ELECTRONIC MAIL SECURITY

71

7.2

7.3

7.4
7.5

Pretty Good Privacy

Notation

Operational Description
Cryptographic Keys and Key Rings
Public-Key Management

SIMIME

RFC 5322

Multipurpose Internet Mail Extensions
S/MIME Functionality

S/MIME Messages

S/MIME Certificate Processing
Enhanced Security Services

DomainKeys Identified Mail

Internet Mail Architecture
E-mail Threats

DKIM Strategy

DKIM Functional Flow

Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

Appendix 7A Radix-64 Conversion

221

222 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Despite the refusal of VADM Poindexter and LtCol North to appear, the Board’s
access to other sources of information filled much of this gap. The FBI provided
documents taken from the files of the National Security Advisor and relevant
NSC staff members, including messages from the PROF system between VADM
Poindexter and LtCol North. The PROF messages were conversations by com-
puter, written at the time events occurred and presumed by the writers to be pro-
tected from disclosure. In this sense, they provide a first-hand, contemporaneous
account of events.

—The Tower Commission Report to President Reagan on the
Iran-Contra Affair, 1987

KEY POINTS

¢ PGP is an open-source, freely available software package for e-mail secu-
rity. It provides authentication through the use of digital signature, confi-
dentiality through the use of symmetric block encryption, compression
using the ZIP algorithm, and e-mail compatibility using the radix-64
encoding scheme.

@ PGP incorporates tools for developing a public-key trust model and
public-key certificate management.

¢ S/MIME is an Internet standard approach to e-mail security that incorporates
the same functionality as PGP.

¢ DKIM is a specification used by e-mail providers for cryptographically
signing e-mail messages on behalf of the source domain.

In virtually all distributed environments, electronic mail is the most heavily
used network-based application. Users expect to be able to, and do, send
e-mail to others who are connected directly or indirectly to the Internet,
regardless of host operating system or communications suite. With the explo-
sively growing reliance on e-mail, there grows a demand for authentication
and confidentiality services. Two schemes stand out as approaches that enjoy
widespread use: Pretty Good Privacy (PGP) and S/MIME. Both are examined
in this chapter. The chapter closes with a discussion of DomainKeys Identified
Mail.

7.1 PRETTY GOOD PRIVACY

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil
Zimmermann, PGP provides a confidentiality and authentication service that can
be used for electronic mail and file storage applications. In essence, Zimmermann
has done the following:

7.1 / PRETTY GOOD PRIVACY 223

1. Selected the best available cryptographic algorithms as building blocks.

2. Integrated these algorithms into a general-purpose application that is inde-
pendent of operating system and processor and that is based on a small set of
easy-to-use commands.

3. Made the package and its documentation, including the source code, freely
available via the Internet, bulletin boards, and commercial networks such as
AOL (America On Line).

4. Entered into an agreement with a company (Viacrypt, now Network
Associates) to provide a fully compatible, low-cost commercial version of PGP.

PGP has grown explosively and is now widely used. A number of reasons can
be cited for this growth.

1. It is available free worldwide in versions that run on a variety of platforms,
including Windows, UNIX, Macintosh, and many more. In addition, the commer-
cial version satisfies users who want a product that comes with vendor support.

2. Itis based on algorithms that have survived extensive public review and are con-
sidered extremely secure. Specifically, the package includes RSA, DSS, and
Diffie-Hellman for public-key encryption; CAST-128, IDEA, and 3DES for sym-
metric encryption; and SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to select and
enforce a standardized scheme for encrypting files and messages to individuals
who wish to communicate securely with others worldwide over the Internet and
other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards
organization. For those with an instinctive distrust of “the establishment,” this
makes PGP attractive.

5. PGP is now on an Internet standards track (RFC 3156; MIME Security with
OpenPGP). Nevertheless, PGP still has an aura of an antiestablishment
endeavor.

We begin with an overall look at the operation of PGP. Next, we examine
how cryptographic keys are created and stored. Then, we address the vital issue of
public-key management.

Notation

Most of the notation used in this chapter has been used before, but a few terms are new.
It is perhaps best to summarize those at the beginning. The following symbols are used.

K, = session key used in symmetric encryption scheme
PR, = private key of user A, used in public-key encryption scheme

PU, = public key of user A, used in public-key encryption scheme
EP = public-key encryption
DP = public-key decryption
EC = symmetric encryption

DC = symmetric decryption

224 CHAPTER 7 / ELECTRONIC MAIL SECURITY

H

|
z

= hash function
= concatenation
compression using ZIP algorithm

R64 = conversion to radix 64 ASCII format!

The PGP documentation often uses the term secret key to refer to a key paired
with a public key in a public-key encryption scheme. As was mentioned earlier, this
practice risks confusion with a secret key used for symmetric encryption. Hence, we
use the term private key instead.

Operational Description

The actual operation of PGP, as opposed to the management of keys, consists of four
services: authentication, confidentiality, compression, and e-mail compatibility
(Table 7.1). We examine each of these in turn.

AvtHENTICATION Figure 7.1a illustrates the digital signature service provided by
PGP. This is the digital signature scheme discussed in Chapter 3 and illustrated in
Figure 4.5. The sequence is as follows.

1.
2.
3.

4.

S.

The sender creates a message.
SHA-1 is used to generate a 160-bit hash code of the message.

The hash code is encrypted with RSA using the sender’s private key, and the
result is prepended to the message.

The receiver uses RSA with the sender’s public key to decrypt and recover the
hash code.

The receiver generates a new hash code for the message and compares it with
the decrypted hash code. If the two match, the message is accepted as authentic.

Table 7.1 Summary of PGP Services

Function Algorithms Used Description
A hash code of a message is created using
Digital DSS/SHA or RSA/SHA SHA-1. This message digest is encrypted using
signature DSS or RSA with the sender’s private key and
included with the message.
A message is encrypted using CAST-128 or
Message CAST or IDEA or Three-key IDEA or 3DES with a one-time session key
S Triple DES with Diffie-Hellman | generated by the sender. The session key is
or RSA encrypted using Diffie-Hellman or RSA with
the recipient’s public key and included with
the message.
Compresien Z1p A message may be compressed for storage or
transmission using ZIP.
E-mail To provide transparency for e-mail applica-
compatibility Radix-64 conversion tions, an encryp.ted message may be conve.rted
to an ASCII string using radix-64 conversion.

! The American Standard Code for Information Interchange (ASCII) is described in Appendix L.

suonoun,j orydersordLi) Jod 1L 2msng

uonednudyIne pue Ajrenuapuo)) (9)

(1)
aredwo)
a , -
quo Ayrenuapyuo) (q)

(4q)
"nd
g1o1ﬂ D———D,
Nd

h H = Y “Ndlg A[uo uoneonuayiny (e)

areduio)
"W
|Q|-
~

,,I
~
~
~

[WH “¥d1a

[WH "yd1a

q
13 bk
'Y “ndld

A

A

—®

’nd
g uoneunsa(

A

V 92ano§

Y
\
Y

225

226 CHAPTER 7 / ELECTRONIC MAIL SECURITY

The combination of SHA-1 and RSA provides an effective digital signature
scheme. Because of the strength of RSA, the recipient is assured that only the pos-
sessor of the matching private key can generate the signature. Because of the
strength of SHA-1, the recipient is assured that no one else could generate a new
message that matches the hash code and, hence, the signature of the original
message.

As an alternative, signatures can be generated using DSS/SHA-1.

Although signatures normally are found attached to the message or file that
they sign, this is not always the case: Detached signatures are supported. A detached
signature may be stored and transmitted separately from the message it signs. This is
useful in several contexts. A user may wish to maintain a separate signature log of all
messages sent or received. A detached signature of an executable program can
detect subsequent virus infection. Finally, detached signatures can be used when
more than one party must sign a document, such as a legal contract. Each person’s
signature is independent and therefore is applied only to the document. Otherwise,
signatures would have to be nested, with the second signer signing both the docu-
ment and the first signature, and so on.

ConrFIDENTIALITY Another basic service provided by PGP is confidentiality, which
is provided by encrypting messages to be transmitted or to be stored locally as files.
In both cases, the symmetric encryption algorithm CAST-128 may be used.
Alternatively, IDEA or 3DES may be used. The 64-bit cipher feedback (CFB) mode
1s used.

As always, one must address the problem of key distribution. In PGP, each
symmetric key is used only once. That is, a new key is generated as a random 128-bit
number for each message. Thus, although this is referred to in the documentation as
a session key, it is in reality a one-time key. Because it is to be used only once, the
session key is bound to the message and transmitted with it. To protect the key, it is
encrypted with the receiver’s public key. Figure 7.1b illustrates the sequence, which
can be described as follows.

1. The sender generates a message and a random 128-bit number to be used as
a session key for this message only.

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the ses-
sion key.

3. The session key is encrypted with RSA using the recipient’s public key and is
prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session
key.

5. The session key is used to decrypt the message.

As an alternative to the use of RSA for key encryption, PGP provides an
option referred to as Diffie-Hellman. As was explained in Chapter 3, Diffie-
Hellman is a key exchange algorithm. In fact, PGP uses a variant of Diffie-Hellman
that does provide encryption/decryption, known as ElGamal.

Several observations may be made. First, to reduce encryption time, the combi-
nation of symmetric and public-key encryption is used in preference to simply using

7.1 / PRETTY GOOD PRIVACY 227

RSA or ElGamal to encrypt the message directly: CAST-128 and the other symmet-
ric algorithms are substantially faster than RSA or ElGamal. Second, the use of the
public-key algorithm solves the session-key distribution problem, because only the
recipient is able to recover the session key that is bound to the message. Note that
we do not need a session-key exchange protocol of the type discussed in Chapter 14, because
we are not beginning an ongoing session. Rather, each message is a one-time inde-
pendent event with its own key. Furthermore, given the store-and-forward nature of
electronic mail, the use of handshaking to assure that both sides have the same
session key is not practical. Finally, the use of one-time symmetric keys strengthens
what is already a strong symmetric encryption approach. Only a small amount of
plaintext is encrypted with each key, and there is no relationship among the keys.
Thus, to the extent that the public-key algorithm is secure, the entire scheme is
secure. To this end, PGP provides the user with a range of key size options from 768
to 3072 bits (the DSS key for signatures is limited to 1024 bits).

CONFIDENTIALITY AND AUTHENTICATION As Figure 7.1c illustrates, both services
may be used for the same message. First, a signature is generated for the plaintext
message and prepended to the message. Then the plaintext message plus signature is
encrypted using CAST-128 (or IDEA or 3DES), and the session key is encrypted
using RSA (or ElGamal). This sequence is preferable to the opposite: encrypting
the message and then generating a signature for the encrypted message. It is
generally more convenient to store a signature with a plaintext version of a message.
Furthermore, for purposes of third-party verification, if the signature is performed
first, a third party need not be concerned with the symmetric key when verifying the
signature.

In summary, when both services are used, the sender first signs the message
with its own private key, then encrypts the message with a session key, and finally
encrypts the session key with the recipient’s public key.

Comprression As a default, PGP compresses the message after applying the
signature but before encryption. This has the benefit of saving space both for e-mail
transmission and for file storage.

The placement of the compression algorithm, indicated by Z for compression
and Z~! for decompression in Figure 7.1, is critical.

