1)
M = message input to HMAC
K+ = secret key padded with zeros on the left so that the result is equal

to the block length of the hash code (for MD5 and SHA-1, block
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)
opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

SSLv3 uses the same algorithm, except that the padding bytes are
concatenated with the secret key rather than being XORed with the secret key
padded to the block length. The level of security should be about the same in
both cases.

For TLS, the MAC calculation encompasses the fields indicated in the following
expression:

MAC(MAC_write_secret,seq_num || TLSCompressed.type || 
TLSCompressed.version || TLSCompressed.length || 
TLSCompressed.fragment)

The MAC calculation covers all of the fields covered by the SSLv3 calculation,
plus the field TLSCompressed.version, which is the version of the protocol
being employed.

!!
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Pseudorandom Function

TLS makes use of a pseudorandom function referred to as PRF to expand secrets
into blocks of data for purposes of key generation or validation. The objective is to
make use of a relatively small shared secret value but to generate longer blocks of
data in a way that is secure from the kinds of attacks made on hash functions and
MACs. The PRF is based on the data expansion function (Figure 5.7) given as

P_hash(secret, seed)= HMAC_hash(secret,A(1) || seed) || 
HMAC_hash(secret, A(2) || seed) || 
HMAC_hash(secret, A(3) || seed) || . . .

where A() is defined as

A(0)= seed

A(i)= HMAC_hash(secret, A(i – 1))

Secret

Seed

Seed

A(1)
HMAC

Secret

Secret

Length " hash size

Secret

Seed

A(2)
HMAC

HMAC Secret

Seed

A(3)
HMAC

HMAC

Secret HMAC

Figure 5.7 TLS Function P_hash(secret, seed)
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The data expansion function makes use of the HMAC algorithm with either MD5
or SHA-1 as the underlying hash function. As can be seen, P_hash can be
iterated as many times as necessary to produce the required quantity of data. For
example, if P_SHA-1 was used to generate 64 bytes of data, it would have to be
iterated four times, producing 80 bytes of data of which the last 16 would be dis-
carded. In this case, P_MD5 would also have to be iterated four times, producing
exactly 64 bytes of data. Note that each iteration involves two executions of
HMAC—each of which in turn involves two executions of the underlying hash
algorithm.

To make PRF as secure as possible, it uses two hash algorithms in a way
that should guarantee its security if either algorithm remains secure. PRF is
defined as

PRF(secret, label, seed) = P_hash(S1,label || seed)

PRF takes as input a secret value, an identifying label, and a seed value and
produces an output of arbitrary length.

Alert Codes

TLS supports all of the alert codes defined in SSLv3 with the exception of
no_certificate. A number of additional codes are defined in TLS; of these, the
following are always fatal.

• record_overflow: A TLS record was received with a payload (ciphertext)
whose length exceeds bytes, or the ciphertext decrypted to a length
of greater than bytes.

• unknown_ca: A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not be located or
could not be matched with a known, trusted CA.

• access_denied: A valid certificate was received, but when access control
was applied, the sender decided not to proceed with the negotiation.

• decode_error: A message could not be decoded, because either a field
was out of its specified range or the length of the message was incorrect.

• protocol_version: The protocol version the client attempted to negoti-
ate is recognized but not supported.

• insufficient_security: Returned instead of handshake_failure
when a negotiation has failed specifically because the server requires ciphers
more secure than those supported by the client.

• unsupported_extension: Sent by clients that receive an extended server
hello containing an extension not in the corresponding client hello.

• internal_error: An internal error unrelated to the peer or the correct-
ness of the protocol makes it impossible to continue.

• decrypt_error: A handshake cryptographic operation failed, including
being unable to verify a signature, decrypt a key exchange, or validate a fin-
ished message.

214+1024
214+2048
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The remaining alerts include the following.

• user_canceled: This handshake is being canceled for some reason unre-
lated to a protocol failure.

• no_renegotiation: Sent by a client in response to a hello request or by
the server in response to a client hello after initial handshaking. Either
of these messages would normally result in renegotiation, but this alert
indicates that the sender is not able to renegotiate. This message is always a
warning.

Cipher Suites

There are several small differences between the cipher suites available under SSLv3
and under TLS:

• Key Exchange: TLS supports all of the key exchange techniques of SSLv3
with the exception of Fortezza.

