Internet Applications Design and Implementation
(Lecture 2 - Software Architecture)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Outline

o Software Architecture - Introduction

o Software Architecture for Internet Applications
e [hree-tier architecture
e Service-based architectures

e Microservice-based architectures

e Frameworks at the service of Software Architecture

 [he architectural style REST to instantiate webservices

o Specitying webservices with OpenAPl and Spring

Internet Applications Design and Implementation, NOVA SST, © 2015, Joédo Costa Seco, Jacome Cunha, Jodo Leitéo

49

Internet Applications Design and Implementation
2020 - 2021

(Lecture 2, Part 1 - Software Architecture - Introduction)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

‘ NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Software Architecture

INntroduction
based on the book “Software Architectures in Practice”

Software Architecture

e \What Is software architecture?

 \What are the benefits of using one”

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

52

Software Architecture

e \What Is software architecture®

“The software architecture of a system is the set of structures needed to reason

about the system, which comprise software elements, relations among them,
and properties of both.” (in Software Architectures in Practice)

e Structures can be:

* the module decomposition structure, which divide computational responsibilities and work
assignment (among teams). |ldentity modules or components

e runtime structures (connectors) that deal with the communication between components (eg
services)

e organisational structures. How components are developed, tested, deployed

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo 53

Software Architecture...

... 1S a form of Abstraction
(different views over the same system)

... IS In every software system

(from caos to tidy)

... Includes Behaviour
(names and connectors have semantics)

Not All Architectures Are Good Architectures

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

54

Software Architecture (Structures)

 Module structures
* What is the primary functional responsibility assigned to each module”?
 What are the dependencies to other software elements?

 What modules are each module related to”? by generalisation or specialisation.

 Component and connector structures

* How do modules interact?

 What are the shared data stores?
 What is the data flow in the system?
* (Can the structure change? how?”

 What are the security requirements? performance bottlenecks?

e Allocation structures

* What is the hardware/cloud infrastructure” module ownership? which are the regressions tests? etc.

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

55

Architectural Patterns

* Pre-determined compositions of architectural elements provide strategies for
solving common problems in software systems.

 Examples:

Layered pattern — Linear (unidirectional) dependencies between multiple elements

Shared-data pattern — Components and connectors to create and manipulate persistent
data, connectors are languages like SQL.

C
la

WY

ient-server pattern — Components: Clients and servers; Connectors: protocols and

nguages

ulti-tier pattern — A generic deployment structure of components in different

iNfrastructures

Competence center — Work assignment division by expertise (eg. departments)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

50

Internet Applications Design and Implementation
2020 - 2021

(Lecture 2, Part 2 - Software Architecture - Internet Applications)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@ict.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

mailto:joao.seco@fct.unl.pt
mailto:jacome@fct.unl.pt
mailto:jc.leitao@fct.unl.pt

Internet Applications are Data-Centric

Presentation
Layer

Domain
Layer

Data

Layer

Patterns of Enterprise Application Architecture

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&do Costa Seco, Jacome Cunha, Jodo Leitao

58

Internet Applications are Data-Centric

User
Interface Layer

Presentation
Layer

Application
Layer

Service
Layer

Domain
Layer

Data
Layer

https://dzone.com/articles/layered-architecture-is-good

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&do Costa Seco, Jacome Cunha, Jodo Leitao

59

https://dzone.com/articles/layered-architecture-is-good

Internet Applications are also Decentraliseo

https://dzone.com/articles/introduction-to-microservices-part-1

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&do Costa Seco, Jacome Cunha, Jodo Leitao

60

https://dzone.com/articles/introduction-to-microservices-part-1

(Logical) Architecture of Web applications

* Jech Detalls: Interconnection based on the HT TP protocol

 Method, path, arguments, (a)synchrony, multi-typed response

Dot (LB o

>
=
q

HTTP

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

Architecture of Web applications

o Static HTML pages stored in the file system

ot

Dot

>
=
q

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

62

Architecture of Web applications

 Dynamic HITML pages based on data stored in some database.

ot

>
9
<

RTTP

Dodobans

\ervon

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

63

Architecture of Web applications | o |

 Dynamic HIML pages with permanent connection with the server to exchange
data.

%&%l_/d—"“\@ﬁ

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

64

Architecture of Web applications

Browser U]

BN

a

ServiceX

RepositoryW

/\

WebSockets WebSockets Atmosphere / . - OrvX
/ WWS / epository
JS Interpreter \ ServiceY \
HTTP Server Security |
/XI\/ILHttpRequest . S Filters Reposﬂoer

o \

Controller

Service/

_—

/

Repository/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

Architecture of Web applications - The Big Picture gur= |

A web application is made of code deployed to the independent and different
physical components.

Chomk * Comm'

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&do Costa Seco, Jacome Cunha, Jodo Leitao

606

Web client architecture

 Browser (HTML5)

HTML (structure and semantics)
CSS (style and Ul behaviour)

JS + AJAX,
Socket interfaces (behaviour)

DOM
(the supporting data structure)

Ul Events & callbacks
(mechanism for dynamic structuring of behaviour)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

6/

Web client architecture

o Other kind of web clients (asking for HTML)

* simulate web requests and sessions with web-servers
o parse/crawl the results to extract information

* should be built with web-services instead (if possible).