1. The signature is generated before compression for two reasons:

a. It is preferable to sign an uncompressed message so that one can store only
the uncompressed message together with the signature for future verifica-
tion. If one signed a compressed document, then it would be necessary either
to store a compressed version of the message for later verification or to
recompress the message when verification is required.

b. Even if one were willing to generate dynamically a recompressed message
for verification, PGP’s compression algorithm presents a difficulty. The algo-
rithm is not deterministic; various implementations of the algorithm achieve
different tradeoffs in running speed versus compression ratio and, as a result,
produce different compressed forms. However, these different compression
algorithms are interoperable because any version of the algorithm can
correctly decompress the output of any other version. Applying the hash

228 CHAPTER 7 / ELECTRONIC MAIL SECURITY

function and signature after compression would constrain all PGP imple-
mentations to the same version of the compression algorithm.

2. Message encryption is applied after compression to strengthen cryptographic
security. Because the compressed message has less redundancy than the
original plaintext, cryptanalysis is more difficult.

The compression algorithm used is ZIP, which is described in Appendix G.

E-mar. CompatisiLiTy When PGP is used, at least part of the block to be transmitted
1s encrypted. If only the signature service is used, then the message digest is
encrypted (with the sender’s private key). If the confidentiality service is used, the
message plus signature (if present) are encrypted (with a one-time symmetric key).
Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit octets.
However, many electronic mail systems only permit the use of blocks consisting of
ASCII text. To accommodate this restriction, PGP provides the service of converting
the raw 8-bit binary stream to a stream of printable ASCII characters.

The scheme used for this purpose is radix-64 conversion. Each group of three
octets of binary data is mapped into four ASCII characters. This format also
appends a CRC to detect transmission errors. See Appendix 7A for a description.

The use of radix 64 expands a message by 33%. Fortunately, the session key
and signature portions of the message are relatively compact, and the plaintext mes-
sage has been compressed. In fact, the compression should be more than enough to
compensate for the radix-64 expansion. For example, [HELD96] reports an average
compression ratio of about 2.0 using ZIP. If we ignore the relatively small signature
and key components, the typical overall effect of compression and expansion of a
file of length X would be 1.33 X 0.5 X X = 0.665 X X.Thus, there is still an overall
compression of about one-third.

One noteworthy aspect of the radix-64 algorithm is that it blindly converts the
input stream to radix-64 format regardless of content, even if the input happens to
be ASCII text. Thus, if a message is signed but not encrypted and the conversion is
applied to the entire block, the output will be unreadable to the casual observer,
which provides a certain level of confidentiality. As an option, PGP can be config-
ured to convert to radix-64 format only the signature portion of signed plaintext
messages. This enables the human recipient to read the message without using PGP.
PGP would still have to be used to verify the signature.

Figure 7.2 shows the relationship among the four services so far discussed. On
transmission (if it is required), a signature is generated using a hash code of the
uncompressed plaintext. Then the plaintext (plus signature if present) is com-
pressed. Next, if confidentiality is required, the block (compressed plaintext or com-
pressed signature plus plaintext) is encrypted and prepended with the public-key-
encrypted symmetric encryption key. Finally, the entire block is converted to
radix-64 format.

On reception, the incoming block is first converted back from radix-64 format
to binary. Then, if the message is encrypted, the recipient recovers the session key
and decrypts the message. The resulting block is then decompressed. If the message
1s signed, the recipient recovers the transmitted hash code and compares it to its
own calculation of the hash code.

S93BSSOIN dDd JO uondodoay pue uoISSIWUSURI], 7°L 2INSL]

(V wolj) weiSerp UoISSIWSULI) JLIdUL) (B)

(g 03) weiderp uondadas oduan) (q)

229

X198 — X
A $9 XIPeI 0 JI9AU0D)
A
ON >
ON
AImjeuIIs AJLIoA - (parmbar " — -
X woiy amyeusis ding |~ AImjeusIs X “ancy “ndd—x (panmbaz
A X ‘KoY 1d&roug Kienuepuo)
A
A
X),_-Z—>X
ssaxdwooa (] X)z— X
ssaxdwo)
A
A
ON ON
s S
s mmk vbmﬁ_a Nd IVMN (poxmbar X || 2Imyeusis — x (paxmbax
(¥ "nda "4d)a >y < Knenuapyuo)) QINRUSIS 9JRISUID) AImeusIs
mo . .
X Koy 1dA100(A 1 A
X],_v9¥8 — X

M — X

$9 XIPBI WOIj 1ISAUOD)

230 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Cryptographic Keys and Key Rings

PGP makes use of four types of keys: one-time session symmetric keys, public keys,
private keys, and passphrase-based symmetric keys (explained subsequently). Three
separate requirements can be identified with respect to these keys.

1. A means of generating unpredictable session keys is needed.

2. We would like to allow a user to have multiple public-key/private-key pairs. One
reason is that the user may wish to change his or her key pair from time to time.
When this happens, any messages in the pipeline will be constructed with an
obsolete key. Furthermore, recipients will know only the old public key until an
update reaches them. In addition to the need to change keys over time, a user
may wish to have multiple key pairs at a given time to interact with different
groups of correspondents or simply to enhance security by limiting the amount of
material encrypted with any one key. The upshot of all this is that there is not a
one-to-one correspondence between users and their public keys. Thus, some
means is needed for identifying particular keys.

3. Each PGP entity must maintain a file of its own public/private key pairs as
well as a file of public keys of correspondents.

We examine each of these requirements in turn.

Sesston Key GENErRATION Each session key is associated with a single message and
is used only for the purpose of encrypting and decrypting that message. Recall that
message encryption/decryption is done with a symmetric encryption algorithm.
CAST-128 and IDEA use 128-bit keys; 3DES uses a 168-bit key. For the following
discussion, we assume CAST-128.

Random 128-bit numbers are generated using CAST-128 itself. The input to
the random number generator consists of a 128-bit key and two 64-bit blocks that
are treated as plaintext to be encrypted. Using cipher feedback mode, the CAST-128
encrypter produces two 64-bit cipher text blocks, which are concatenated to form
the 128-bit session key. The algorithm that is used is based on the one specified in
ANSI X12.17.

The “plaintext” input to the random number generator, consisting of two
64-bit blocks, is itself derived from a stream of 128-bit randomized numbers. These
numbers are based on keystroke input from the user. Both the keystroke timing and
the actual keys struck are used to generate the randomized stream. Thus, if the user
hits arbitrary keys at his or her normal pace, a reasonably “random” input will
be generated. This random input is also combined with previous session key output
from CAST-128 to form the key input to the generator. The result, given the
effective scrambling of CAST-128, is to produce a sequence of session keys that is
effectively unpredictable.

Appendix H discusses PGP random number generation techniques in more
detail.

Key IDENTIFIERS As we have discussed, an encrypted message is accompanied by
an encrypted form of the session key that was used for message encryption. The

7.1 / PRETTY GOOD PRIVACY 231

session key itself is encrypted with the recipient’s public key. Hence, only the
recipient will be able to recover the session key and therefore recover the message.
If each user employed a single public/private key pair, then the recipient would
automatically know which key to use to decrypt the session key: the recipient’s
unique private key. However, we have stated a requirement that any given user may
have multiple public/private key pairs.

How, then, does the recipient know which of its public keys was used to
encrypt the session key? One simple solution would be to transmit the public key
with the message. The recipient could then verify that this is indeed one of its
public keys, and proceed. This scheme would work, but it is unnecessarily waste-
ful of space. An RSA public key may be hundreds of decimal digits in length.
Another solution would be to associate an identifier with each public key that is
unique at least within one user. That is, the combination of user ID and key
ID would be sufficient to identify a key uniquely. Then only the much shorter key
ID would need to be transmitted. This solution, however, raises a management
and overhead problem: Key IDs must be assigned and stored so that both sender
and recipient could map from key ID to public key. This seems unnecessarily
burdensome.

The solution adopted by PGP is to assign a key ID to each public key that is,
with very high probability, unique within a user ID. The key ID associated with each
public key consists of its least significant 64 bits. That is, the key ID of public key
PU,is (PU, mod 2%*). This is a sufficient length that the probability of duplicate key
IDs is very small.

A key ID is also required for the PGP digital signature. Because a sender
may use one of a number of private keys to encrypt the message digest, the
recipient must know which public key is intended for use. Accordingly, the
digital signature component of a message includes the 64-bit key ID of the
required public key. When the message is received, the recipient verifies that
the key ID is for a public key that it knows for that sender and then proceeds to
verify the signature.

Now that the concept of key ID has been introduced, we can take a more
detailed look at the format of a transmitted message, which is shown in Figure 7.3.
A message consists of three components: the message component, a signature
(optional), and a session key component (optional).

The message component includes the actual data to be stored or transmitted,
as well as a filename and a timestamp that specifies the time of creation.

The signature component includes the following.

e Timestamp: The time at which the signature was made.

* Message digest: The 160-bit SHA-1 digest encrypted with the sender’s pri-
vate signature key. The digest is calculated over the signature timestamp
concatenated with the data portion of the message component. The inclu-
sion of the signature timestamp in the digest insures against replay types of
attacks. The exclusion of the filename and timestamp portions of the
message component ensures that detached signatures are exactly the same
as attached signatures prefixed to the message. Detached signatures are

232 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Content Operation
/ Key ID of recipient's 1
Session key L Bu}ilc_k el(liU’ﬁ —
component
P Session key (Kj) E(PU,, *)
] A A
/ Timestamp
Key ID of sender's
Signature public key (PU,,)
Leading two octets
of message digest
\ Message Digest E(PR,,*)
4 R64
Filename
Timestam
P P [EK,*)
Message
Data
Y Y Y Y
Notation:
E(PU,, ») = encryption with user b's public key
E(PR,, *) = encryption with user a's private key
E(K,,*) = encryption with session key
ZIP = Zip compression function
R64 = Radix-64 conversion function

Figure 7.3 General Format PGP Message (from A to B)

calculated on a separate file that has none of the message component
header fields.

* Leading two octets of message digest: Enables the recipient to determine if
the correct public key was used to decrypt the message digest for authentica-
tion by comparing this plaintext copy of the first two octets with the first two
octets of the decrypted digest. These octets also serve as a 16-bit frame check
sequence for the message.

* Key ID of sender’s public key: Identifies the public key that should be used to
decrypt the message digest and, hence, identifies the private key that was used
to encrypt the message digest.

The message component and optional signature component may be com-
pressed using ZIP and may be encrypted using a session key.

7.1 / PRETTY GOOD PRIVACY 233

The session key component includes the session key and the identifier of the
recipient’s public key that was used by the sender to encrypt the session key.
The entire block is usually encoded with radix-64 encoding.

Key Rincs We have seen how key IDs are critical to the operation of PGP and that
two key IDs are included in any PGP message that provides both confidentiality
and authentication. These keys need to be stored and organized in a systematic way
for efficient and effective use by all parties. The scheme used in PGP is to provide a
pair of data structures at each node, one to store the public/private key pairs owned
by that node and one to store the public keys of other users known at this node.
These data structures are referred to, respectively, as the private-key ring and the
public-key ring.

Figure 7.4 shows the general structure of a private-key ring. We can view the
ring as a table in which each row represents one of the public/private key pairs
owned by this user. Each row contains the entries:

e Timestamp: The date/time when this key pair was generated.

e Key ID: The least significant 64 bits of the public key for this entry.

* Public key: The public-key portion of the pair.

* Private key: The private-key portion of the pair; this field is encrypted.

