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Today, last lecture
■ (Some) Open problems in deep learning:
• Automated Architecture Search
• Verification & Validation
• Training with small data sets
• Bridging the neuro-symbolic gap

9:45 Introduction to PyTorch
■ Prof. Cláudia Soares, Zoom session
■ Afterwards, questions about assignment 2
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AutoML
■ Automating machine learning:
• https://automl.github.io/auto-sklearn/master/

• Test different algorithms and parameters to optimize classification

■ In classical ML additional problems of feature engineering and
selection

■ Deep learning should be better for this
• Deep neural networks are good at finding best features

■ However...
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Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
• Evolutionary methods, such as genetic algorithms

• Reinforcement learning:the agent performs a sequence of actions to build the
network

• Bayesian optimization: maximizes a black box function by fitting estimates of its
output

• E.g. Sequential Model-based Algorithm Configuration (SMAC), uses random forest
to predict performance

• Was used to build MLP that perform better than human designed in some
applications
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Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
■ Evaluating networks is expensive; needs speedup
• Train few epochs or on small subsets of data

• Extrapolate performance from first training epochs

• Inherit weights transforming the architecture in ways that preserve function

• E.g add a layer with identity operation

• Share weights between different models that are subsets of a large original trained
model
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Finding the best network
■ A discontinuous optimization problem; needs a good strategy.
■ Evaluating networks is expensive; needs speedup
■ Choose the search space.
• We need to know what elements to use in order to search them

• Convolution, residual blocks, recurrent, attention and transformers...

• And it is a huge search space...
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Validation and Verification
■ Software V & V is important, especially in critical applications
• Autonomous driving, medical diagnosis, credit risk prediction, ...

■ Validation
• Assessment of the conformity to the requirements

"Is the software being built correctly?"

■ Verification
• Assessment of the adequacy of the software to the use it will be put to

"Is the right software being built?"
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Validation and Verification challenges in DNN
■ Very large state-space for the data and network responses
• Difficult to estimate how DNN responds in anomalous situations (with fatal

consequences)

• Possible solutions: probabilistic models, process control methods establishing
safety limits

■ Testing specifications
• Not easy to specify adequate tests for deep neural networks

• Genetic algorithms and other forms of test data generation are possible solutions

■ Formal methods are used in software for critical applications
• Formal descriptions of algorithms and requirements enable automated proofs

• This is hard for software in general, and more so for neural networks
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Lots of data
■ DNN need large datasets. Or do they? (We don't...)
■ Few-shot and one-shot learning
• DNN trained on large data sets, generally with metric learning

• Learn to separate different examples and put close together similar ones

• Can then be applied to different datasets, even with different classes

■ Data augmentation, whenever possible
■ Regularization: DNN can easily overfit but dropout and weight

penalties can help mitigate
• The network can function as an ensemble

■ The loss function:
• Cosine loss function seems to improve generalization with small data sets
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■ Neural networks are simultaneously very basic algorithms
• Composition of products, sums and little else

■ But very complex, like our brains
• Composition of many many basic operations

■ Our brains connect sub-symbolic representations with symbolic
reasoning

• We can describe and explain

• We can use symbolic representations to guide parts of our network

• For example: learn to pick out pictures of boats; then pick only yellow ones

■ Can we do this with ANN?
• Mapping from network activations to concepts, apparently yes

• But the other way around? Can we talk to the networks in symbols?
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Summary
■ Automating network design
■ Validating and Verifying
■ Learning with fewer data
■ Use symbolic information to guide networks
Next week:
■ No lecture, just questions and revisions




