Aprendizagem Profunda

20 - Deep Reinforcement Learning

Ludwig Krippahl

DRL

Summary

- Introduction to Deep Reinforcement Learning
- Exploration and Exploitation
- Learning policies with Deep Neural Networks
- Example: cartpole problem
- Assignment 2

Introduction to DRL

Introduction

Previously:

- Knowing the Markov Decision Process (MDP) we can:
- Compute the V-function for a policy
- Compute the Q-function
- Improve the policy choosing best action for each state

Unfortunately...

- This requires full knowledge of the MDP
- And complete information about the states
- We must enumerate all combinations of states and actions

Introduction

Realistic cases are too large (or continuous)

But we can combine the fundamental ideas with deep learning

Introduction

Features of deep learning

- Delayed feedback:
- Without the full MDP we must rely on sequences of events and feedback can be delayed
 - Evaluative feedback:
- In supervised learning we know the ground truth but in reinforcement learning we only have relative values (e.g. this way better than that way)
 - Sampled feedback
- We do not know the complete decision problem and only have samples of actions, states and rewards which depend on how we explore the state and action space.
- Feature extraction
- Usually in deep reinforcement learning the observation does provide the best features. E.g. to play Starcraft or drive a car

Exploration and Exploitation

Exploration and Exploitation

Gathering data

- Agent must interact with environment and observe
- Exploit agent's knowledge to guide exploration?
- Can go far but always following same recipe
 - Risk different actions?
- May be a bad idea but may reveal better alternatives.
- Tradeoff between exploration and exploitation

Exploration and Exploitation

- \bullet -greedy exploration:
- Mostly follow best estimated action but risk random action with small ϵ
- Decaying ϵ -greedy exploration:
- Start with large ϵ and reduce gradually during training
- Optimistic initialization:
- Initialize Q-function with high values in order to favour novel actions
 - Softmax exploration:
- Pass Q-function through softmax and use as probability of choosing each action
- Upper Confidence Bound (UCB):
- Favours less visited combinations considering uncertainty

$$a_t = rgmax _a \left(Q_t(s,a) + c \sqrt{rac{2 \ln t}{N_t(a)}}
ight)$$

- We cannot use the same Iterative Policy Evaluation algorithm
- But we can use temporal-difference learning.

Improving the state-value function:

Recall:

$$v_\pi(s_t) = \mathbb{E}_\pi \left(R_{t+1} + \gamma v_\pi(s_{t+1})
ight)$$

If we want to improve V-function:

$$v_{t+1}(s_t) = v_t(s_t) + lpha_t \left(R_{t+1} + \gamma v_t(s_{t+1}) - v_t(s_t)
ight)$$

Improving the action-value (Q-funcion)

State-action-reward-state-action algorithm (SARSA)

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + lpha_t \left(R_{t+1} + \gamma q_t(s_{t+1}, a_{t+1}) - q_t(s_t, a_t)
ight)$$

- Estimate for the future action values to be given by the action the policy will choose
 - Q-learning algorithm:

$$q_{t+1}(s_t, a_t) = q_t(s_t, a_t) + lpha_t \left(R_{t+1} + \gamma rgmax \left(q_t(s_{t+1}, a)
ight) - q_t(s_t, a_t)
ight)$$

- Uses the best possible action at next step to estimate discounted future return
- On-policy and off-policy
- SARSA is an on-policy algorithm, because it follows the policy
- Q-learning is off-policy since it ignores the policy for the future return

Deep Reinforcement Learning

- These learning algorithms assume a V table and a Q table to update
- There is no such thing in deep reinforcement learning
- We must approximate the Q-function with a deep neural network:
- The input is the observation of the state
- The output, one for each action, is q(s,a)
- Linear activation on the output (regression problem)
- Use MSE or equivalent
- What data do we use to train the network?

Training the network to approximate Q

- To train the network we need (X, Y) pairs:
- X: input, corresponding to the observation of the state
- Y: output, corresponding to the target Q-values for the actions
- We start from experiences:
- Tuples state, action, next state, reward obtained and flag for terminal state:

$$(s_t, a_t, s_{t+1}, r_{t_1}, terminal)$$

- We use the network to estimate future returns.
- Adapting SARSA:

$$y_i^{SARSA}(a_t) = R_{t+1} + \gamma q_t(s_{t+1}, a_{t+1}; heta_i)$$

Adapting Q-learning:

$$y_i^{Q-learn}(a_t) = R_{t+1} + \gamma rgmax \left(q_t(s_{t+1}, a; heta_i)
ight)$$

Demo: cartpole problem

Based on a tutorial by Mike Wang, towardsdatascience.com

- Open-Al CartPole-V1
- Applying a force of +1 or -1 to a cart where pole is balanced.
- The pole must be kept within 15° of vertical

Importing and setup. Note: you need the Open-AI gym

```
import gym
import tensorflow as tf
import numpy as np
from tensorflow import keras
from collections import deque
import random

RANDOM_SEED = 5
tf.random.set_seed(RANDOM_SEED)

env = gym.make('CartPole-v1')
env.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)

train_episodes = 300
```