• Symmetric Encryption Algorithms: TLS includes all of the symmetric encryp-
tion algorithms found in SSLv3, with the exception of Fortezza.

Client Certificate Types

TLS defines the following certificate types to be requested in a
certificate_request message: rsa_sign, dss_sign, rsa_fixed_dh, and
dss_fixed_dh. These are all defined in SSLv3. In addition, SSLv3 includes
rsa_ephemeral_dh, dss_ephemeral_dh, and fortezza_kea. Ephemeral
Diffie-Hellman involves signing the Diffie-Hellman parameters with either RSA or
DSS. For TLS, the rsa_sign and dss_sign types are used for that function; a
separate signing type is not needed to sign Diffie-Hellman parameters. TLS does
not include the Fortezza scheme.

Certificate_Verify and Finished Messages

In the TLS certificate_verify message, the MD5 and SHA-1 hashes are
calculated only over handshake_messages. Recall that for SSLv3, the hash
calculation also included the master secret and pads. These extra fields were felt to
add no additional security.

As with the finished message in SSLv3, the finished message in TLS is a hash
based on the shared master_secret, the previous handshake messages, and a
label that identifies client or server.The calculation is somewhat different. For TLS,
we have

PRF(master_secret,finished_label,MD5(handshake_messages)||
SHA-1(handshake_messages))

where finished_label is the string “client finished” for the client and “server
finished” for the server.
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Cryptographic Computations

The pre_master_secret for TLS is calculated in the same way as in SSLv3.As in
SSLv3, the master_secret in TLS is calculated as a hash function of the
pre_master_secret and the two hello random numbers. The form of the TLS
calculation is different from that of SSLv3 and is defined as

master_secret= PRF(pre_master_secret,"master secret",
ClientHello.random||ServerHello.random)

The algorithm is performed until 48 bytes of pseudorandom output are produced.
The calculation of the key block material (MAC secret keys, session encryption
keys, and IVs) is defined as

key_block = PRF(master_secret, "key expansion",
SecurityParameters.server_random||
SecurityParameters.client_random)

until enough output has been generated. As with SSLv3, the key_block is a func-
tion of the master_secret and the client and server random numbers, but for
TLS, the actual algorithm is different.

Padding

In SSL, the padding added prior to encryption of user data is the minimum
amount required so that the total size of the data to be encrypted is a multiple
of the cipher’s block length. In TLS, the padding can be any amount that results
in a total that is a multiple of the cipher’s block length, up to a maximum of 255
bytes. For example, if the plaintext (or compressed text if compression is used)
plus MAC plus padding.length byte is 79 bytes long, then the padding length
(in bytes) can be 1, 9, 17, and so on, up to 249. A variable padding length may be
used to frustrate attacks based on an analysis of the lengths of exchanged
messages.

5.4 HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-
ment secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication. For example, search engines do not support
HTTPS.

The principal difference seen by a user of a Web browser is that URL (uni-
form resource locator) addresses begin with https:// rather than http://. A normal
HTTP connection uses port 80. If HTTPS is specified, port 443 is used, which
invokes SSL.
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When HTTPS is used, the following elements of the communication are
encrypted:

• URL of the requested document
• Contents of the document
• Contents of browser forms (filled in by browser user)
• Cookies sent from browser to server and from server to browser
• Contents of HTTP header

HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamen-
tal change in using HTTP over either SSL or TLS, and both implementations are
referred to as HTTPS.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends the
TLS ClientHello to begin the TLS handshake. When the TLS handshake has fin-
ished, the client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

