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Summary
■ Introduction to Deep Reinforcement Learning
■ Exploration and Exploitation
■ Learning policies with Deep Neural Networks
■ Example: cartpole problem
■ Assignment 2
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Previously:
■ Knowing the Markov Decision Process (MDP) we can:
• Compute the V-function for a policy
• Compute the Q-function
• Improve the policy choosing best action for each state

Unfortunately...
■ This requires full knowledge of the MDP
■ And complete information about the states
• We must enumerate all combinations of states and actions
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■ Realistic cases are too large (or continuous)

 

0:00 / 0:12 0:00 0:11

■ But we can combine the fundamental ideas with deep learning
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Features of deep learning
■ Delayed feedback:
• Without the full MDP we must rely on sequences of events and feedback can be

delayed

■ Evaluative feedback:
• In supervised learning we know the ground truth but in reinforcement learning we

only have relative values (e.g. this way better than that way)

■ Sampled feedback
• We do not know the complete decision problem and only have samples of actions,

states and rewards which depend on how we explore the state and action space.

■ Feature extraction
• Usually in deep reinforcement learning the observation does provide the best

features. E.g. to play Starcraft or drive a car
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Gathering data
■ Agent must interact with environment and observe
■ Exploit agent's knowledge to guide exploration?
• Can go far but always following same recipe

■ Risk different actions?
• May be a bad idea but may reveal better alternatives.

■ Tradeoff between exploration and exploitation
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■  -greedy exploration:
• Mostly follow best estimated action but risk random action with small 

■ Decaying -greedy exploration:
• Start with large  and reduce gradually during training

■ Optimistic initialization:
• Initialize Q-function with high values in order to favour novel actions

■ Softmax exploration:
• Pass Q-function through softmax and use as probability of choosing each action

■ Upper Confidence Bound (UCB):
• Favours less visited combinations considering uncertainty
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■ We cannot use the same Iterative Policy Evaluation algorithm
■ But we can use temporal-difference learning.
Improving the state-value function:
■ Recall:

■ If we want to improve V-function:
( ) = ( + γ ( ))vπ st Eπ Rt+1 vπ st+1

( ) = ( ) + ( + γ ( ) − ( ))vt+1 st vt st αt Rt+1 vt st+1 vt st
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Improving the action-value (Q-funcion)
■ State-action-reward-state-action algorithm (SARSA)

• Estimate for the future action values to be given by the action the policy will choose

■ Q-learning algorithm:

• Uses the best possible action at next step to estimate discounted future return

■ On-policy and off-policy
• SARSA is an on-policy algorithm, because it follows the policy
• Q-learning is off-policy since it ignores the policy for the future return

( , ) = ( , ) + ( + γ ( , ) − ( , ))qt+1 st at qt st at αt Rt+1 qt st+1 at+1 qt st at

( , ) = ( , ) + ( + γ ( ( , a)) − ( , ))qt+1 st at qt st at αt Rt+1 argmax
a

qt st+1 qt st at
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Deep Reinforcement Learning
■ These learning algorithms assume a V table and a Q table to

update
■ There is no such thing in deep reinforcement learning
■ We must approximate the Q-function with a deep neural network:
• The input is the observation of the state
• The output, one for each action, is 
• Linear activation on the output (regression problem)
• Use MSE or equivalent

■ What data do we use to train the network?

q(s, a)
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Training the network to approximate Q
■ To train the network we need (X, Y) pairs:
• X: input, corresponding to the observation of the state
• Y: output, corresponding to the target Q-values for the actions

■ We start from experiences:
• Tuples state, action, next state, reward obtained and flag for terminal state:

■ We use the network to estimate future returns.
■ Adapting SARSA:

■ Adapting Q-learning:

( , , , , terminal)st at st+1 rt1

( ) = + γ ( , ; )ySARSA
i at Rt+1 qt st+1 at+1 θi

( ) = + γ ( ( , a; ))y
Q−learn
i at Rt+1 argmax

a
qt st+1 θi
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Based on a tutorial by Mike Wang, towardsdatascience.com

■ Open-AI CartPole-V1
• Applying a force of +1 or -1 to a cart where pole is balanced.
• The pole must be kept within 15º of vertical

0:00 / 0:06
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■ Importing and setup. Note: you need the Open-AI gym

import gym 
import tensorflow as tf 
import numpy as np 
from tensorflow import keras 
from collections import deque 
import random 
 
RANDOM_SEED = 5 
tf.random.set_seed(RANDOM_SEED) 
 
env = gym.make('CartPole-v1') 
env.seed(RANDOM_SEED) 
np.random.seed(RANDOM_SEED) 
 
train_episodes = 300
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■ Model for learning Q-function

def agent(state_shape, action_shape): 
    learning_rate = 0.001 
    init = tf.keras.initializers.HeUniform() 
    model = keras.Sequential() 
    model.add(keras.layers.Dense(24, input_shape=state_shape, 
                                 activation='relu', 
                                 kernel_initializer=init)) 
    model.add(keras.layers.Dense(12, activation='relu', 
                                 kernel_initializer=init)) 
    model.add(keras.layers.Dense(action_shape, 
                                 activation='linear', 
                                 kernel_initializer=init)) 
    model.compile(loss=tf.keras.losses.Huber(), 
                  optimizer=tf.keras.optimizers.Adam(lr=learning_rate), 
                  metrics=['accuracy']) 
    return model