Model for learning Q-function

```
def agent(state_shape, action_shape):
    learning_rate = 0.001
    init = tf.keras.initializers.HeUniform()
   model = keras.Sequential()
   model.add(keras.layers.Dense(24, input shape=state shape,
                                 activation='relu',
                                 kernel initializer=init))
   model.add(keras.layers.Dense(12, activation='relu',
                                 kernel initializer=init))
   model.add(keras.layers.Dense(action shape,
                                 activation='linear',
                                 kernel initializer=init))
   model.compile(loss=tf.keras.losses.Huber(),
                  optimizer=tf.keras.optimizers.Adam(lr=learning_rate),
                  metrics=['accuracy'])
    return model
```

- Two optimizations
- He uniform initializer, uniform $6/\sqrt{fan_{in}}$
- Huber loss function, similar to MSE but becomes linear for larger error

- Training function uses two models to help stabilize training
- target_model lags behind model

```
def train(env, replay memory, model, target model, done):
   discount factor = 0.618
   batch size = 64 * 2
   mini_batch = random.sample(replay_memory, batch_size)
   current states = np.array([transition[0] for transition in mini batch])
   current qs list = model.predict(current states)
   new_current_states = np.array([transition[3] for transition in mini_batch])
   future qs list = target_model.predict(new_current_states)
   X = []
   Y = []
   for index, (observation, action, reward, new observation, done) in enumerat
       if not done:
            max future q = reward + discount factor * np.max(future qs list[ind
       else:
            max future q = reward
       current qs = current qs list[index]
       current_qs[action] = max_future_q
       X.append(observation)
       Y.append(current qs)
   model.fit(np.array(X), np.array(Y), batch_size=batch_size, verbose=0, shuff
```


- Main function, setup
- ϵ decais over time.
- MIN_REPLAY_SIZE is smallest size for pool of experiences
- target_model is a copy of model

```
def main():
    epsilon = 1
    max_epsilon = 1
    min_epsilon = 0.01
    decay = 0.01
    MIN_REPLAY_SIZE = 1000

model = agent(env.observation_space.shape, env.action_space.n)
    target_model = agent(env.observation_space.shape, env.action_space.n)
    target_model.set_weights(model.get_weights())

replay_memory = deque(maxlen=50000)
    steps_to_update_target_model = 0
```


- Adding experiences to the replay memory
- It is a deque, so it discards oldest elements if capacity is reached
- \blacksquare Uses ϵ to choose exploration or exploitation

```
for episode in range(train_episodes):
   total training rewards = 0
   observation = env.reset()
   done = False
   while not done:
        steps_to_update_target_model += 1
        if True:
            env.render()
        random number = np.random.rand()
        if random number <= epsilon:</pre>
            action = env.action space.sample()
        else:
            reshaped = observation.reshape([1, observation.shape[0]])
            predicted = model.predict(reshaped).flatten()
            action = np.argmax(predicted)
        new_observation, reward, done, info = env.step(action)
        replay_memory.append([observation, action, reward, new_observation, dor
```


- Train model if there are enough experiences in memory pool
- Update target model by copying weights, but less frequently

```
if len(replay_memory) >= MIN_REPLAY_SIZE and \
            (steps to update target model % 4 == 0 or done):
            train(env, replay_memory, model, target_model, done)
        observation = new observation
        total training rewards += reward
        if done:
            print('Rewards: {} after n steps = {} with final reward = {}'.forn
                      total training rewards, episode, reward))
            total training rewards += 1
            if steps_to_update_target model >= 100:
                print('Copying main network weights to the target network weights
                target_model.set_weights(model.get_weights())
                steps_to_update_target_model = 0
            break
   epsilon = min epsilon + (max epsilon - min epsilon) * np.exp(-decay * epis
env.close()
```


Motivation: train a snake player

Motivation: train a snake player

Goals:

- Explore different options
- Networks, algorithms (SARSA, Q-learning, etc.)
- Scheduling, experiences, exploration
- ...
- Understand the problems
- Reward is rare, only when agent finds food
 - Basically, think and learn
- Grading will depend greatly on explanations

The snake game

- The board state is a numpy array (height, width, 3)
- Snake: tail in red, head in white
- Food: green

- You can control border thickness:
- SnakeGame(w,h, border = n)
- Total width and height will be w+2*n, h+2*n

- Don't go too small, minimum 14 (?)
- Target: 30x30, border 1, for images of 32x32

- Problem of rare rewards
- SnakeGame(30,30,border=1,max_grass=0.05,grass_growth=0.001)

- Problem of rare rewards
- Use heuristic to populate initial pool of examples

- Problem of rare rewards
- Use heuristic to populate initial pool of examples
 - You can cheat with this method:

```
class SnakeGame:
    def get_state(self):
        "easily get current state (score, apple, snake head and tail)"
        score = self.score
        apple = self.apples
        head = self.snake[0]
        tail = self.snake[1:]
        return score,apple,head,tail,self.direction
```

- This is **NOT** for training
- The agent must use the image of the board
- But you can use it to generate examples

Use heuristic to populate initial pool of examples, result

- Can take a while to train
- Especially because of playing the game and predicting actions
 - Experiment with smaller boards

Instructions

- The code is available now (you just need SnakeGame)
- I will post the instructions and questions files this week
- Deadline is June 10 (plus 48 hours)

Summary

DRL

Summary

- Deep Reinforcement Learning
- Exploration and Exploitatio
- Improving policy
- Approximate Q-function with DNN
- SARSA and Q-learning adapted to DNN
- Polecart example
- Assignment 2

Further reading (Optional)

Morales, Grokking Deep Reinforcement Learning, 2020, Chp. 4-6, 8