We need to be clear that there are three levels of awareness of a connection in
HTTPS. At the HTTP level, an HTTP client requests a connection to an HTTP
server by sending a connection request to the next lowest layer. Typically, the next
lowest layer is TCP, but it also may be TLS/SSL. At the level of TLS, a session is
established between a TLS client and a TLS server. This session can support one or
more connections at any time.As we have seen, a TLS request to establish a connec-
tion begins with the establishment of a TCP connection between the TCP entity on
the client side and the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the
connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connection
with the peer TLS entity on the remote side, which will involve closing the underly-
ing TCP connection. At the TLS level, the proper way to close a connection is for
each side to use the TLS alert protocol to send a close_notify alert. TLS imple-
mentations must initiate an exchange of closure alerts before closing a connection.
A TLS implementation may, after sending a closure alert, close the connection with-
out waiting for the peer to send its closure alert, generating an “incomplete close”.
Note that an implementation that does this may choose to reuse the session. This
should only be done when the application knows (typically through detecting HTTP
message boundaries) that it has received all the message data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying
TCP connection is terminated without a prior close_notify alert and without a
Connection: close indicator. Such a situation could be due to a programming
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error on the server or a communication error that causes the TCP connection to drop.
However, the unannounced TCP closure could be evidence of some sort of attack. So
the HTTPS client should issue some sort of security warning when this occurs.

5.5 SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to be
relatively simple and inexpensive to implement.The initial version, SSH1 was focused
on providing a secure remote logon facility to replace TELNET and other remote
logon schemes that provided no security. SSH also provides a more general
client/server capability and can be used for such network functions as file transfer and
e-mail. A new version, SSH2, fixes a number of security flaws in the original scheme.
SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating sys-
tems. It has become the method of choice for remote login and X tunneling and is
rapidly becoming one of the most pervasive applications for encryption technology
outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP
(Figure 5.8):

• Transport Layer Protocol: Provides server authentication, data confidentiality,
and data integrity with forward secrecy (i.e., if a key is compromised during
one session, the knowledge does not affect the security of earlier sessions).The
transport layer may optionally provide compression.

SSH User
Authentication Protocol

SSH Transport Layer Protocol

TCP

IP
Internet protocol provides datagram delivery across
multiple networks.

Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

Provides server authentication, confidentiality, and integrity.
It may optionally also provide compression.

Authenticates the client-side
user to the server.

SSH
Connection Protocol

Multiplexes the encrypted
tunnel into several logical
channels.

Figure 5.8 SSH Protocol Stack
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• User Authentication Protocol: Authenticates the user to the server.
• Connection Protocol: Multiplexes multiple logical communications channels

over a single, underlying SSH connection.

Transport Layer Protocol

HOST KEYS Server authentication occurs at the transport layer, based on the server
possessing a public/private key pair. A server may have multiple host keys using
multiple different asymmetric encryption algorithms. Multiple hosts may share the
same host key. In any case, the server host key is used during key exchange to
authenticate the identity of the host. For this to be possible, the client must have a
priori knowledge of the server’s public host key. RFC 4251 dictates two alternative
trust models that can be used:

1. The client has a local database that associates each host name (as typed by
the user) with the corresponding public host key. This method requires no
centrally administered infrastructure and no third-party coordination. The
downside is that the database of name-to-key associations may become
burdensome to maintain.

2. The host name-to-key association is certified by a trusted certification author-
ity (CA). The client only knows the CA root key and can verify the validity of
all host keys certified by accepted CAs.This alternative eases the maintenance
problem, since ideally, only a single CA key needs to be securely stored on the
client. On the other hand, each host key must be appropriately certified by a
central authority before authorization is possible.

PACKET EXCHANGE Figure 5.9 illustrates the sequence of events in the SSH
Transport Layer Protocol. First, the client establishes a TCP connection to the
server. This is done via the TCP protocol and is not part of the Transport Layer
Protocol. Once the connection is established, the client and server exchange data,
referred to as packets, in the data field of a TCP segment. Each packet is in the
following format (Figure 5.10).

• Packet length: Length of the packet in bytes, not including the packet length
and MAC fields.

• Padding length: Length of the random padding field.
• Payload: Useful contents of the packet. Prior to algorithm negotiation, this

field is uncompressed. If compression is negotiated, then in subsequent pack-
ets, this field is compressed.

• Random padding: Once an encryption algorithm has been negotiated, this
field is added. It contains random bytes of padding so that that total length of
the packet (excluding the MAC field) is a multiple of the cipher block size, or
8 bytes for a stream cipher.

• Message authentication code (MAC): If message authentication has been
negotiated, this field contains the MAC value. The MAC value is computed
over the entire packet plus a sequence number, excluding the MAC field. The
sequence number is an implicit 32-bit packet sequence that is initialized to
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zero for the first packet and incremented for every packet.The sequence num-
ber is not included in the packet sent over the TCP connection.

