
Aprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem ProfundaAprendizagem Profunda

20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning20 - Deep Reinforcement Learning

Ludwig Krippahl

1

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Summary
■ Introduction to Deep Reinforcement Learning
■ Exploration and Exploitation
■ Learning policies with Deep Neural Networks
■ Example: cartpole problem
■ Assignment 2

2

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Introduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRLIntroduction to DRL

3

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Previously:
■ Knowing the Markov Decision Process (MDP) we can:
• Compute the V-function for a policy
• Compute the Q-function
• Improve the policy choosing best action for each state

Unfortunately...
■ This requires full knowledge of the MDP
■ And complete information about the states
• We must enumerate all combinations of states and actions

4

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

■ Realistic cases are too large (or continuous)

0:00 / 0:12 0:00 0:11

■ But we can combine the fundamental ideas with deep learning

5

IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroduction

Features of deep learning
■ Delayed feedback:
• Without the full MDP we must rely on sequences of events and feedback can be

delayed

■ Evaluative feedback:
• In supervised learning we know the ground truth but in reinforcement learning we

only have relative values (e.g. this way better than that way)

■ Sampled feedback
• We do not know the complete decision problem and only have samples of actions,

states and rewards which depend on how we explore the state and action space.

■ Feature extraction
• Usually in deep reinforcement learning the observation does provide the best

features. E.g. to play Starcraft or drive a car

6

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Exploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and Exploitation

7

Exploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and Exploitation

Gathering data
■ Agent must interact with environment and observe
■ Exploit agent's knowledge to guide exploration?
• Can go far but always following same recipe

■ Risk different actions?
• May be a bad idea but may reveal better alternatives.

■ Tradeoff between exploration and exploitation

8

Exploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and ExploitationExploration and Exploitation

■ -greedy exploration:
• Mostly follow best estimated action but risk random action with small

■ Decaying -greedy exploration:
• Start with large and reduce gradually during training

■ Optimistic initialization:
• Initialize Q-function with high values in order to favour novel actions

■ Softmax exploration:
• Pass Q-function through softmax and use as probability of choosing each action

■ Upper Confidence Bound (UCB):
• Favours less visited combinations considering uncertainty

ϵ

ϵ

ϵ

ϵ

= ((s, a) + c)at argmax
a

Qt

2 ln t

(a)Nt

− −−−−

√

9

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Learning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning Policies

10

Learning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning Policies

■ We cannot use the same Iterative Policy Evaluation algorithm
■ But we can use temporal-difference learning.
Improving the state-value function:
■ Recall:

■ If we want to improve V-function:
() = (+ γ ())vπ st Eπ Rt+1 vπ st+1

() = () + (+ γ () − ())vt+1 st vt st αt Rt+1 vt st+1 vt st

11

Learning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning Policies

Improving the action-value (Q-funcion)
■ State-action-reward-state-action algorithm (SARSA)

• Estimate for the future action values to be given by the action the policy will choose

■ Q-learning algorithm:

• Uses the best possible action at next step to estimate discounted future return

■ On-policy and off-policy
• SARSA is an on-policy algorithm, because it follows the policy
• Q-learning is off-policy since it ignores the policy for the future return

(,) = (,) + (+ γ (,) − (,))qt+1 st at qt st at αt Rt+1 qt st+1 at+1 qt st at

(,) = (,) + (+ γ ((, a)) − (,))qt+1 st at qt st at αt Rt+1 argmax
a

qt st+1 qt st at

12

Learning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning Policies

Deep Reinforcement Learning
■ These learning algorithms assume a V table and a Q table to

update
■ There is no such thing in deep reinforcement learning
■ We must approximate the Q-function with a deep neural network:
• The input is the observation of the state
• The output, one for each action, is
• Linear activation on the output (regression problem)
• Use MSE or equivalent

■ What data do we use to train the network?

q(s, a)

13

Learning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning PoliciesLearning Policies