Private-Key Ring

Timestamp Key ID* Public Key Encrypted User ID*
Private Key
T, PU; mod 2% PU; E(H(P), PR)) User i
Public-Key Ring
Timestamp Key ID* Public Key | Owner Trust| User ID* Key Signature(s) Signature
Legitimacy Trust(s)
T; PU; mod 2%* PU; trust_flag; User i trust_flag;

* = field used to index table

Figure 7.4 General Structure of Private- and Public-Key Rings

234 CHAPTER 7 / ELECTRONIC MAIL SECURITY

e User ID: Typically, this will be the user’s e-mail address (e.g., stallings@acm.org).
However, the user may choose to associate a different name with each pair
(e.g., Stallings, WStallings, WilliamStallings, etc.) or to reuse the same User ID
more than once.

The private-key ring can be indexed by either User ID or Key ID; later we will
see the need for both means of indexing.

Although it is intended that the private-key ring be stored only on the
machine of the user that created and owns the key pairs and that it be accessible
only to that user, it makes sense to make the value of the private key as secure as
possible. Accordingly, the private key itself is not stored in the key ring. Rather, this
key is encrypted using CAST-128 (or IDEA or 3DES). The procedure is as follows:

1. The user selects a passphrase to be used for encrypting private keys.

2. When the system generates a new public/private key pair using RSA, it asks
the user for the passphrase. Using SHA-1, a 160-bit hash code is generated
from the passphrase, and the passphrase is discarded.

3. The system encrypts the private key using CAST-128 with the 128 bits of
the hash code as the key. The hash code is then discarded, and the encrypted
private key is stored in the private-key ring.

Subsequently, when a user accesses the private-key ring to retrieve a pri-
vate key, he or she must supply the passphrase. PGP will retrieve the encrypted
private key, generate the hash code of the passphrase, and decrypt the encrypted
private key using CAST-128 with the hash code.

This is a very compact and effective scheme. As in any system based on pass-
words, the security of this system depends on the security of the password. To avoid
the temptation to write it down, the user should use a passphrase that is not easily
guessed but that is easily remembered.

Figure 7.4 also shows the general structure of a public-key ring. This data
structure is used to store public keys of other users that are known to this user. For
the moment, let us ignore some fields shown in the figure and describe the following
fields.

e Timestamp: The date/time when this entry was generated.
e Key ID: The least significant 64 bits of the public key for this entry.
¢ Public Key: The public key for this entry.

e User ID: Identifies the owner of this key. Multiple user IDs may be associated
with a single public key.

The public-key ring can be indexed by either User ID or Key ID; we will see
the need for both means of indexing later.

We are now in a position to show how these key rings are used in message
transmission and reception. For simplicity, we ignore compression and radix-64 con-
version in the following discussion. First consider message transmission (Figure 7.5)
and assume that the message is to be both signed and encrypted. The sending PGP
entity performs the following steps.

Private-key ring

D, Select

Passphrase %

| | Encrypted Y
private key
<5 59
Key ID

Private key
PR,

Message

Message
M

7.1 / PRETTY GOOD PRIVACY 235

Public-key ring

Select

my 227

Key ID

RNG

Message

\

digest (—

H > EP > |
—@—&—(

A

-
)

3

Session key
K;
|

Public key
PU,

(&)

Y

Output

Signature
+ message

@

N

Encrypted
signature
+ message

{f

4

=)~

Figure 7.5 PGP Message Generation (from User A to User B: no compression or radix-64

conversion)

1. Signing the message:

a. PGP retrieves the sender’s private key from the private-key ring using
your_userid as an index. If your_userid was not provided in the
command, the first private key on the ring is retrieved.

b. PGP prompts the user for the passphrase to recover the unencrypted private

key.

c. The signature component of the message is constructed.

2. Encrypting the message:

a. PGP generates a session key and encrypts the message.

b. PGP retrieves the recipient’s public key from the public-key ring using
her userid as an index.

c. The session key component of the message is constructed.

The receiving PGP entity performs the following steps (Figure 7.6).

1. Decrypting the message:

a. PGP retrieves the receiver’s private key from the private-key ring using the
Key ID field in the session key component of the message as an index.

b. PGP prompts the user for the passphrase to recover the unencrypted

private key.

c¢. PGP then recovers the session key and decrypts the message.

236 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Passphrase %

Private-key ring Public-key ring
Select | | Encrypted 7 Select R | |
"~ private key
Private key
PR,
Receiver's Public key
Key ID [— @ PU,

Encrypted Sender's \
session key Session key Key ID
K, Y
Encrypted > DD
A digest “\)
Encrypted > DC >
mesonge + U Compare
signature B T
&

Figure 7.6 PGP Message Reception (from User A to User B; no compression or radix-64
conversion)

2. Authenticating the message:

a. PGP retrieves the sender’s public key from the public-key ring using the Key
ID field in the signature key component of the message as an index.

b. PGP recovers the transmitted message digest.

c¢. PGP computes the message digest for the received message and compares it
to the transmitted message digest to authenticate.

Public-Key Management

As can be seen from the discussion so far, PGP contains a clever, efficient, interlock-
ing set of functions and formats to provide an effective confidentiality and authenti-
cation service. To complete the system, one final area needs to be addressed, that
of public-key management. The PGP documentation captures the importance of
this area:

This whole business of protecting public keys from tampering is the
single most difficult problem in practical public key applications. It
is the “Achilles heel” of public key cryptography, and a lot of soft-
ware complexity is tied up in solving this one problem.

7.1 / PRETTY GOOD PRIVACY 237

PGP provides a structure for solving this problem with several suggested
options that may be used. Because PGP is intended for use in a variety of formal
and informal environments, no rigid public-key management scheme is set up, such
as we will see in our discussion of S/MIME later in this chapter.

APPROACHES TO PUBLIC-KEY MANAGEMENT The essence of the problem is this: User
A must build up a public-key ring containing the public keys of other users to
interoperate with them using PGP. Suppose that A’s key ring contains a public key
attributed to B, but in fact the key is owned by C. This could happen, for example, if
A got the key from a bulletin board system (BBS) that was used by B to post the
public key but that has been compromised by C. The result is that two threats now
exist. First, C can send messages to A and forge B’s signature so that A will accept
the message as coming from B. Second, any encrypted message from A to B can be
read by C.

A number of approaches are possible for minimizing the risk that a user’s
public-key ring contains false public keys. Suppose that A wishes to obtain a reliable
public key for B. The following are some approaches that could be used.

1. Physically get the key from B. B could store her public key (PU,) on a floppy
disk and hand it to A. A could then load the key into his system from the
floppy disk. This is a very secure method but has obvious practical limitations.

2. Verify a key by telephone. If A can recognize B on the phone, A could call B and
ask her to dictate the key, in radix-64 format, over the phone. As a more practical
alternative, B could transmit her key in an e-mail message to A. A could have
PGP generate a 160-bit SHA-1 digest of the key and display it in hexadecimal
format; this is referred to as the “fingerprint” of the key. A could then call B and
ask her to dictate the fingerprint over the phone. If the two fingerprints match,
the key 1s verified.

3. Obtain B’s public key from a mutual trusted individual D. For this purpose, the
introducer, D, creates a signed certificate. The certificate includes B’s public key,
the time of creation of the key, and a validity period for the key. D generates an
SHA-1 digest of this certificate, encrypts it with her private key, and attaches the
signature to the certificate. Because only D could have created the signature, no
one else can create a false public key and pretend that it is signed by D. The
signed certificate could be sent directly to A by B or D, or it could be posted on a
bulletin board.

4. Obtain B’s public key from a trusted certifying authority. Again, a public-key
certificate is created and signed by the authority. A could then access the
authority, providing a user name and receiving a signed certificate.

For cases 3 and 4, A already would have to have a copy of the introducer’s
public key and trust that this key is valid. Ultimately, it is up to A to assign a level of
trust to anyone who is to act as an introducer.

THE Use or TrusT Although PGP does not include any specification for establishing
certifying authorities or for establishing trust, it does provide a convenient means of
using trust, associating trust with public keys, and exploiting trust information.

238 CHAPTER 7 / ELECTRONIC MAIL SECURITY

The basic structure is as follows. Each entry in the public-key ring is a public-
key certificate, as described in the preceding subsection. Associated with each such
entry is a key legitimacy field that indicates the extent to which PGP will trust that
this is a valid public key for this user; the higher the level of trust, the stronger is the
binding of this user ID to this key. This field is computed by PGP. Also associated
with the entry are zero or more signatures that the key ring owner has collected that
sign this certificate. In turn, each signature has associated with it a signature trust
field that indicates the degree to which this PGP user trusts the signer to certify pub-
lic keys. The key legitimacy field is derived from the collection of signature trust
fields in the entry. Finally, each entry defines a public key associated with a particu-
lar owner, and an owner trust field is included that indicates the degree to which this
public key is trusted to sign other public-key certificates; this level of trust is
assigned by the user. We can think of the signature trust fields as cached copies of
the owner trust field from another entry.

The three fields mentioned in the previous paragraph are each contained in a
structure referred to as a trust flag byte. The content of this trust flag for each of
these three uses is shown in Table 7.2. Suppose that we are dealing with the public-
key ring of user A. We can describe the operation of the trust processing as follows.

1. When A inserts a new public key on the public-key ring, PGP must assign
a value to the trust flag that is associated with the owner of this public key. If
the owner is A, and therefore this public key also appears in the private-key
ring, then a value of ultimate trust is automatically assigned to the trust field.

Table 7.2 Contents of Trust Flag Byte

(a) Trust Assigned to
Public-Key Owner
(appears after key packet;
user defined)

(b) Trust Assigned to Public
Key/User ID Pair (appears after
User ID packet; computed

by PGP)

(c) Trust Assigned to Signature
(appears after signature packet;
cached copy of OWNERTRUST
for this signator)

OWNERTRUST Field
—undefined trust
—unknown user

—usually not trusted to sign
other keys

—usually trusted to sign
other keys

—always trusted to sign
other keys

—this key is present in
secret key ring
(ultimate trust)

KEYLEGIT Field
—unknown or undefined trust
—key ownership not trusted
—marginal trust in key ownership

—complete trust in key ownership

SIGTRUST Field
—undefined trust
—unknown user

—usually not trusted to sign other
keys

—usually trusted to sign other keys
—always trusted to sign other keys

—this key is present in secret key
ring (ultimate trust)

BUCKSTOP bit

—set if this key appears in
secret key ring

WARNONLY bit

—set if user wants only to be
warned when key that is not fully
validated is used for encryption

CONTIG bit

—set if signature leads up a
contiguous trusted certification
path back to the ultimately
trusted key ring owner

7.1 / PRETTY GOOD PRIVACY 239

Otherwise, PGP asks A for his assessment of the trust to be assigned to the
owner of this key, and A must enter the desired level. The user can specify
that this owner is unknown, untrusted, marginally trusted, or completely
trusted.

2. When the new public key is entered, one or more signatures may be attached to
it. More signatures may be added later. When a signature is inserted into the
entry, PGP searches the public-key ring to see if the author of this signature is
among the known public-key owners. If so, the OWNERTRUST value for this
owner is assigned to the SIGTRUST field for this signature. If not, an unknown
user value is assigned.

3. The value of the key legitimacy field is calculated on the basis of the signature
trust fields present in this entry. If at least one signature has a signature trust
value of ultimate, then the key legitimacy value is set to complete. Otherwise,
PGP computes a weighted sum of the trust values. A weight of 1/X is given to
signatures that are always trusted and 1/Y to signatures that are usually
trusted, where X and Y are user-configurable parameters. When the total of
weights of the introducers of a Key/UserID combination reaches 1, the bind-
ing is considered to be trustworthy, and the key legitimacy value is set to com-
plete. Thus, in the absence of ultimate trust, at least X signatures that are
always trusted, Y signatures that are usually trusted, or some combination is
needed.