Once an encryption algorithm has been negotiated, the entire packet (exclud-
ing the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps
(Figure 5.9). The first step, the identification string exchange, begins with the client
sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP,CR, and LF are space character, carriage return, and line feed, respectively.
An example of a valid string is SSH-2.0-billsSSH_3.6.3q3<CR><LF>. The
server responds with its own identification string.These strings are used in the Diffie-
Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT con-
taining lists of supported algorithms in the order of preference to the sender. There is
one list for each type of cryptographic algorithm.The algorithms include key exchange,
encryption, MAC algorithm, and compression algorithm.Table 5.3 shows the allowable
options for encryption, MAC, and compression. For each category, the algorithm cho-
sen is the first algorithm on the client’s list that is also supported by the server.

Client
Server

SSH-protoversion-softwareversion
Identification string

exchange

Algorithm
negotiation

End of
key exchange

Service
request

SSH-protoversion-softwareversion

SSH_MSG_KEXINIT

SSH_MSG_KEXINIT

SSH_MSG_NEWKEYS

SSH_MSG_NEWKEYS

SSH_MSG_SERVICE_REQUEST

Establish TCP Connection

Key Exchange

Figure 5.9 SSH Transport Layer Protocol Packet Exchanges
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The next step is key exchange. The specification allows for alternative methods
of key exchange, but at present, only two versions of Diffie-Hellman key exchange are
specified. Both versions are defined in RFC 2409 and require only one packet in each
direction. The following steps are involved in the exchange. In this, C is the client; S is
the server; is a large safe prime; is a generator for a subgroup of GF( ); is the
order of the subgroup; V_S is S’s identification string; V_C is C’s identification string;
K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT message and I_S is S’s
SSH_MSG_KEXINIT message that have been exchanged before this part begins. The
values of , , and are known to both client and server as a result of the algorithm
selection negotiation. The hash function hash() is also decided during algorithm
negotiation.

1. C generates a random number and computes . C
sends to S.

2. S generates a random number and computes .
S receives . It computes mod ,

, and signature on with its private host key. S sends
to C.The signing operation may involve a second hashing operation.(K_S || f || s)

HsK_S || e || f || K)
H = hash(V_C || V_S || I_C || I_S ||pK = eye

f = gy mod py(0 6 y 6 q)
e

e = gx mod px(1 6 x 6 q)

qgp

qpgp

pdlpktl

pktl = packet length
pdl = padding length

gniddap# qes

Payload

SSH Packet

Compressed payload

Ciphertext

COMPRESS

ENCRYPT MAC

Figure 5.10 SSH Transport Layer Protocol Packet Formation



166 CHAPTER 5 / TRANSPORT-LEVEL SECURITY

3. C verifies that really is the host key for S (e.g., using certificates or a
local database). C is also allowed to accept the key without verification;
however, doing so will render the protocol insecure against active attacks
(but may be desirable for practical reasons in the short term in many
environments). C then computes ,

, and verifies the signature on .

As a result of these steps, the two sides now share a master key K. In addition,
the server has been authenticated to the client, because the server has used its pri-
vate key to sign its half of the Diffie-Hellman exchange. Finally, the hash value H
serves as a session identifier for this connection. Once computed, the session identi-
fier is not changed, even if the key exchange is performed again for this connection
to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS
packets. At this point, both sides may start using the keys generated from , as dis-
cussed subsequently.

K

HsI_C || I_S || K_S || e || f || K)
H = hash(V_C || V_S ||K = f x mod p

K_S

Table 5.3 SSH Transport Layer Cryptographic Algorithms

Cipher MAC algorithm

3des-cbc* Three-key 3DES in 
CBC mode

hmac-sha1* HMAC-SHA1; digest length =
key length = 20

blowfish-cbc Blowfish in CBC mode hmac-sha1-96** First 96 bits of HMAC-SHA1;
digest length = 12; key length = 20

twofish256-cbc Twofish in CBC mode
with a 256-bit key

hmac-md5 HMAC-SHA1; digest length =
key length = 16

twofish192-cbc Twofish with a 192-bit key hmac-md5-96 First 96 bits of HMAC-SHA1;
digest length = 12; key length = 16

twofish128-cbc Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a
256-bit key

Compression algorithm

aes192-cbc AES with a 192-bit key none* No compression

aes128-cbc** AES with a 128-bit key zlib Defined in RFC 1950 and 
RFC 1951

Serpent256-cbc Serpent in CBC mode
with a 256-bit key

Serpent192-cbc Serpent with a 192-bit key

Serpent128-cbc Serpent with a 128-bit key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC mode

* = Required

** = Recommended
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The final step is service request. The client sends an SSH_MSG_
SERVICE_REQUEST packet to request either the User Authentication or the
Connection Protocol. Subsequent to this, all data is exchanged as the payload of an
SSH Transport Layer packet, protected by encryption and MAC.