Training the network to approximate Q
■ To train the network we need (X, Y) pairs:
• X: input, corresponding to the observation of the state
• Y: output, corresponding to the target Q-values for the actions

■ We start from experiences:
• Tuples state, action, next state, reward obtained and flag for terminal state:

■ We use the network to estimate future returns.
■ Adapting SARSA:

■ Adapting Q-learning:

(, , , , terminal)st at st+1 rt1

() = + γ (, ;)ySARSA
i at Rt+1 qt st+1 at+1 θi

() = + γ ((, a;))y
Q−learn
i at Rt+1 argmax

a
qt st+1 θi

14

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Demo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problemDemo: cartpole problem

15

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

Based on a tutorial by Mike Wang, towardsdatascience.com

■ Open-AI CartPole-V1
• Applying a force of +1 or -1 to a cart where pole is balanced.
• The pole must be kept within 15º of vertical

0:00 / 0:06

16

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Importing and setup. Note: you need the Open-AI gym

import gym
import tensorflow as tf
import numpy as np
from tensorflow import keras
from collections import deque
import random

RANDOM_SEED = 5
tf.random.set_seed(RANDOM_SEED)

env = gym.make('CartPole-v1')
env.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)

train_episodes = 300

17

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Model for learning Q-function

def agent(state_shape, action_shape):
 learning_rate = 0.001
 init = tf.keras.initializers.HeUniform()
 model = keras.Sequential()
 model.add(keras.layers.Dense(24, input_shape=state_shape,
 activation='relu',
 kernel_initializer=init))
 model.add(keras.layers.Dense(12, activation='relu',
 kernel_initializer=init))
 model.add(keras.layers.Dense(action_shape,
 activation='linear',
 kernel_initializer=init))
 model.compile(loss=tf.keras.losses.Huber(),
 optimizer=tf.keras.optimizers.Adam(lr=learning_rate),
 metrics=['accuracy'])
 return model

■ Two optimizations
• He uniform initializer, uniform

• Huber loss function, similar to MSE but becomes linear for larger error

6/ fanin
− −−−−

√

18

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Training function uses two models to help stabilize training
• target_model lags behind model

def train(env, replay_memory, model, target_model, done):
 discount_factor = 0.618
 batch_size = 64 * 2
 mini_batch = random.sample(replay_memory, batch_size)
 current_states = np.array([transition[0] for transition in mini_batch])
 current_qs_list = model.predict(current_states)
 new_current_states = np.array([transition[3] for transition in mini_batch])
 future_qs_list = target_model.predict(new_current_states)
 X = []
 Y = []
 for index, (observation, action, reward, new_observation, done) in enumerat
 if not done:
 max_future_q = reward + discount_factor * np.max(future_qs_list[ind
 else:
 max_future_q = reward
 current_qs = current_qs_list[index]
 current_qs[action] = max_future_q
 X.append(observation)
 Y.append(current_qs)
 model.fit(np.array(X), np.array(Y), batch_size=batch_size, verbose=0, shuff

19

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Main function, setup
• decais over time.
• MIN_REPLAY_SIZE is smallest size for pool of experiences
• target_model is a copy of model

ϵ

def main():
 epsilon = 1
 max_epsilon = 1
 min_epsilon = 0.01
 decay = 0.01
 MIN_REPLAY_SIZE = 1000

 model = agent(env.observation_space.shape, env.action_space.n)
 target_model = agent(env.observation_space.shape, env.action_space.n)
 target_model.set_weights(model.get_weights())

 replay_memory = deque(maxlen=50000)
 steps_to_update_target_model = 0

20

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Adding experiences to the replay_memory
• It is a deque, so it discards oldest elements if capacity is reached