Periodically, PGP processes the public-key ring to achieve consistency. In
essence, this is a top-down process. For each OWNERTRUST field, PGP scans the
ring for all signatures authored by that owner and updates the SIGTRUST field to
equal the OWNERTRUST field. This process starts with keys for which there is ulti-
mate trust. Then all KEYLEGIT fields are computed on the basis of the attached
signatures.

Figure 7.7 provides an example of the way in which signature trust and key
legitimacy are related.” The figure shows the structure of a public-key ring. The user
has acquired a number of public keys—some directly from their owners and some
from a third party such as a key server.

The node labeled “You” refers to the entry in the public-key ring correspond-
ing to this user. This key is legitimate, and the OWNERTRUST value is ultimate
trust. Each other node in the key ring has an OWNERTRUST value of undefined
unless some other value is assigned by the user. In this example, this user has speci-
fied that it always trusts the following users to sign other keys: D, E, F, L. This user
partially trusts users A and B to sign other keys.

So the shading, or lack thereof, of the nodes in Figure 7.7 indicates the level of
trust assigned by this user. The tree structure indicates which keys have been signed
by which other users. If a key is signed by a user whose key is also in this key ring,
the arrow joins the signed key to the signatory. If the key is signed by a user whose
key is not present in this key ring, the arrow joins the signed key to a question mark,
indicating that the signatory is unknown to this user.

%Figure provided to the author by Phil Zimmermann.

240 CHAPTER 7 / ELECTRONIC MAIL SECURITY

9 = unknown signatory

®—>® = X is signed by Y

9
: S ?
O = key's owner is trusted by you to sign keys \O/

O = key's owner is partly trusted by you to sign keys

@ = key is deemed legitimate by you
Figure 7.7 PGP Trust Model Example

Several points are illustrated in Figure 7.7.

1. Note that all keys whose owners are fully or partially trusted by this user have
been signed by this user, with the exception of node L. Such a user signature is
not always necessary, as the presence of node L indicates, but in practice, most
users are likely to sign the keys for most owners that they trust. So, for exam-
ple, even though E’s key is already signed by trusted introducer F, the user
chose to sign E’s key directly.

2. We assume that two partially trusted signatures are sufficient to certify a key.
Hence, the key for user H is deemed legitimate by PGP because it is signed by A
and B, both of whom are partially trusted.

3. A key may be determined to be legitimate because it is signed by one fully
trusted or two partially trusted signatories, but its user may not be trusted to sign
other keys. For example, N’s key is legitimate because it is signed by E, whom this
user trusts, but N is not trusted to sign other keys because this user has not
assigned N that trust value. Therefore, although R’s key is signed by N, PGP does
not consider R’s key legitimate. This situation makes perfect sense. If you wish to
send a private message to some individual, it is not necessary that you trust that
individual in any respect. It is only necessary that you are sure that you have the
correct public key for that individual.

4. Figure 7.7 also shows an example of a detached “orphan” node S, with two
unknown signatures. Such a key may have been acquired from a key server.

7.2 / S/MIME 241

PGP cannot assume that this key is legitimate simply because it came from a
reputable server. The user must declare the key legitimate by signing it or by
telling PGP that it is willing to trust fully one of the key’s signatories.

A final point: Earlier it was mentioned that multiple user IDs may be associ-
ated with a single public key on the public-key ring. This could be because a person
has changed names or has been introduced via signature under multiple names, indi-
cating different e-mail addresses for the same person, for example. So we can think of
a public key as the root of a tree. A public key has a number of user 1Ds associating
with it, with a number of signatures below each user ID. The binding of a particular
user ID to a key depends on the signatures associated with that user ID and that key,
whereas the level of trust in this key (for use in signing other keys) is a function of all
the dependent signatures.

RevokinG PusLic Kevs A user may wish to revoke his or her current public key
either because compromise is suspected or simply to avoid the use of the same key for
an extended period. Note that a compromise would require that an opponent
somehow had obtained a copy of your unencrypted private key or that the opponent
had obtained both the private key from your private-key ring and your passphrase.

The convention for revoking a public key is for the owner to issue a key revo-
cation certificate, signed by the owner. This certificate has the same form as a nor-
mal signature certificate but includes an indicator that the purpose of this certificate
is to revoke the use of this public key. Note that the corresponding private key must
be used to sign a certificate that revokes a public key. The owner should then
attempt to disseminate this certificate as widely and as quickly as possible to enable
potential correspondents to update their public-key rings.

Note that an opponent who has compromised the private key of an owner can
also issue such a certificate. However, this would deny the opponent as well as the
legitimate owner the use of the public key, and therefore, it seems a much less likely
threat than the malicious use of a stolen private key.

7.2 S/MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement
to the MIME Internet e-mail format standard based on technology from RSA Data
Security. Although both PGP and S/MIME are on an IETF standards track, it
appears likely that S/MIME will emerge as the industry standard for commercial and
organizational use, while PGP will remain the choice for personal e-mail security for
many users. S/MIME is defined in a number of documents—most importantly RFCs
3370, 3850, 3851, and 3852.

To understand S/MIME, we need first to have a general understanding of the
underlying e-mail format that it uses, namely MIME. But to understand the signifi-
cance of MIME, we need to go back to the traditional e-mail format standard, RFC
822, which is still in common use. The most recent version of this format specifica-
tion is RFC 5322 (Internet Message Format). Accordingly, this section first provides
an introduction to these two earlier standards and then moves on to a discussion of
S/MIME.

242 CHAPTER 7 / ELECTRONIC MAIL SECURITY

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It has
been the standard for Internet-based text mail messages and remains in common use.
In the RFC 5322 context, messages are viewed as having an envelope and contents. The
envelope contains whatever information is needed to accomplish transmission and
delivery. The contents compose the object to be delivered to the recipient. The RFC
5322 standard applies only to the contents. However, the content standard includes a
set of header fields that may be used by the mail system to create the envelope, and the
standard 1s intended to facilitate the acquisition of such information by programs.

The overall structure of a message that conforms to RFC 5322 is very simple.
A message consists of some number of header lines (the header) followed by unre-
stricted text (the body). The header is separated from the body by a blank line. Put
differently, a message is ASCII text, and all lines up to the first blank line are
assumed to be header lines used by the user agent part of the mail system.

A header line usually consists of a keyword, followed by a colon, followed by
the keyword’s arguments; the format allows a long line to be broken up into several
lines. The most frequently used keywords are From, To, Subject,and Date. Here is an
example message:

Date: October 8, 2009 2:15:49 PM EDT
From: "William Stallings" <ws@shore.net>
Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual
message body, which is delimited from the
message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-1D.
This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322
framework that is intended to address some of the problems and limitations of the
use of Simple Mail Transfer Protocol (SMTP), defined in RFC 821, or some other
mail transfer protocol and RFC 5322 for electronic mail. [PARZ06] lists the follow-
ing limitations of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of
schemes are in use for converting binary files into a text form that can be used
by SMTP mail systems, including the popular UNIX UUencode/UUdecode
scheme. However, none of these is a standard or even a de facto standard.

2. SMTP cannot transmit text data that includes national language characters,
because these are represented by 8-bit codes with values of 128 decimal or
higher, and SMTP is limited to 7-bit ASCII.

7.2 / S/MIME 243

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC
do not use a consistent set of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle nontextual
data included in X.400 messages.

6. Some SMTP implementations do not adhere completely to the SMTP standards
defined in RFC 821. Common problems include:

¢ Deletion, addition, or reordering of carriage return and linefeed

Truncating or wrapping lines longer than 76 characters

Removal of trailing white space (tab and space characters)

Padding of lines in a message to the same length
e Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible
with existing RFC 5322 implementations. The specification is provided in RFCs
2045 through 2049.

Overview The MIME specification includes the following elements.

1. Five new message header fields are defined, which may be included in an RFC
5322 header. These fields provide information about the body of the message.

2. A number of content formats are defined, thus standardizing representations
that support multimedia electronic mail.

3. Transfer encodings are defined that enable the conversion of any content for-
mat into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two
subsections deal with content formats and transfer encodings.
The five header fields defined in MIME are

* MIME-Version: Must have the parameter value 1.0. This field indicates that
the message conforms to RFCs 2045 and 2046.

* Content-Type: Describes the data contained in the body with sufficient detail
that the receiving user agent can pick an appropriate agent or mechanism to
represent the data to the user or otherwise deal with the data in an appropri-
ate manner.

¢ Content-Transfer-Encoding: Indicates the type of transformation that has
been used to represent the body of the message in a way that is acceptable for
mail transport.

¢ Content-ID: Used to identify MIME entities uniquely in multiple contexts.

* Content-Description: A text description of the object with the bodys; this is
useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compliant
implementation must support the MIME-Version, Content-Type, and Content-
Transfer-Encoding fields; the Content-ID and Content-Description fields are optional
and may be ignored by the recipient implementation.

244 CHAPTER 7 / ELECTRONIC MAIL SECURITY

MIME ConTeNT TyPEs The bulk of the MIME specification is concerned with the
definition of a variety of content types. This reflects the need to provide
standardized ways of dealing with a wide variety of information representations in a
multimedia environment.

Table 7.3 lists the content types specified in RFC 2046. There are seven different
major types of content and a total of 15 subtypes. In general, a content type declares the
general type of data, and the subtype specifies a particular format for that type of data.

For the text type of body, no special software is required to get the full meaning
of the text aside from support of the indicated character set. The primary subtype is
plain text, which is simply a string of ASCII characters or ISO 8859 characters. The
enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent
parts. The Content-Type header field includes a parameter (called a boundary) that
defines the delimiter between body parts. This boundary should not appear in any
parts of the message. Each boundary starts on a new line and consists of two
hyphens followed by the boundary value. The final boundary, which indicates the
end of the last part, also has a suffix of two hyphens. Within each part, there may be
an optional ordinary MIME header.

Table 7.3 MIME Content Types

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.

Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted together. They
should be presented to the receiver in the order that they appear in the mail
message.

Parallel Differs from Mixed only in that no order is defined for delivering the parts to
the receiver.

Alternative The different parts are alternative versions of the same information. They are
ordered in increasing faithfulness to the original, and the recipient’s mail
system should display the “best” version to the user.

Digest Similar to Mixed, but the default type/subtype of each part is message/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.

Partial Used to allow fragmentation of large mail items, in a way that is transparent
to the recipient.

External-body | Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.

gif The image is in GIF format.

Video mpeg MPEG format.

Audio Basic Single-channel 8-bit ISDN mu-law encoding at a sample rate of 8 kHz.

Application | PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

7.2 / S/MIME 245

Here is a simple example of a multipart message containing two parts—both
consisting of simple text (taken from RFC 2046).

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>

Subject: Sample message

MIME-Version: 1.0

Content-type: multipart/mixed; boundary="simple
boundary"

This is the preamble. It is to be ignored, though it
is a handy place for mail composers to include an
explanatory note to non-MIME conformant readers.

—simple boundary

This is implicitly typed plain ASCII text. It does NOT
end with a linebreak.

—simple boundary

Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text. It DOES end
with a linebreak.

—simple boundary—
This is the epilogue. It is also to be ignored.