KEY GENERATION The keys used for encryption and MAC (and any needed IVs)
are generated from the shared secret key , the hash value from the key exchange

, and the session identifier, which is equal to unless there has been a subsequent
key exchange after the initial key exchange. The values are computed as follows.

• Initial IV client to server: " "
• Initial IV server to client: " "
• Encryption key client to server: " "
• Encryption key server to client: " "
• Integrity key client to server: " "
• Integrity key server to client: " "

where HASH() is the hash function determined during algorithm negotiation.

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is authen-
ticated to the server.

MESSAGE TYPES AND FORMATS Three types of messages are always used in the User
Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)

string user name
string service name
string method name
... method specific fields

where user name is the authorization identity the client is claiming, service name
is the facility to which the client is requesting access (typically the SSH
Connection Protocol), and method name is the authentication method being used
in this request. The first byte has decimal value 50, which is interpreted as
SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the
request but requires one or more additional authentication methods, the server
sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue
boolean partial success

where the name-list is a list of methods that may productively continue the dialog. If
the server accepts authentication, it sends a single byte message: SSH_MSG_
USERAUTH_SUCCESS (52).

 || session_id)FHASH(K || H || 
 || session_id)EHASH(K || H || 

 || session_id)DHASH(K || H || 
 || session_id)CHASH(K || H || 

 || session_id)BHASH(K || H || 
 || session_id)AHASH(K || H || 

HH
K
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MESSAGE EXCHANGE The message exchange involves the following steps.
1. The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method

of none.
2. The server checks to determine if the user name is valid. If not, the server returns

SSH_MSG_USERAUTH_FAILURE with the partial success value of false. If the
user name is valid, the server proceeds to step 3.

3. The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more
authentication methods to be used.

4. The client selects one of the acceptable authentication methods and sends a
SSH_MSG_USERAUTH_REQUEST with that method name and the required
method-specific fields. At this point, there may be a sequence of exchanges to
perform the method.

5. If the authentication succeeds and more authentication methods are required, the
server proceeds to step 3, using a partial success value of true. If the authentication
fails, the server proceeds to step 3, using a partial success value of false.

6. When all required authentication methods succeed, the server sends a
SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol is
over.

AUTHENTICATION METHODS The server may require one or more of the following
authentication methods.

• publickey: The details of this method depend on the public-key algorithm
chosen. In essence, the client sends a message to the server that contains the
client’s public key, with the message signed by the client’s private key. When
the server receives this message, it checks whether the supplied key is accept-
able for authentication and, if so, it checks whether the signature is correct.

• password: The client sends a message containing a plaintext password,
which is protected by encryption by the Transport Layer Protocol.

• hostbased:Authentication is performed on the client’s host rather than the
client itself. Thus, a host that supports multiple clients would provide authenti-
cation for all its clients. This method works by having the client send a signa-
ture created with the private key of the client host. Thus, rather than directly
verifying the user’s identity, the SSH server verifies the identity of the client
host—and then believes the host when it says the user has already authenti-
cated on the client side.

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol and
assumes that a secure authentication connection is in use.2 That secure authentication

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on top
of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication
Protocol has been previously invoked.
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connection, referred to as a tunnel, is used by the Connection Protocol to multiplex a
number of logical channels.

CHANNEL MECHANISM All types of communication using SSH, such as a terminal
session, are supported using separate channels. Either side may open a channel. For
each channel, each side associates a unique channel number, which need not be the
same on both ends. Channels are flow controlled using a window mechanism. No
data may be sent to a channel until a message is received to indicate that window
space is available.