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

68

Service based web client architecture

* Provide web content based on data providing services

 Data can be exchanged in “machine-triendly” formats.
(e.g. JSON, XML)

e Combined and refurbished in HTML or data formats.

 Even reused inside the same application, in the same server.

150N\ y
@;D

< <L> oLMAToN.Lom

%
BT

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

ny toom

69

Interconnection layer (low-level support)

« HTTP/1.1 (Hypertext Transter Protocol) Protocol
* Method: GET, HEAD, POST, PUT, DELETE (3 more)
 Arguments (query string and body)
 Multi-typed message body
* Cookies

« Return codes: 1XX, 2XX, 3XX, 4XX, 5XX
 Websockets (standard RFC6455 2011 - ws:// wss://)

OOOOO

* supported by browsers and web servers to allow two way data communication between client and servers i

« HTTP/2 approved May 2015.

 [Faster, compressed, and cyphered transmission of data

 [LS (successor of SSL)

* Provides cryptographic support for web communications (handshake+symmetric crypto)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

https://httpstatuses.com/

44444

https://httpstatuses.com/

Web server / App server architecture

 Web servers handle HT TP requests, map URLSs to local files, execute local
scripts (e.g. CGl, PHP), or locally bound code (e.g. Servlets).

 App Servers modularly manage bound code, and associated resources (e.g.
Sessions, context, connections).

 One web server, many applications.

* Allows the assembly of components of applications (controllers, views, models)

Internet Applications Design and Implementation, NOVA SST, © 2015, Joédo Costa Seco, Jacome Cunha, Jodo Leitéo

71

Web architectures, patterns and styles

e |ncrease the level of abstraction, reusability, and maintainability

o Software Architectures
* Architectural and design patterns

* Architectural styles

o Software frameworks implement some, and complement wittilicraries and
tools.

» User-defined pieces are required to specity the “core” logic, and configure
general purpose code.

o All implement the “inversion of control” pattern.

Internet Applications Design and Implementation, NOVA SST, © 2015, Joédo Costa Seco, Jacome Cunha, Jodo Leitéo

/2

An architecture built with Spring

Example of an Architecture built with Spring e

(TP Server * Spring is a component framework

Tomcat

* Resolves component dependencies by dependency injection

* Uses annotations to configure components

@RestController
@RequestMapping("/")
class EmpController(val employees:EmployeeService) {

Controller

// http GET :8080@/api/projects/2/team
@GetMapping("/api/projects/{id}/team")
fun teamMembersOfProject(

Service? @PathVariable 1d:String

)
= employees.teamMembersOfProject(id)

¥

@Service

. class EmployeeService(val employees:EmployeeRepository) {
Rep08|toryZ fun teamMembersOfProject(id:String) = employees.findAL1()

¥

interface EmployeeRepository : CrudRepository<Employee, Long>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

Service Based Architectures

Service Oriented Architectures

* Are the technological and methodological basis for building open-ended Internet Applications.

* Provide a model of distributed computation based on loosely coupled interactions.

* Define heterogeneous ecosystems of service implementations.

e Use implementation independent data formats (JSON, XML)

* Allows independent development of services by different vendors and technologies

e A service:

* |s alogical representation of a repeatable business activity that has a specified outcome (e.g., check customer
credit, provide weather data, consolidate drilling reports)

* [s selt-contained
 May be composed of other services

e |s a “black box” to consumers of the service

https://web.archive.org/web/20160819141303/http://opengroup.org/soa/source-book/soa/soa.htm

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo /0

Web architectures, patterns, and styles

* \Web services are usually defined over HT TP protocol

« SOAP (Simple Object Access Protocol)

* (Operation based protocol (on HTTP) to implement web services (XML as format)

 REST (Representational State Transfer)

 Resource based architectural style to implement web services over HIT
connection protocol)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

2 (or another

77

Micro Service Architectures

* Are an extreme interpretation of service based architectures.
 Have smaller grained services and interfaces.

* Provide independent and lightweight deployment.

* Allow flexible management (e.qg. replicas).

 Based on a clear service ownership model
(team responsible for all stages of dev&ops).

* |solated persistent state (sometimes bad).

https://martinfowler.com/microservices/

Internet Applications Design and Implementation, NOVA SST, © 2015, Joédo Costa Seco, Jacome Cunha, Jodo Leitéo /8

Amazon's APl Mandate (by Jeft Bezos, 2002)

* All teams will henceforth expose their data and functionality through service interfaces.

 Jeams must communicate with each other through these interfaces.

e There will be no other form of Ir
NO direct reads of another tearnr

ter-process communication allowed: no direct linking,
S data store, no shared-memory model, no back-doors

whatsoever. The only communication allowed is via service interface calls over the

network.

e |t doesn't matter what technology you use.

e All service interfaces, wi

externalizeable. That is-

interface to developers

thout exception, must be designed from the ground up to be
0 say, the team must plan and design to be able to expose the
N the outside wor

d. No exceptions.