There are four subtypes of the multipart type, all of which have the same over-
all syntax. The multipart/mixed subtype is used when there are multiple indepen-
dent body parts that need to be bundled in a particular order. For the
multipart/parallel subtype, the order of the parts is not significant. If the recipient’s
system is appropriate, the multiple parts can be presented in parallel. For example, a
picture or text part could be accompanied by a voice commentary that is played
while the picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information. The following is an example:

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>

Subject: Formatted text mail

MIME-Version: 1.0

Content-Type: multipart/alternative;
boundary=boundary42

—boundary4?2
Content-Type: text/plain; charset=us-ascii

...plain text version of message goes here..

246 CHAPTER 7 / ELECTRONIC MAIL SECURITY

—boundary4?2
Content-Type: text/enriched

RFC 1896 text/enriched version of same message
goes here

—boundary42—

In this subtype, the body parts are ordered in terms of increasing preference.
For this example, if the recipient system is capable of displaying the message in the
text/enriched format, this is done; otherwise, the plain text format is used.

The multipart/digest subtype is used when each of the body parts is inter-
preted as an RFC 5322 message with headers. This subtype enables the construction
of a message whose parts are individual messages. For example, the moderator of a
group might collect e-mail messages from participants, bundle these messages, and
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME. The
message/rfc822 subtype indicates that the body is an entire message, including
header and body. Despite the name of this subtype, the encapsulated message may
be not only a simple RFC 5322 message but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a
number of parts, which must be reassembled at the destination. For this subtype,
three parameters are specified in the Content-Type: Message/Partial field: an id
common to all fragments of the same message, a sequence number unique to each
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be con-
veyed in this message are not contained in the body. Instead, the body contains the
information needed to access the data. As with the other message types, the mes-
sage/external-body subtype has an outer header and an encapsulated message with
its own header. The only necessary field in the outer header is the Content-Type
field, which identifies this as a message/external-body subtype. The inner header is
the message header for the encapsulated message. The Content-Type field in the
outer header must include an access-type parameter, which indicates the method of
access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

MIME Transrer EncopinGs The other major component of the MIME
specification, in addition to content type specification, is a definition of transfer
encodings for message bodies. The objective is to provide reliable delivery across
the largest range of environments.

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 7.4.
However, three of these values (7bit, 8bit, and binary) indicate that no encoding has
been done but provide some information about the nature of the data. For SMTP
transfer, it is safe to use the 7bit form. The 8bit and binary forms may be usable in
other mail transport contexts. Another Content-Transfer-Encoding value is x-token,

7.2 / S/MIME 247

Table 7.4 MIME Transfer Encodings

7bit The data are all represented by short lines of ASCII characters.

8bit The lines are short, but there may be non-ASCII characters (octets with the
high-order bit set).

binary Not only may non-ASCII characters be present, but the lines are not necessar-
ily short enough for SMTP transport.

quoted-printable | Encodes the data in such a way that if the data being encoded are mostly
ASCII text, the encoded form of the data remains largely recognizable by
humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of
which are printable ASCII characters.

x-token A named nonstandard encoding.

which indicates that some other encoding scheme is used for which a name is to be
supplied. This could be a vendor-specific or application-specific scheme. The two
actual encoding schemes defined are quoted-printable and base64. Two schemes are
defined to provide a choice between a transfer technique that is essentially human
readable and one that is safe for all types of data in a way that is reasonably compact.

The quoted-printable transfer encoding is useful when the data consists
largely of octets that correspond to printable ASCII characters. In essence, it
represents nonsafe characters by the hexadecimal representation of their code and
introduces reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common
one for encoding arbitrary binary data in such a way as to be invulnerable to the
processing by mail-transport programs. It is also used in PGP and is described in
Appendix 7A.

A MurtirArT ExamprLe Figure 7.8, taken from RFC 2045, is the outline of a
complex multipart message. The message has five parts to be displayed serially: two
introductory plain text parts, an embedded multipart message, a richtext part, and a
closing encapsulated text message in a non-ASCII character set. The embedded
multipart message has two parts to be displayed in parallel: a picture and an audio
fragment.

CanonicarL Form An important concept in MIME and S/MIME is that of
canonical form. Canonical form is a format, appropriate to the content type, that is
standardized for use between systems. This is in contrast to native form, which is a
format that may be peculiar to a particular system. Table 7.5, from RFC 2049, should
help clarify this matter.

S/MIME Functionality

In terms of general functionality, S’MIME is very similar to PGP. Both offer the
ability to sign and/or encrypt messages. In this subsection, we briefly summarize
S/MIME capability. We then look in more detail at this capability by examining mes-
sage formats and message preparation.

248 CHAPTER 7 / ELECTRONIC MAIL SECURITY

MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned @innosoft.com>

Subject: A multipart example

Content-Type: multipart/mixed;
boundary=unique-boundary-1

This is the preamble area of a multipart message. Mail readers that understand multipart format should ignore
this preamble. If you are reading this text, you might want to consider changing to a mail reader that understands
how to properly display multipart messages.

--unique-boundary-1

...Some text appears here...
[Note that the preceding blank line means no header fields were given and this is text, with charset US ASCII.
It could have been done with explicit typing as in the next part.]

--unique-boundary-1
Content-type: text/plain; charset=US-ASCII

This could have been part of the previous part, but illustrates explicit versus implicit typing of body parts.

--unique-boundary-1
Content-Type: multipart/parallel; boundary=unique-boundary-2

--unique-boundary-2
Content-Type: audio/basic
Content-Transfer-Encoding: base64

... base64-encoded 8000 Hz single-channel mu-law-format audio data goes here....

--unique-boundary-2
Content-Type: image/jpeg
Content-Transfer-Encoding: base64

... base64-encoded image data goes here....
--unique-boundary-2--

--unique-boundary-1
Content-type: text/enriched

This is <bold><italic>richtext.</italic></bold> <smaller>as defined in RFC 1896</smaller>
Isn't it <bigger><bigger>cool ?</bigger></bigger>

--unique-boundary-1
Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: Quoted-printable

... Additional text in ISO-8859-1 goes here ...

--unique-boundary-1--

Figure 7.8 Example MIME Message Structure

7.2/ S/MIME 249

Table 7.5 Native and Canonical Form

Native The body to be transmitted is created in the system’s native format. The native char-
Form acter set is used and, where appropriate, local end-of-line conventions are used as
well. The body may be a UNIX-style text file, or a Sun raster image, or a VMS
indexed file, or audio data in a system-dependent format stored only in memory, or
anything else that corresponds to the local model for the representation of some
form of information. Fundamentally, the data is created in the “native” form that
corresponds to the type specified by the media type.

Canonical The entire body, including “out-of-band” information such as record lengths and pos-
Form sibly file attribute information, is converted to a universal canonical form. The spe-
cific media type of the body as well as its associated attributes dictate the nature of
the canonical form that is used. Conversion to the proper canonical form may
involve character set conversion, transformation of audio data, compression, or vari-
ous other operations specific to the various media types. If character set conversion
is involved, however, care must be taken to understand the semantics of the media
type, which may have strong implications for any character set conversion (e.g., with
regard to syntactically meaningful characters in a text subtype other than “plain”).

Functions S/MIME provides the following functions.

* Enveloped data: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

* Signed data: A digital signature is formed by taking the message digest of the
content to be signed and then encrypting that with the private key of the signer.
The content plus signature are then encoded using base64 encoding. A signed
data message can only be viewed by a recipient with S/MIME capability.

¢ Clear-signed data: As with signed data, a digital signature of the content is
formed. However, in this case, only the digital signature is encoded using
base64. As a result, recipients without S/MIME capability can view the message
content, although they cannot verify the signature.

* Signed and enveloped data: Signed-only and encrypted-only entities may be
nested, so that encrypted data may be signed and signed data or clear-signed
data may be encrypted.

CryrTOGRAPHIC ALGORITHMS Table 7.6 summarizes the cryptographic algorithms used
in S/MIME. S/MIME uses the following terminology taken from RFC 2119 (Key Words
for use in RFCs to Indicate Requirement Levels) to specify the requirement level:

e MUST: The definition is an absolute requirement of the specification. An
implementation must include this feature or function to be in conformance
with the specification.

* SHOULD: There may exist valid reasons in particular circumstances to ignore
this feature or function, but it is recommended that an implementation include
the feature or function.

S/MIME incorporates three public-key algorithms. The Digital Signature
Standard (DSS) described in Chapter 3 is the preferred algorithm for digital
signature. S/MIME lists Diffie-Hellman as the preferred algorithm for encrypting
session keys; in fact, SSMIME uses a variant of Diffie-Hellman that does provide

250 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Table 7.6 Cryptographic Algorithms Used in S/MIME

Function Requirement
Create a message digest to be used in MUST support SHA-1.
forming a digital signature. Receiver SHOULD support MDS5 for backward compatibility.

Encrypt message digest to form a digital Sending and receiving agents MUST support DSS.

signature. Sending agents SHOULD support RSA encryption.

Receiving agents SHOULD support verification of RSA
signatures with key sizes 512 bits to 1024 bits.

Encrypt session key for transmission with | Sending and receiving agents SHOULD support Diffie-Hellman.

a message. Sending and receiving agents MUST support RSA encryption
with key sizes 512 bits to 1024 bits.
Encrypt message for transmission with a Sending and receiving agents MUST support encryption with
one-time session key. tripleDES.
Sending agents SHOULD support encryption with AES.
Sending agents SHOULD support encryption with RC2/40.
Create a message authentication code. Receiving agents MUST support HMAC with SHA-1.

Sending agents SHOULD support HMAC with SHA-1.

encryption/decryption, known as ElGamal. As an alternative, RSA, described in
Chapter 3, can be used for both signatures and session key encryption. These are the
same algorithms used in PGP and provide a high level of security. For the hash
function used to create the digital signature, the specification requires the 160-bit
SHA-1 but recommends receiver support for the 128-bit MDS5 for backward com-
patibility with older versions of S/MIME. As we discussed in Chapter 3, there is
justifiable concern about the security of MDS, so SHA-1 is clearly the preferred
alternative.

For message encryption, three-key triple DES (tripleDES) is recommended,
but compliant implementations must support 40-bit RC2. The latter is a weak
encryption algorithm but allows compliance with U.S. export controls.

The S/MIME specification includes a discussion of the procedure for deciding
which content encryption algorithm to use. In essence, a sending agent has two deci-
sions to make. First, the sending agent must determine if the receiving agent is capa-
ble of decrypting using a given encryption algorithm. Second, if the receiving agent
is only capable of accepting weakly encrypted content, the sending agent must
decide if it is acceptable to send using weak encryption. To support this decision
process, a sending agent may announce its decrypting capabilities in order of prefer-
ence for any message that it sends out. A receiving agent may store that information
for future use.

The following rules, in the following order, should be followed by a sending
agent.

1. If the sending agent has a list of preferred decrypting capabilities from an
intended recipient, it SHOULD choose the first (highest preference) capabil-
ity on the list that it is capable of using.

7.2 / S/MIME 251

2. If the sending agent has no such list of capabilities from an intended recipient but
has received one or more messages from the recipient, then the outgoing mes-
sage SHOULD use the same encryption algorithm as was used on the last signed
and encrypted message received from that intended recipient.

3. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is willing to risk that the recipient may not be able to
decrypt the message, then the sending agent SHOULD use triple DES.

4. If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is not willing to risk that the recipient may not be able
to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption
algorithm cannot be selected for all, then the sending agent will need to send two
messages. However, in that case, it is important to note that the security of the mes-
sage is made vulnerable by the transmission of one copy with lower security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types, which are shown in
Table 7.7. All of the new application types use the designation PKCS. This refers to
a set of public-key cryptography specifications issued by RSA Laboratories and
made available for the SMIME effort.