The life of a channel progresses through three stages: opening a channel, data
transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for
the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN

string channel type
uint32 sender channel
uint32 initial window size
uint32 maximum packet size
.... channel type specific data follows

where uint32 means unsigned 32-bit integer.The channel type identifies the applica-
tion for this channel, as described subsequently. The sender channel is the local
channel number. The initial window size specifies how many bytes of channel data
can be sent to the sender of this message without adjusting the window. The maxi-
mum packet size specifies the maximum size of an individual data packet that can
be sent to the sender. For example, one might want to use smaller packets for inter-
active connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_
CHANNEL_OPEN_CONFIRMATION message, which includes the sender channel
number, the recipient channel number, and window and packet size values for
incoming traffic. Otherwise, the remote side returns a SSH_MSG_CHANNEL_
OPEN_FAILURE message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_
CHANNEL_DATA message, which includes the recipient channel number and a block
of data. These messages, in both directions, may continue as long as the channel
is open.

When either side wishes to close a channel, it sends a SSH_MSG_
CHANNEL_CLOSE message, which includes the recipient channel number.

Figure 5.11 provides an example of Connection Protocol Message Exchange.

CHANNEL TYPES Four channel types are recognized in the SSH Connection
Protocol specification.

• session: The remote execution of a program. The program may be a shell, an
application such as file transfer or e-mail, a system command, or some built-in
subsystem. Once a session channel is opened, subsequent requests are used to
start the remote program.
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Figure 5.11 Example SSH Connection Protocol Message
Exchange

• x11: This refers to the X Window System, a computer software system and net-
work protocol that provides a graphical user interface (GUI) for networked
computers. X allows applications to run on a network server but to be displayed
on a desktop machine.

• forwarded-tcpip: This is remote port forwarding, as explained in the next sub-
section.

• direct-tcpip: This is local port forwarding, as explained in the next subsection.

PORT FORWARDING One of the most useful features of SSH is port forwarding. In
essence, port forwarding provides the ability to convert any insecure TCP connection
into a secure SSH connection. This is also referred to as SSH tunneling. We need to
know what a port is in this context. A port is an identifier of a user of TCP. So, any
application that runs on top of TCP has a port number. Incoming TCP traffic is
delivered to the appropriate application on the basis of the port number.An application
may employ multiple port numbers. For example, for the Simple Mail Transfer Protocol
(SMTP), the server side generally listens on port 25, so an incoming SMTP request uses
TCP and addresses the data to destination port 25.TCP recognizes that this is the SMTP
server address and routes the data to the SMTP server application.
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Figure 5.12 illustrates the basic concept behind port forwarding. We have a
client application that is identified by port number and a server application identi-
fied by port number . At some point, the client application invokes the local TCP
entity and requests a connection to the remote server on port .The local TCP entity
negotiates a TCP connection with the remote TCP entity, such that the connection
links local port to remote port .

To secure this connection, SSH is configured so that the SSH Transport Layer
Protocol establishes a TCP connection between the SSH client and server entities
with TCP port numbers and , respectively. A secure SSH tunnel is established
over this TCP connection. Traffic from the client at port is redirected to the localx
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Figure 5.12 SSH Transport Layer Packet Exchanges
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SSH entity and travels through the tunnel where the remote SSH entity delivers the
data to the server application on port . Traffic in the other direction is similarly
redirected.

SSH supports two types of port forwarding: local forwarding and remote for-
warding. Local forwarding allows the client to set up a “hijacker” process. This will
intercept selected application-level traffic and redirect it from an unsecured TCP
connection to a secure SSH tunnel. SSH is configured to listen on selected ports.
SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On
the other end, the SSH server sends the incoming traffic to the destination port dic-
tated by the client application.

The following example should help clarify local forwarding. Suppose you have
an e-mail client on your desktop and use it to get e-mail from your mail server via
the Post Office Protocol (POP). The assigned port number for POP3 is port 110. We
can secure this traffic in the following way:

1. The SSH client sets up a connection to the remote server.
2. Select an unused local port number, say 9999, and configure SSH to accept

traffic from this port destined for port 110 on the server.
3. The SSH client informs the SSH server to create a connection to the destina-

tion, in this case mailserver port 110.
4. The client takes any bits sent to local port 9999 and sends them to the server

inside the encrypted SSH session. The SSH server decrypts the incoming bits
and sends the plaintext to port 110.