■ Uses to choose exploration or exploitationϵ

for episode in range(train_episodes):
 total_training_rewards = 0
 observation = env.reset()
 done = False
 while not done:
 steps_to_update_target_model += 1
 if True:
 env.render()
 random_number = np.random.rand()
 if random_number <= epsilon:
 action = env.action_space.sample()
 else:
 reshaped = observation.reshape([1, observation.shape[0]])
 predicted = model.predict(reshaped).flatten()
 action = np.argmax(predicted)
 new_observation, reward, done, info = env.step(action)
 replay_memory.append([observation, action, reward, new_observation, don

21

CartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpoleCartpole

■ Train model if there are enough experiences in memory pool
■ Update target_model by copying weights, but less frequently

 if len(replay_memory) >= MIN_REPLAY_SIZE and \
 (steps_to_update_target_model % 4 == 0 or done):
 train(env, replay_memory, model, target_model, done)
 observation = new_observation
 total_training_rewards += reward
 if done:
 print('Rewards: {} after n steps = {} with final reward = {}'.form
 total_training_rewards, episode, reward))
 total_training_rewards += 1

 if steps_to_update_target_model >= 100:
 print('Copying main network weights to the target network weig
 target_model.set_weights(model.get_weights())
 steps_to_update_target_model = 0
 break
 epsilon = min_epsilon + (max_epsilon - min_epsilon) * np.exp(-decay * epis
 env.close()

22

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

23

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Motivation: train a snake player

0:00 / 1:32

24

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Motivation: train a snake player
Goals:
■ Explore different options
• Networks, algorithms (SARSA, Q-learning, etc.)
• Scheduling, experiences, exploration
• ...

■ Understand the problems
• Reward is rare, only when agent finds food

■ Basically, think and learn
■ Grading will depend greatly on explanations

25

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ The snake game

class SnakeGame:
 " Implements the snake game core"

 def __init__(self, width, height, food_amount=1,
 border = 0, grass_growth = 0,
 max_grass = 0):
 ...

 def step(self, action):
 ...
 return self.board_state(),reward,self.done, {'score':self.score}

 def reset(self):
 ...
 return self.board_state(),0,self.done, {'score':self.score}

■ The board state is a numpy array (height,width,3)
• Snake: tail in red, head in white
• Food: green
• Walls (border): gray

26

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ You can control border thickness:
• SnakeGame(w,h, border = n)

■ Total width and height will be w+2*n, h+2*n

■ Don't go too small, minimum 14 (?)
■ Target: 30x30, border 1, for images of 32x32

27

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Problem of rare rewards
• SnakeGame(30,30,border=1,max_grass=0.05,grass_growth=0.001)

0:00 / 0:30

28

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Problem of rare rewards
• Use heuristic to populate initial pool of examples

0:00 / 0:20

29

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Problem of rare rewards
• Use heuristic to populate initial pool of examples

■ You can cheat with this method:

class SnakeGame:
 ...
 def get_state(self):
 "easily get current state (score, apple, snake head and tail)"
 score = self.score
 apple = self.apples
 head = self.snake[0]
 tail = self.snake[1:]
 return score,apple,head,tail,self.direction

■ This is NOT for training
• The agent must use the image of the board

■ But you can use it to generate examples

30

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Use heuristic to populate initial pool of examples, result

0:00 / 1:32

31

Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2Assignment 2

■ Can take a while to train
• Especially because of playing the game and predicting actions

■ Experiment with smaller boards
Instructions
■ The code is available now (you just need SnakeGame)
■ I will post the instructions and questions files this week
■ Deadline is June 10 (plus 48 hours)

32

DRLDRLDRLDRLDRLDRLDRLDRLDRL

SummarySummarySummarySummarySummarySummarySummarySummarySummary

33

DRLDRLDRLDRLDRLDRLDRLDRLDRL

Summary
■ Deep Reinforcement Learning
■ Exploration and Exploitatio
■ Improving policy
• Approximate Q-function with DNN
• SARSA and Q-learning adapted to DNN

■ Polecart example
■ Assignment 2
Further reading (Optional)
■ Morales, Grokking Deep Reinforcement Learning, 2020, Chp. 4-6, 8