We examine each of these in turn after first looking at the general procedures
for S/MIME message preparation.

SECURING A MIME EntiTy SIMIME secures a MIME entity with a signature,
encryption, or both. A MIME entity may be an entire message (except for the
RFC 5322 headers), or if the MIME content type is multipart, then a MIME entity is
one or more of the subparts of the message. The MIME entity is prepared according
to the normal rules for MIME message preparation. Then the MIME entity plus
some security-related data, such as algorithm identifiers and certificates, are
processed by S/MIME to produce what is known as a PKCS object. A PKCS object
is then treated as message content and wrapped in MIME (provided with
appropriate MIME headers). This process should become clear as we look at
specific objects and provide examples.

In all cases, the message to be sent is converted to canonical form. In particu-
lar, for a given type and subtype, the appropriate canonical form is used for the mes-
sage content. For a multipart message, the appropriate canonical form is used for
each subpart.

The use of transfer encoding requires special attention. For most cases, the result
of applying the security algorithm will be to produce an object that is partially or totally
represented in arbitrary binary data. This will then be wrapped in an outer MIME
message, and transfer encoding can be applied at that point, typically base64. However,
in the case of a multipart signed message (described in more detail later), the message
content in one of the subparts is unchanged by the security process. Unless that content
is 7bit, it should be transfer encoded using base64 or quoted-printable so that there is
no danger of altering the content to which the signature was applied.

We now look at each of the SMIME content types.

252 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Table 7.7 S/MIME Content Types

Type Subtype smime Parameter Description
Multipart Signed A clear-signed message in two parts: one is the
message and the other is the signature.
Application | pkcs7-mime signedData A signed S/MIME entity.
pkcs7-mime envelopedData An encrypted S/MIME entity.
pkcs7-mime degenerate An entity containing only public-key certificates.
signedData

pkcs7-mime CompressedData | A compressed S/MIME entity.

pkcs7- signedData The content type of the signature subpart of a
signature multipart/signed message.

ENVvELOPEDDATA An application/pkcs7-mime subtype is used for one of four
categories of S/MIME processing, each with a unique smime-type parameter. In all
cases, the resulting entity (referred to as an object) is represented in a form known
as Basic Encoding Rules (BER), which is defined in ITU-T Recommendation
X.209. The BER format consists of arbitrary octet strings and is therefore binary
data. Such an object should be transfer encoded with base64 in the outer MIME
message. We first look at envelopedData.
The steps for preparing an envelopedData MIME entity are

1. Generate a pseudorandom session key for a particular symmetric encryp-
tion algorithm (RC2/40 or triple DES).

2. For each recipient, encrypt the session key with the recipient’s public RSA key.

3. For each recipient, prepare a block known as RecipientInfo that contains
an identifier of the recipient’s public-key certificate,® an identifier of the algo-
rithm used to encrypt the session key, and the encrypted session key.

4. Encrypt the message content with the session key.

The RecipientInfo blocks followed by the encrypted content constitute
the envelopedData. This information is then encoded into base64. A sample
message (excluding the RFC 5322 headers) is

Content-Type: application/pkcs7-mime; smime-type=enveloped-
data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH7 7n8HHGTIHGAVOpfyF467GhIGEHEYT6
7n8HHGghyHhHUUThJh4VQpfyF467GhIGEHEYGTr fvbnjT6JH7756tbBIH
f8HHGTr fvhThjH776tbB9HGAVQObnj7567GhIGEHEYT6ghyHhHUujpfyF4
OGhIGEHEQbnj756YT64V

3This is an X.509 certificate, discussed later in this section.

7.2 / S/MIME 253

To recover the encrypted message, the recipient first strips off the base64
encoding. Then the recipient’s private key is used to recover the session key. Finally,
the message content is decrypted with the session key.

SicNepDAT4 The signedData smime-type can be used with one or more signers.
For clarity, we confine our description to the case of a single digital signature. The
steps for preparing a signedData MIME entity are

1. Select a message digest algorithm (SHA or MDS).

2. Compute the message digest (hash function) of the content to be signed.
3. Encrypt the message digest with the signer’s private key.
4

. Prepare a block known as SignerInfo that contains the signer’s public-
key certificate, an identifier of the message digest algorithm, an identifier of
the algorithm used to encrypt the message digest, and the encrypted mes-
sage digest.

The signedData entity consists of a series of blocks, including a message
digest algorithm identifier, the message being signed, and SignerInfo. The
signedData entity may also include a set of public-key certificates sufficient to
constitute a chain from a recognized root or top-level certification authority to the
signer. This information is then encoded into base64. A sample message (excluding
the RFC 5322 headers) is

Content-Type: application/pkcs7-mime; smime-type=signed-
data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGEHEfYT6ghyHhHUUujpfyF4£8HHGTrfvhdJhjH776tbBIHG4VQbnj7
7T7Tn8HHGTOHGAVQpfyF467GhIGEHEYT6rfvbnj756tbBghyHhHUujhJhjH
HUujhJh4VQpfyF467GhIGEfHEYGTrfvbnjT6jH7 756 tbB9H7n8HHGghyHh
6YT64VOGhIGEfHEQbNn]75

To recover the signed message and verify the signature, the recipient first
strips off the base64 encoding. Then the signer’s public key is used to decrypt the
message digest. The recipient independently computes the message digest and com-
pares it to the decrypted message digest to verify the signature.

Crear SicNnING Clear signing is achieved using the multipart content type with a
signed subtype. As was mentioned, this signing process does not involve
transforming the message to be signed, so that the message is sent “in the clear.”
Thus, recipients with MIME capability but not S/MIME capability are able to read
the incoming message.

A multipart/signed message has two parts. The first part can be any MIME
type but must be prepared so that it will not be altered during transfer from source
to destination. This means that if the first part is not 7bit, then it needs to be encoded

254 CHAPTER 7 / ELECTRONIC MAIL SECURITY

using base64 or quoted-printable. Then this part is processed in the same manner as
signedData, but in this case an object with signedData format is created that
has an empty message content field. This object is a detached signature. It is then
transfer encoded using base64 to become the second part of the multipart/signed
message. This second part has a MIME content type of application and a subtype of
pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;
protocol="application/pkcs7-signature";
micalg=shal; boundary=boundary42

—boundary4?2
Content-Type: text/plain

This is a clear-signed message.

—boundary4?2

Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=smime.p7s

ghyHhHUUuJjhJhjH7 7n8HHGTrfvbnj 756 tbBOHGAVQpfyF467GhIGEHEYT6
4VQpfyF467GhIGEHEYT6JH7 7n8HHGghyHhHUUujhJh756 tbBOHGTrfvbnj
n8HHGTrfvhJhjH776tbBI9HG4AVQbnj7567GhIGfHfYT6ghyHhHUujpfyF4
7GhIGEHfYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity.
The micalg parameter indicates the type of message digest used. The receiver can
verify the signature by taking the message digest of the first part and comparing this
to the message digest recovered from the signature in the second part.

REecistraTiON REQUEST Typically, an application or user will apply to a certification
authority for a public-key certificate. The application/pkcs10 S/MIME entity is used to
transfer a certification request. The certification request includes certification
RequestInfo block, followed by an identifier of the public-key encryption
algorithm, followed by the signature of the certificationRequestInfo block
made using the sender’s private key. The certificationRequestInfo block
includes a name of the certificate subject (the entity whose public key is to be
certified) and a bit-string representation of the user’s public key.

CERTIFICATES-ONLY MESSAGE A message containing only certificates or a certificate
revocation list (CRL) can be sent in response to a registration request. The message
is an application/pkcs7-mime type/subtype with an smime-type parameter of
degenerate. The steps involved are the same as those for creating a signedData
message, except that there is no message content and the signerInfo field
is empty.

7.2 / S/MIME 255

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509
(see Chapter 4). The key-management scheme used by S/MIME is in some ways a
hybrid between a strict X.509 certification hierarchy and PGP’s web of trust.
As with the PGP model, SSMIME managers and/or users must configure each client
with a list of trusted keys and with certificate revocation lists. That is, the responsi-
bility is local for maintaining the certificates needed to verify incoming signatures
and to encrypt outgoing messages. On the other hand, the certificates are signed by
certification authorities.

User AGENT RoLE An S/MIME user has several key-management functions to
perform.

* Key generation: The user of some related administrative utility (e.g., one asso-
ciated with LAN management) MUST be capable of generating separate
Diffie-Hellman and DSS key pairs and SHOULD be capable of generating
RSA key pairs. Each key pair MUST be generated from a good source of non-
deterministic random input and be protected in a secure fashion. A user agent
SHOULD generate RSA key pairs with a length in the range of 768 to 1024 bits
and MUST NOT generate a length of less than 512 bits.

* Registration: A user’s public key must be registered with a certification
authority in order to receive an X.509 public-key certificate.

e Certificate storage and retrieval: A user requires access to a local list of certifi-
cates in order to verify incoming signatures and to encrypt outgoing messages.
Such a list could be maintained by the user or by some local administrative
entity on behalf of a number of users.

VERISIGN CERTIFICATES There are several companies that provide certification authority
(CA) services. For example, Nortel has designed an enterprise CA solution and can
provide S/MIME support within an organization. There are a number of Internet-based
CAs, including VeriSign, GTE, and the U.S. Postal Service. Of these, the most widely
used is the VeriSign CA service, a brief description of which we now provide.

VeriSign provides a CA service that is intended to be compatible with SSMIME
and a variety of other applications. VeriSign issues X.509 certificates with the product
name VeriSign Digital ID. As of early 1998, over 35,000 commercial Web sites were
using VeriSign Server Digital IDs, and over a million consumer Digital IDs had been
issued to users of Netscape and Microsoft browsers.

The information contained in a Digital ID depends on the type of Digital ID
and its use. At a minimum, each Digital ID contains

* Owner’s public key

* Owner’s name or alias

Expiration date of the Digital ID

Serial number of the Digital ID

Name of the certification authority that issued the Digital ID

Digital signature of the certification authority that issued the Digital ID

256 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Digital IDs can also contain other user-supplied information, including

e Address
e E-mail address
* Basic registration information (country, zip code, age, and gender)

VeriSign provides three levels, or classes, of security for public-key certificates,
as summarized in Table 7.8. A user requests a certificate online at VeriSign’s Web
site or other participating Web sites. Class 1 and Class 2 requests are processed
on line, and in most cases take only a few seconds to approve. Briefly, the following
procedures are used.

e For Class 1 Digital IDs, VeriSign confirms the user’s e-mail address by sending
a PIN and Digital ID pick-up information to the e-mail address provided in
the application.

e For Class 2 Digital IDs, VeriSign verifies the information in the application
through an automated comparison with a consumer database in addition to

Table 7.8 Verisign Public-Key Certificate Classes

Class 1 Class 2 Class 3
Summary of Automated unam- Same as Class 1, plus Same as Class 1, plus personal
Confirmation biguous name and automated enrollment infor- presence and ID documents
of Identity e-mail address search. | mation check and automated plus Class 2 automated ID
address check. check for individuals; business
records (or filings) for
organizations.
IA Private Key PCA: trustworthy PCA and CA: trustworthy PCA and CA: trustworthy
Protection hardware; CA: trust- hardware. hardware.
worthy software or
trustworthy hardware.
Certificate Encryption software Encryption software (PIN Encryption software (PIN
Applicant and (PIN protected) protected) required. protected) required; hardware
Subscriber recommended but not token recommended but not
Private Key required. required.
Protection
Applications Web-browsing and Individual and intra- and E-banking, corp. database
Implemented or | certain e-mail usage. inter-company e-mail, online access, personal banking,
Contemplated subscriptions, password membership-based online
by Users replacement, and software services, content integrity
validation. SErvices, e-COMmMmerce Server,
software validation; authenti-
cation of LRA As; and strong
encryption for certain servers.
1A = Issuing Authority
CA = Certification Authority
PCA = VeriSign public primary certification authority

PIN = Personal Identification Number
LRAA = Local Registration Authority Administrator

7.3 / DOMAINKEYS IDENTIFIED MAIL 257

performing all of the checking associated with a Class 1 Digital ID. Finally,
confirmation is sent to the specified postal address alerting the user that a
Digital ID has been issued in his or her name.

e For Class 3 Digital IDs, VeriSign requires a higher level of identity assurance.
An individual must prove his or her identity by providing notarized creden-
tials or applying in person.