5. In the other direction, the SSH server takes any bits received on port 110
and sends them inside the SSH session back to the client, who decrypts and
sends them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf.
The client receives traffic with a given destination port number, places the traffic
on the correct port and sends it to the destination the user chooses. A typical
example of remote forwarding is the following. You wish to access a server at
work from your home computer. Because the work server is behind a firewall, it
will not accept an SSH request from your home computer. However, from work
you can set up an SSH tunnel using remote forwarding. This involves the follow-
ing steps.

1. From the work computer, set up an SSH connection to your home
computer. The firewall will allow this, because it is a protected outgoing
connection.

2. Configure the SSH server to listen on a local port, say 22, and to deliver data
across the SSH connection addressed to remote port, say 2222.

3. You can now go to your home computer, and configure SSH to accept traffic
on port 2222.

4. You now have an SSH tunnel that can be used for remote logon to the work
server.

y



5.7 / KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS 173

5.6 RECOMMENDED READING AND WEB SITES

[RESC01] is a good detailed treatment of SSL and TLS. [BARR05] provides a thorough
treatment of SSH. The original version (SSH-1) of SSH was introduced in [YLON96].

BARR05 Barrett, D.; Silverman, R.; and Byrnes, R. SSH The Secure Shell: The Definitive
Guide. Sebastopol, CA: O’Reilly, 2005.

RESC01 Rescorla, E. SSL and TLS: Designing and Building Secure Systems. Reading,
MA: Addison-Wesley, 2001.

YLON96 Ylonen, T. “SSH - Secure Login Connections over the Internet.” Proceedings,
Sixth USENIX Security Symposium, July 1996.

Recommended Web Sites:

• Transport Layer Security Charter: Latest RFCs and Internet drafts for TLS.

• OpenSSL Project: Project to develop open-source SSL and TLS software. Site includes
documents and links.

5.7 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

Alert protocol
Change Cipher Spec protocol
Handshake protocol

HTTPS (HTTP over SSL)
Master Secret
Secure Shell (SSH)

Secure Socket Layer (SSL)
Transport Layer Security

(TLS)

Review Questions

5.1 What are the advantages of each of the three approaches shown in Figure 5.1?
5.2 What protocols comprise SSL?
5.3 What is the difference between an SSL connection and an SSL session?
5.4 List and briefly define the parameters that define an SSL session state.
5.5 List and briefly define the parameters that define an SSL session connection.
5.6 What services are provided by the SSL Record Protocol?
5.7 What steps are involved in the SSL Record Protocol transmission?
5.8 What is the purpose of HTTPS?
5.9 For what applications is SSH useful?

5.10 List and briefly define the SSH protocols.
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Problems

5.1 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

5.2 What purpose does the MAC serve during the change cipher spec SSL exchange?
5.3 Consider the following threats to Web security and describe how each is countered by

a particular feature of SSL.
a. Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a

conventional encryption algorithm.
b. Known Plaintext Dictionary Attack: Many messages will contain predictable

plaintext, such as the HTTP GET command. An attacker constructs a dictionary
containing every possible encryption of the known-plaintext message. When an
encrypted message is intercepted, the attacker takes the portion containing the
encrypted known plaintext and looks up the ciphertext in the dictionary. The
ciphertext should match against an entry that was encrypted with the same secret
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one.This attack is especially effective against small key
sizes (e.g., 40-bit keys).

c. Replay Attack: Earlier SSL handshake messages are replayed.
d. Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as

the client to the server and as the server to the client.
e. Password Sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
f. IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.
g. IP Hijacking: An active, authenticated connection between two hosts is disrupted

and the attacker takes the place of one of the hosts.
h. SYN Flooding:An attacker sends TCP SYN messages to request a connection but

does not respond to the final message to establish the connection fully. The
attacked TCP module typically leaves the “half-open connection” around for a
few minutes. Repeated SYN messages can clog the TCP module.

5.4 Based on what you have learned in this chapter, is it possible in SSL for the receiver
to reorder SSL record blocks that arrive out of order? If so, explain how it can be
done. If not, why not?

5.5 For SSH packets, what is the advantage, if any, of not including the MAC in the scope
of the packet encryption?