■ Two optimizations
• He uniform initializer, uniform 

• Huber loss function, similar to MSE but becomes linear for larger error

6/ fanin
− −−−−
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■ Training function uses two models to help stabilize training
• target_model lags behind model

def train(env, replay_memory, model, target_model, done): 
    discount_factor = 0.618 
    batch_size = 64 * 2 
    mini_batch = random.sample(replay_memory, batch_size) 
    current_states = np.array([transition[0] for transition in mini_batch]) 
    current_qs_list = model.predict(current_states) 
    new_current_states = np.array([transition[3] for transition in mini_batch])
    future_qs_list = target_model.predict(new_current_states) 
    X = [] 
    Y = [] 
    for index, (observation, action, reward, new_observation, done) in enumerat
        if not done: 
            max_future_q = reward + discount_factor * np.max(future_qs_list[ind
        else: 
            max_future_q = reward 
        current_qs = current_qs_list[index] 
        current_qs[action] = max_future_q 
        X.append(observation) 
        Y.append(current_qs) 
    model.fit(np.array(X), np.array(Y), batch_size=batch_size, verbose=0, shuff
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■ Main function, setup
•   decais over time.
• MIN_REPLAY_SIZE is smallest size for pool of experiences
• target_model is a copy of model

ϵ

def main(): 
    epsilon = 1 
    max_epsilon = 1 
    min_epsilon = 0.01 
    decay = 0.01 
    MIN_REPLAY_SIZE = 1000 
 
    model = agent(env.observation_space.shape, env.action_space.n) 
    target_model = agent(env.observation_space.shape, env.action_space.n) 
    target_model.set_weights(model.get_weights()) 
 
    replay_memory = deque(maxlen=50000) 
    steps_to_update_target_model = 0
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■ Adding experiences to the replay_memory
• It is a deque, so it discards oldest elements if capacity is reached

■ Uses  to choose exploration or exploitationϵ

for episode in range(train_episodes): 
    total_training_rewards = 0 
    observation = env.reset() 
    done = False 
    while not done: 
        steps_to_update_target_model += 1 
        if True: 
            env.render() 
        random_number = np.random.rand() 
        if random_number <= epsilon: 
            action = env.action_space.sample() 
        else: 
            reshaped = observation.reshape([1, observation.shape[0]]) 
            predicted = model.predict(reshaped).flatten() 
            action = np.argmax(predicted) 
        new_observation, reward, done, info = env.step(action) 
        replay_memory.append([observation, action, reward, new_observation, don
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■ Train model if there are enough experiences in memory pool
■ Update target_model by copying weights, but less frequently

         if len(replay_memory) >= MIN_REPLAY_SIZE and \ 
             (steps_to_update_target_model % 4 == 0 or done): 
             train(env, replay_memory, model, target_model, done) 
         observation = new_observation 
         total_training_rewards += reward 
         if done: 
             print('Rewards: {} after n steps = {} with final reward = {}'.form
                       total_training_rewards, episode, reward)) 
             total_training_rewards += 1 
 
             if steps_to_update_target_model >= 100: 
                 print('Copying main network weights to the target network weig
                 target_model.set_weights(model.get_weights()) 
                 steps_to_update_target_model = 0 
             break 
     epsilon = min_epsilon + (max_epsilon - min_epsilon) * np.exp(-decay * epis
 env.close()
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■ Motivation: train a snake player

0:00 / 1:32
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■ Motivation: train a snake player
Goals:
■ Explore different options
• Networks, algorithms (SARSA, Q-learning, etc.)
• Scheduling, experiences, exploration
• ...

■ Understand the problems
• Reward is rare, only when agent finds food

■ Basically, think and learn
■ Grading will depend greatly on explanations
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■ The snake game

class SnakeGame: 
    " Implements the snake game core" 
 
    def __init__(self, width, height, food_amount=1, 
                 border = 0, grass_growth = 0, 
                 max_grass = 0): 
        ... 
 
    def step(self, action): 
        ... 
        return self.board_state(),reward,self.done, {'score':self.score} 
 
    def reset(self): 
        ... 
        return self.board_state(),0,self.done, {'score':self.score}

■ The board state is a numpy array (height,width,3)
• Snake: tail in red, head in white
• Food: green
• Walls (border): gray
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■ You can control border thickness:
• SnakeGame(w,h, border = n)

■ Total width and height will be w+2*n, h+2*n

■ Don't go too small, minimum 14 (?)
■ Target: 30x30, border 1, for images of 32x32
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■ Problem of rare rewards
• SnakeGame(30,30,border=1,max_grass=0.05,grass_growth=0.001)

0:00 / 0:30
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■ Problem of rare rewards
• Use heuristic to populate initial pool of examples

0:00 / 0:20
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■ Problem of rare rewards
• Use heuristic to populate initial pool of examples

■ You can cheat with this method:

class SnakeGame: 
    ... 
    def get_state(self): 
        "easily get current state (score, apple, snake head and tail)" 
        score = self.score 
        apple = self.apples 
        head = self.snake[0] 
        tail = self.snake[1:] 
        return score,apple,head,tail,self.direction

■ This is NOT for training
• The agent must use the image of the board

■ But you can use it to generate examples
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■ Use heuristic to populate initial pool of examples, result

0:00 / 1:32
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■ Can take a while to train
• Especially because of playing the game and predicting actions

■ Experiment with smaller boards
Instructions
■ The code is available now (you just need SnakeGame)
■ I will post the instructions and questions files this week
■ Deadline is June 10 (plus 48 hours)
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Summary
■ Deep Reinforcement Learning
■ Exploration and Exploitatio
■ Improving policy
• Approximate Q-function with DNN
• SARSA and Q-learning adapted to DNN

■ Polecart example
■ Assignment 2
Further reading (Optional)
■ Morales, Grokking Deep Reinforcement Learning, 2020, Chp. 4-6, 8