Enhanced Security Services

As of this writing, three enhanced security services have been proposed in an
Internet draft. The details of these may change, and additional services may be
added. The three services are

* Signed receipts: A signed receipt may be requested in a SignedData object.
Returning a signed receipt provides proof of delivery to the originator of a
message and allows the originator to demonstrate to a third party that the
recipient received the message. In essence, the recipient signs the entire origi-
nal message plus the original (sender’s) signature and appends the new signa-
ture to form a new S/MIME message.

* Security labels: A security label may be included in the authenticated attrib-
utes of a SignedData object. A security label is a set of security information
regarding the sensitivity of the content that is protected by S/MIME encapsu-
lation. The labels may be used for access control, by indicating which users are
permitted access to an object. Other uses include priority (secret, confidential,
restricted, and so on) or role based, describing which kind of people can see
the information (e.g., patient’s health-care team, medical billing agents, etc.).

* Secure mailing lists: When a user sends a message to multiple recipients, a cer-
tain amount of per-recipient processing is required, including the use of each
recipient’s public key. The user can be relieved of this work by employing the
services of an S/MIME Mail List Agent (MLA). An MLA can take a single
incoming message, perform the recipient-specific encryption for each recipi-
ent, and forward the message. The originator of a message need only send the
message to the MLA with encryption performed using the MLA’s public key.

7.3 DOMAINKEYS IDENTIFIED MAIL

DomainKeys Identified Mail (DKIM) is a specification for cryptographically signing
e-mail messages, permitting a signing domain to claim responsibility for a message in
the mail stream. Message recipients (or agents acting in their behalf) can verify the
signature by querying the signer’s domain directly to retrieve the appropriate public
key and thereby can confirm that the message was attested to by a party in posses-
sion of the private key for the signing domain. DKIM is a proposed Internet
Standard (RFC 4871: DomainKeys Identified Mail (DKIM) Signatures). DKIM has
been widely adopted by a range of e-mail providers, including corporations, govern-
ment agencies, gmail, yahoo, and many Internet Service Providers (ISPs).

258 CHAPTER 7 / ELECTRONIC MAIL SECURITY

This section provides an overview of DKIM. Before beginning our discussion
of DKIM, we introduce the standard Internet mail architecture. Then we look at the
threat that DKIM is intended to address, and finally provide an overview of DKIM
operation.

Internet Mail Architecture

To understand the operation of DKIM, it is useful to have a basic grasp of the
Internet mail architecture, which is currently defined in [CROCO09]. This subsection
provides an overview of the basic concepts.

At its most fundamental level, the Internet mail architecture consists of a user
world in the form of Message User Agents (MUA), and the transfer world, in the
form of the Message Handling Service (MHS), which is composed of Message
Transfer Agents (MTA). The MHS accepts a message from one user and delivers it
to one or more other users, creating a virtual MUA-to-MUA exchange environ-
ment. This architecture involves three types of interoperability. One is directly
between users: messages must be formatted by the MUA on behalf of the message
author so that the message can be displayed to the message recipient by the destina-
tion MUA. There are also interoperability requirements between the MUA and the
MHS —first when a message is posted from an MUA to the MHS and later when it
is delivered from the MHS to the destination MUA. Interoperability is required
among the MTA components along the transfer path through the MHS.

Figure 7.9 illustrates the key components of the Internet mail architecture,
which include the following.

* Message User Agent (MUA): Works on behalf of user actors and user applica-
tions. It is their representative within the e-mail service. Typically, this function is
housed in the user’s computer and is referred to as a client e-mail program or a
local network e-mail server. The author MUA formats a message and performs
initial submission into the MHS via a MSA. The recipient MUA processes
received mail for storage and/or display to the recipient user.

* Mail Submission Agent (MSA): Accepts the message submitted by an MUA
and enforces the policies of the hosting domain and the requirements of
Internet standards. This function may be located together with the MUA or as
a separate functional model. In the latter case, the Simple Mail Transfer
Protocol (SMTP) is used between the MUA and the MSA.

* Message Transfer Agent (MTA): Relays mail for one application-level hop.
It is like a packet switch or IP router in that its job is to make routing assess-
ments and to move the message closer to the recipients. Relaying is performed
by a sequence of MTAs until the message reaches a destination MDA. An
MTA also adds trace information to the message header. SMTP is used
between MTAs and between an MTA and an MSA or MDA.

* Mail Delivery Agent (MDA): Responsible for transferring the message from
the MHS to the MS.

* Message Store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server or on the same machine as the MUA. Typically, an
MUA retrieves messages from a remote server using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

7.3 / DOMAINKEYS IDENTIFIED MAIL 259

1
! 1
! 1
' Message Transfer cee Message Transfer cee Message Transfer '
' Agent (MTA) Agent (MTA) Agent (MTA) 1
1 SMTP SMTP '
1 A 1
! 1
: SMTP (SMTP, :
1 local) .
1 Y .
! 1
' Mail Submission Mail Delivery !
- Agent (MSA) Message handling Agent (MDA) I
: system (MHS) .

1
1 A .
o

SMTP (SMTP,
local)
Message User Message Message Store
Agent (MUA) author (MS)
(IMAP, POP,
local)
Message Message User

recipient Agent (MUA)

Figure 7.9 Function Modules and Standardized Protocols for the Internet

Two other concepts need to be defined. An administrative management
domain (ADMD) is an Internet e-mail provider. Examples include a department
that operates a local mail relay (MTA), an IT department that operates an enterprise
mail relay, and an ISP that operates a public shared e-mail service. Each ADMD can
have different operating policies and trust-based decision making. One obvious
example is the distinction between mail that is exchanged within an organization and
mail that is exchanged between independent organizations. The rules for handling
the two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides
a mapping between the name of a host on the Internet and its numerical address.

E-mail Threats

RFC 4684 (Analysis of Threats Motivating DomainKeys Identified Mail) describes
the threats being addressed by DKIM in terms of the characteristics, capabilities,
and location of potential attackers.

Cuaracteristics RFC characterizes the range of attackers on a spectrum of three
levels of threat.

1. At the low end are attackers who simply want to send e-mail that a recipient
does not want to receive. The attacker can use one of a number of commercially
available tools that allow the sender to falsify the origin address of messages.
This makes it difficult for the receiver to filter spam on the basis of originating
address or domain.

260 CHAPTER 7 / ELECTRONIC MAIL SECURITY

2.

At the next level are professional senders of bulk spam mail. These attackers
often operate as commercial enterprises and send messages on behalf of third
parties. They employ more comprehensive tools for attack, including Mail
Transfer Agents (MTAs) and registered domains and networks of compromised
computers (zombies) to send messages and (in some cases) to harvest addresses
to which to send.

The most sophisticated and financially motivated senders of messages are those
who stand to receive substantial financial benefit, such as from an e-mail-based
fraud scheme. These attackers can be expected to employ all of the above
mechanisms and additionally may attack the Internet infrastructure itself,
including DNS cache-poisoning attacks and IP routing attacks.

CarapiLities RFC 4686 lists the following as capabilities that an attacker might

have.
1.

Submit messages to MTAs and Message Submission Agents (MSAs) at
multiple locations in the Internet.

Construct arbitrary Message Header fields, including those claiming to be
mailing lists, resenders, and other mail agents.

3. Sign messages on behalf of domains under their control.

&

® AW

10.

11.

Generate substantial numbers of either unsigned or apparently signed messages
that might be used to attempt a denial-of-service attack.

Resend messages that may have been previously signed by the domain.
Transmit messages using any envelope information desired.
Act as an authorized submitter for messages from a compromised computer.

Manipulation of IP routing. This could be used to submit messages from specific
IP addresses or difficult-to-trace addresses, or to cause diversion of messages to a
specific domain.

Limited influence over portions of DNS using mechanisms such as cache
poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

Access to significant computing resources, for example, through the conscription of
worm-infected “zombie” computers. This could allow the “bad actor” to perform
various types of brute-force attacks.

Ability to eavesdrop on existing traffic, perhaps from a wireless network.

Locarion DKIM focuses primarily on attackers located outside of the administrative
units of the claimed originator and the recipient. These administrative units frequently
correspond to the protected portions of the network adjacent to the originator and
recipient. It is in this area that the trust relationships required for authenticated
message submission do not exist and do not scale adequately to be practical.
Conversely, within these administrative units, there are other mechanisms (such as
authenticated message submission) that are easier to deploy and more likely to be
used than DKIM. External “bad actors” are usually attempting to exploit the “any-
to-any” nature of e-mail that motivates most recipient MTAs to accept messages from
anywhere for delivery to their local domain. They may generate messages without

7.3 / DOMAINKEYS IDENTIFIED MAIL 261

signatures, with incorrect signatures, or with correct signatures from domains with
little traceability. They may also pose as mailing lists, greeting cards, or other agents
that legitimately send or resend messages on behalf of others.

DKIM Strategy

DKIM is designed to provide an e-mail authentication technique that is transparent
to the end user. In essence, a user’s e-mail message is signed by a private key of the
administrative domain from which the e-mail originates. The signature covers all of
the content of the message and some of the RFC 5322 message headers. At the
receiving end, the MDA can access the corresponding public key via a DNS and ver-
ify the signature, thus authenticating that the message comes from the claimed
administrative domain. Thus, mail that originates from somewhere else but claims to
come from a given domain will not pass the authentication test and can be rejected.
This approach differs from that of S/MIME and PGP, which use the originator’s pri-
vate key to sign the content of the message. The motivation for DKIM is based on
the following reasoning.*

1. S/MIME depends on both the sending and receiving users employing S/MIME.
For almost all users, the bulk of incoming mail does not use S'MIME, and the
bulk of the mail the user wants to send is to recipients not using S/MIME.

2. S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3. DKIM is not implemented in client programs (MUAs) and is therefore transpar-
ent to the user; the user need take no action.

4. DKIM applies to all mail from cooperating domains.

5. DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

Figure 7.10 is a simple example of the operation of DKIM. We begin with a
message generated by a user and transmitted into the MHS to an MSA that is within
the users administrative domain. An e-mail message is generated by an e-mail client
program. The content of the message, plus selected RFC 5322 headers, is signed by
the e-mail provider using the provider’s private key. The signer is associated with a
domain, which could be a corporate local network, an ISP, or a public e-mail facility
such as gmail. The signed message then passes through the Internet via a sequence
of MTAs. At the destination, the MDA retrieves the public key for the incoming
signature and verifies the signature before passing the message on to the destination
e-mail client. The default signing algorithm is RSA with SHA-256. RSA with
SHA-1 also may be used.