 The mandate closed with: Anyone who doesn’t do this will be fired. Thank you; have a

nice day!

Internet Applications Design and Implementation, NOVA SST, © 2015, Joédo Costa Seco, Jacome Cunha, Jodo Leitéo

79

The Art, Science, and Engineering of Programming

O Upcoming Submission Deadline: October 1, 2021

Robust Contract Evolution in a TypeSafe
MicroServices Architecture

Jodo Costa Seco', Paulo Ferreira?, Hugo Lourenco®, Carla Ferreira“, and Lucio Ferrao®
The Art, Science, and Engineering of Programming, 2020, Vol. 4, Issue 3, Article 10

Submission date: 2019-10-01

Publication date: 2020-02-17

DOI: https://doi.org/10.22152/programming-journal.org/2020/4/10 »
Full text: PDF »

Abstract

Microservices architectures allow for short deployment cycles and immediate effects but offer no safety mechanisms
when service contracts need to be changed. Maintaining the soundness of microservice architectures is an error-prone
task that is only accessible to the most disciplined development teams.

We present a microservice management system that statically verifies service interfaces and supports the seamless
evolution of compatible interfaces. We define a compatibility relation that captures real evolution patterns and embodies
known good practices on the evolution of interfaces. Namely, we allow for the addition, removal, and renaming of data
fields of a producer module without breaking or needing to upgrade consumer services. The evolution of interfaces is
supported by runtime generated proxy components that dynamically adapt data exchanged between services to match
with the statically checked service code.

The model was instantiated in a core language whose semantics is defined by a labeled transition system and a type
system that prevents breaking changes from being deployed. Standard soundness results for the core language entail the
existence of adapters, hence the absence of adaptation errors and the correctness of the management model. This
adaptive approach allows for gradual deployment of modules, without halting the whole system and avoiding losing or
misinterpreting data exchanged between system nodes. Experimental data shows that an average of 69% of deployments
that would require adaptation and recompilation are safe under our approach.

1. joao.seco@fct.unl.pt, Universidade NOVA de Lisboa, Portugal

2. paulo.ferreira@outsystems.com, OutSystems, Portugal

3. hugo.lourenco@outsystems.com, OutSystems, Portugal

4. carla.ferreira@fct.unl.pt, Universidade NOVA de Lisboa, Portugal

5. lucio.ferrao@outsystems.com, OutSystems, Portugal

The Art, Science, and Engineering of Programming / ISSN 2473-7321 DOI 10.22152/programming-journal.org » © 2016-2021 AOSA »

The Journal

About

Purpose and Operation

Boards
Awards
Publisher
Volumes

Issues

Volume 6, Issue 1
Volume 5, Issue 3
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 3
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Essays
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 3
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 2
Volume 1, Issue 1

For Authors

Call for Papers
Timeline
Submissions
Copyright

Article feed (atom)
Article feed (RSS)

AOSA

MSc Topic on making micro-services better!

MSc Thesis 3 - Contract Evolution in a Microservices Architecture

Context

Microservice architectures allow for short deployment cycles and immediate effects but offer no
safety mechanisms for service contracts when they need to be changed. Maintaining the
soundness of microservice architectures is an error-prone task that is only accessible to the
most disciplined development teams. The strategy to evolve a producer service without
disrupting its consumers is often to maintain multiple versions of the same interface and dealing
with an explicitly managed handoff period and its inherent disadvantages.

In [1] the authors present a microservice management system that statically verifies service
interface signatures against their references and supports the seamless evolution of compatible
interfaces. This work defines a compatibility relation on types that captures real evolution
patterns and embodies known good practices on the evolution of interfaces. Namely, it allows
for the addition, removal, and renaming of data fields of a producer module without breaking or
needing to upgrade consumer services. The evolution of interfaces is supported by runtime
generated proxy components that dynamically adapt data exchanged between services to

match with the statically checked service code.

Goal

The work proposed in [1] presents a theoretical work that addresses the contract (or API)
evolution of microservices. The goal of this master thesis is to develop a distributed tool that
checks and maintains compatibility between different services of a system. For compatible
contract evolutions, the tool should create a lightweight proxy that automatically adapts services
at runtime, which frees up the programmer from having to manually adapt either the existing
microservices or the new one. The tool would advance current industrial practices provided by
frameworks such as Protobuf, Thrift, and Avro. These tools support data schema evolution, but

their support is more restricted and without the guarantees given by the approach formalised in

[1].

[1] J. Costa Seco, P. Ferreira, H. Lourenco, C. Ferreira, and L. Ferrdao. Robust Contract
Evolution in a TypeSafe MicroServices Architecture, The Art, Science, and Engineering of
Programming 4 (3).

Supervision: Carla Ferreira, Jodo Costa Seco

80