DKIM Functional Flow

Figure 7.11 provides a more detailed look at the elements of DKIM operation. Basic
message processing is divided between a signing Administrative Management
Domain (ADMD) and a verifying ADMD. At its simplest, this is between the

*The reasoning is expressed in terms of the use of SMIME. The same argument applies to PGP.

262 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Mail origination Mail delivery
network network

DNS = Domain Name System
MDA = Mail Delivery Agent
MSA = Mail Submission Agent
MTA = Message Transfer Agent
MUA = Message User Agent

Figure 7.10 Simple Example of DKIM Deployment

originating ADMD and the delivering ADMD, but it can involve other ADMDs in
the handling path.

Signing is performed by an authorized module within the signing ADMD and
uses private information from a Key Store. Within the originating ADMD, this might
be performed by the MUA, MSA, or an MTA. Verifying is performed by an autho-
rized module within the verifying ADMD. Within a delivering ADMD, verifying
might be performed by an MTA, MDA, or MUA. The module verifies the signature
or determines whether a particular signature was required. Verifying the signature
uses public information from the Key Store. If the signature passes, reputation infor-
mation is used to assess the signer and that information is passed to the message
filtering system. If the signature fails or there is no signature using the author’s
domain, information about signing practices related to the author can be retrieved
remotely and/or locally, and that information is passed to the message filtering
system. For example, if the sender (e.g., gmail) uses DKIM but no DKIM signature is
present, then the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an additional header
entry, starting with the keyword Dkim-Signature. You can view examples from
your own incoming mail by using the View Long Headers (or similar wording)
option for an incoming message. Here is an example:

7.3 / DOMAINKEYS IDENTIFIED MAIL 263

RFC 5322 Message

Originating or Relaying ADMD:
Sign Message with SDID

Private
key
store

(paired)

Remote

Pﬁbhc Relaying or Delivering ADMD: sender
€y Message signed? practices

store

Yes No
Y

Verify
signature

Fail

Assessments

Y

Check
signing
practices

i

Y
Reputation/ Message Local info
accreditation »| filtering on sender
information engine practices
Figure 7.11 DKIM Functional Flow
Dkim-Signature: v=1l; a=rsa-sha2b56; c=relaxed/relaxed;

d=gmail.com; s=gamma; h=domainkey-signa-
ture:mime-version:received:date:message-
id:subject :from:to:content-type:con-
tent-transfer-encoding;
bh=5mzZvQDyCRuyLblY28K4zgS2MPOemFToDBgvbJ
7G090s=;
b=PcUvPSDygb4yabDyjlrbZGp/VyRiScuaz7TTG
J5gqW5ss1M+klzvekcfYAGDHZEVIW+Z
FetuPfF1ETOVhELtwHOz]jSccOyPkEiblOf6gILO
bm3DDRmM3Ysl/FVrbhVOlA+/jH9Ael
ulIIw/5iFnRbSH6PDVV/beDQgAWQLfA /wF705k=

264 CHAPTER 7 / ELECTRONIC MAIL SECURITY

Before a message is signed, a process known as canonicalization is per-
formed on both the header and body of the RFC 5322 message. Canonicalization
is necessary to deal with the possibility of minor changes in the message made en
route, including character encoding, treatment of trailing white space in message
lines, and the “folding” and “unfolding” of header lines. The intent of canonical-
ization is to make a minimal transformation of the message (for the purpose of
signing; the message itself is not changed, so the canonicalization must be per-
formed again by the verifier) that will give it its best chance of producing the
same canonical value at the receiving end. DKIM defines two header canonical-
ization algorithms (“simple” and “relaxed”) and two for the body (with the same
names). The simple algorithm tolerates almost no modification, while the relaxed
tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields
include the following:

e v = DKIM version.

° a = Algorithm used to generate the signature; must be either rsa-shal or
rsa-sha256.

* ¢ = Canonicalization method used on the header and the body.

* d = A domain name used as an identifier to refer to the identity of a respon-
sible person or organization. In DKIM, this identifier is called the Signing
Domain IDentifier (SDID). In our example, this field indicates that the sender
1s using a gmail address.

* s = In order that different keys may be used in different circumstances for
the same signing domain (allowing expiration of old keys, separate depart-
mental signing, or the like), DKIM defines a selector (a name associated with
a key), which is used by the verifier to retrieve the proper key during signature
verification.

* h = Signed Header fields. A colon-separated list of header field names that
identify the header fields presented to the signing algorithm. Note that in our
example above, the signature covers the domainkey-signature field. This refers
to an older algorithm (since replaced by DKIM) that is still in use.

* bh = The hash of the canonicalized body part of the message. This provides
additional information for diagnosing signature verification failures.

b = The signature data in base64 format; this is the encrypted hash code.

7.4 RECOMMENDED READING AND WEB SITES

[LEIBO7] provides an overview of DKIM.

LEIB07 Leiba, B., and Fenton, J. “DomainKeys Identified Mail (DKIM): Using Digital
Signatures for Domain Verification.” Proceedings of Fourth Conference on E-mail
and Anti-Spam (CEAS 07),2007.

7.5 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 265

Recommended Web Sites:

* PGP Home Page: PGP Web site by PGP Corp., the leading PGP commercial vendor.

¢ International PGP Home Page: Designed to promote worldwide use of PGP. Contains
documents and links of interest.

* PGP Charter: Latest RFCs and Internet drafts for Open Specification PGP.
e S/MIME Charter: Latest RFCs and Internet drafts for S/MIME.

e DKIM: Website hosted by Mutual Internet Practices Association, this site contains a
wide range of documents and information related to DKIM.

e DKIM Charter: Latest RFCs and Internet drafts for DKIM.

7.5 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
detached signature Multipurpose Internet Mail session key
DomainKeys Identified Mail Extensions (MIME) S/MIME
(DKIM) Pretty Good Privacy (PGP) trust
electronic mail radix 64 7ZIP

Review Questions

7.1 What are the five principal services provided by PGP?
7.2 What is the utility of a detached signature?
7.3 Why does PGP generate a signature before applying compression?
7.4 What is R64 conversion?
7.5 Why is R64 conversion useful for an e-mail application?
7.6 How does PGP use the concept of trust?
7.7 What is RFC 53227
7.8 What is MIME?
7.9 Whatis SMIME?
7.10 What is DKIM?

Problems

7.1 PGP makes use of the cipher feedback (CFB) mode of CAST-128, whereas most sym-
metric encryption applications (other than key encryption) use the cipher block
chaining (CBC) mode. We have

CBC: C; = E(K,[Ci-1 @ P]); Pi= Coy @ DK, C)
CFB: C; = P,® E(K, C;_y); P,=C®EK,Ciy)

266 CHAPTER 7 / ELECTRONIC MAIL SECURITY

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

These two appear to provide equal security. Suggest a reason why PGP uses the CFB
mode.

In the PGP scheme, what is the expected number of session keys generated before a
previously created key is produced?

In PGP, what is the probability that a user with N public keys will have at least one

duplicate key ID?

The first 16 bits of the message digest in a PGP signature are translated in the clear.

a. To what extent does this compromise the security of the hash algorithm?

b. To what extent does it in fact perform its intended function, namely, to help deter-
mine if the correct RSA key was used to decrypt the digest?

In Figure 7.4, each entry in the public-key ring contains an Owner Trust field that indi-
cates the degree of trust associated with this public-key owner. Why is that not
enough? That is, if this owner is trusted and this is supposed to be the owner’s public
key, why is that trust not enough to permit PGP to use this public key?

What is the basic difference between X.509 and PGP in terms of key hierarchies and
key trust?

Phil Zimmermann chose IDEA, three-key triple DES, and CAST-128 as symmetric
encryption algorithms for PGP. Give reasons why each of the following symmetric
encryption algorithms described in this book is suitable or unsuitable for PGP: DES,
two-key triple DES, and AES.

Consider radix-64 conversion as a form of encryption. In this case, there is no key. But
suppose that an opponent knew only that some form of substitution algorithm was
being used to encrypt English text and did not guess that it was R64. How effective
would this algorithm be against cryptanalysis?

Encode the text “plaintext” using the following techniques. Assume characters are
stored in 8-bit ASCII with zero parity.

a. Radix-64

b. Quoted-printable

APPENDIX 7A RADIX-64 CONVERSION

Both PGP and S/MIME make use of an encoding technique referred to as radix-64 conver-
sion. This technique maps arbitrary binary input into printable character output. The form of
encoding has the following relevant characteristics:

1.

The range of the function is a character set that is universally representable at
all sites, not a specific binary encoding of that character set. Thus, the characters
themselves can be encoded into whatever form is needed by a specific system.
For example, the character “E” is represented in an ASCII-based system as
hexadecimal 45 and in an EBCDIC-based system as hexadecimal C5.

The character set consists of 65 printable characters, one of which is used for
padding. With 2° = 64 available characters, each character can be used to rep-
resent 6 bits of input.

No control characters are included in the set. Thus, a message encoded in radix 64
can traverse mail-handling systems that scan the data stream for control characters.

«“

The hyphen character “-” is not used. This character has significance in the RFC 5322
format and should therefore be avoided.

APPENDIX 7A / RADIX-64 CONVERSION 267

Table 7.9 Radix-64 Encoding

6-bit Character 6-bit Character | 6-bit Character 6-bit Character
Value Encoding Value Encoding | Value Encoding Value Encoding
0 A 16 Q 32 g 48 w
1 B 17 R 33 h 49 X
2 C 18 S 34 i 50 y
3 D 19 T 35 j 51 z
4 E 20 U 36 k 52 0
5 I 21 A% 37 1 53 1
6 G 22 W 38 m 54 2
7 H 23 X 39 n 55 3
8 1 24 Y 40 o 56 4
9 J 25 V4 41 p 57 5
10 K 26 a 42 q 58 6
11 1L 27 b 43 r 59 7
12 M 28 c 44 S 60 8
13 N 29 d 45 t 61 9
14 O 30 © 46 u 62 +
15 P 31 f 47 v 63 /
(pad) -

Table 7.9 shows the mapping of 6-bit input values to characters. The character set con-
sists of the alphanumeric characters plus “+” and “/”. The “=" character is used as the
padding character.

Figure 7.12 illustrates the simple mapping scheme. Binary input is processed in blocks
of 3 octets (24 bits). Each set of 6 bits in the 24-bit block is mapped into a character. In the fig-
ure, the characters are shown encoded as 8-bit quantities. In this typical case, each 24-bit input
is expanded to 32 bits of output.

For example, consider the 24-bit raw text sequence 00100011 01011100 10010001, which
can be expressed in hexadecimal as 235C91. We arrange this input in blocks of 6 bits:

001000 110101 110010 010001

The extracted 6-bit decimal values are 8, 53, 50, and 17. Looking these up in Table 7.9
yields the radix-64 encoding as the following characters: [1yR. If these characters are stored
in 8-bit ASCII format with parity bit set to zero, we have

01001001 00110001 01111001 01010010

268 CHAPTER 7 / ELECTRONIC MAIL SECURITY
24 bits

\/

A

pu A —~ A —~ A —~ A -~
< 4 characters = 32 bits >
Figure 7.12 Printable Encoding of Binary Data into
Radix-64 Format

In hexadecimal, this is 49317952. To summarize:
Input Data
Binary representation 00100011 01011100 10010001
235C91

Hexadecimal representation
Radix-64 Encoding of Input Data

I1yR

Character representation
01001001 00110001 01111001 01010010

ASCII code (8 bit, zero parity)

Hexadecimal representation

49317952

