Internet Applications Design and Implementation
(Lecture 3 - Server side programming, RESTful APIs)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY




Outline

The architectural style REST to instantiate webservices

Specifying webservices with OpenAPl and Spring

Richardson Maturity Model

Server Side Patterns
* Model View Controller

* Dependency Injection

e Builder

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

94



Internet Applications Design and Implementation
(Lecture 3, Part 1 - Software Architecture - RESTful applications)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY



Restful interface design (Recap)

Follows an architectural style (convention)

* Architectural style that promotes a simpler and more efficient way of providing and connecting web
services. Built on top of basic HTTP

Promotes the decoupling from Data-centric server side applications and client user-
centric applications

Implementations provide (convenient) flavours
» Web-service style pure JSON/XML Data
* Complete/partial HTML view responses

* Javascript code responses (e.g. Rails AJAX responses)

Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)".
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
University of California, Irvine

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

96



REST - Representational State Transfer

e Resource Based
* Representation

e Uniform Interface
o Stateless

« Cacheable

» Client-Server

e Layered System

e Code on Demand (optional)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

97



Representational State Transfer

* Resource Based
* vs Action Based
* Nouns and not verbs to identify data in the system
 |dentified (represented) by URI
« Aliasing is admissible
* Representation
e Uniform Interface
« Stateless
« Cacheable
» Client-Server

e Layered System

» Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

98



Representational State Transfer

e Resource Based

Representation

» JSON or XML representation of the state of a given resource transferred between client and server at a
given verb in a given URL.

* Well identified interface (the information retrieved at an URL — the type)

Uniform Interface

Stateless

Cacheable

Client-Server

Layered System

Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

99



Representational State Transfer

* Resource Based
» Representation

» Uniform Interface
» standard HTTP verbs (GET, PUT, POST, DELETE)
» standard HTTP response (status code, info in the response body)
» Uniform structure of URIs with a name, identifying the resource

» References inside responses must be complete.
« Stateless
« Cacheable
» Client-Server
e Layered System

» Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 100



Representational State Transfer

Resource Based

Representation

Uniform Interface

Stateless
» Server does not hold session state

 Messages are self contained

Cacheable

Client-Server

Layered System

e Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 101



Representational State Transfer

Resource Based

Representation

Uniform Interface

Stateless

Cacheable

* Responses can be tagged as cacheable (in the server)

e (also) Bookmarkable

Layered System

e Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 102



Representational State Transfer

e Resource Based
* Representation

e Uniform Interface
o Stateless

« Cacheable

e Layered System

 Establishes an APl between a client and a “database”

Code on Demand (not talking about it)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 103



EXAMPLES

@3 6. Real REST Examples

Here's a very partial list of service providers that use a REST API. Note that some of
them also support a WSDL (Web Services) API, in addition, so you can pick which to
use; but in most cases, when both alternatives are available, REST calls are easier to
create, the results are easier to parse and use, and it's also less resource-heavy on your
system.

So without further ado, some REST services:

o The Google Glass API, known as "Mirror API", is a pure REST API. Here is an
excellent video talk about this API. (The actual API discussion starts after 16
minutes or so.)

o Twitter has a REST API (in fact, this was their original API and, so far as I can
tell, it's still the main API used by Twitter application developers),

o Flickr,

« Amazon.com offer several REST services, e.g., for their S3 storage solution,

o Atom is a RESTful alternative to RSS,

o Tesla Model S uses an (undocumented) REST API between the car systems and
its Android/iOS apps.

in ... http://rest.elkstein.org/2008/02/real-rest-examples.html

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, JAcome Cunha, Jodo Leitdo 104



Mirror API - Google Glasses

Contacts

For Contacts Resource details, see the resource representation page.

Method HTTP request Description

URIs relative to https://www.googleapis.com/mirror/v1, unless otherwise noted

delete DELETE /contacts/id Deletes a contact.

get GET /contacts/id Gets a single contact by ID.

insert POST /contacts Inserts a new contact.

list GET /contacts Retrieves a list of contacts for the authenticated user.

patch PATCH /contacts/id Updates a contact in place. This method supports patch semantics.
update PUT /contacts/id Updates a contact in place.

in ... https://developers.gooale.com/glass/v1/reference

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 105



Mirror API - Google Glasses

Timeline

For Timeline Resource details, see the resource representation page.

Method HTTP request Description

URIs relative to https://www.googleapis.com/mirror/v1, unless otherwise noted

delete DELETE /timeline/id Deletes a timeline item.
get GET /timeline/id Gets a single timeline item by ID.
insert POST Inserts a new item into the timeline.

https://www.googleapis.
com/upload/mirror/v1/timeline
and

POST /timeline

list GET /timeline Retrieves a list of timeline items for the authenticated user.

patch PATCH /timeline/id Updates a timeline item in place. This method supports
patch semantics.

update PUT Updates a timeline item in place.
https://www.googleapis.
com/upload/mirror/v1/timeline/id
and
PUT /timeline/id

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 106



Mirror API - Google Glasses

Timeline.attachments

For Timeline.attachments Resource details, see the resource representation page.

Method HTTP request Description

URIs relative to https://www.googleapis.com/mirror/v1, unless otherwise noted

delete DELETE /timeline/itemId/attachments/attachmentId Deletes an attachment from a timeline item.

get GET /timeline/itemId/attachments/attachmentId Retrieves an attachment on a timeline item by item
ID and attachment ID.

insert POST Adds a new attachment to a timeline item.
https://www.googleapis.
com/upload/mirror/v1/timeline/itemId/attachments

list GET /timeline/itemId/attachments Returns a list of attachments for a timeline item.

in ... https://developers.gooale.com/glass/v1/reference

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 107



Tesla API

Tesla JSON API (Unofficial) GitHub Tesla

Introduction

Remote Start

Authentication

Vehicles POST

/api/1l/vehicles/{id}/command/remote_start_drive

State
Commands
Parameters
Remote Start password edisonsux The
Response

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco,

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Enables keyless driving. There is a two minute window after issuing the command to start driving th¢

- request:
method: post

¥ master ~  tesla-api [ spec [ cassettes |

e timdorr Handle an invalid passcode

O 0D oD DO DD DO

client-login-mfa-invalid.yml
client-login-mfa.yml

client-login.yml

client-refresh.yml
client-vehicles.yml
vehicle-activate_speed_limityml
vehicle-auto_conditioning_start.yml
vehicle-auto_conditioning_stop.yml

vehicle-cancel_software_update.yml

Handle an invalid passcode
Add MFA detection/support to login
Update specs and cassettes for new
Update specs and cassettes for new
Update specs.
Revamp Client.
Test the remaining action endpoints.
Test the remaining action endpoints.
Revamp Client.

g charging an

g charging an

uri: https://owner-api.teslamotors.com/api/1/vehicles/1514029006966957156/command/actuate_trunk

body:
encoding: UTF-8
string: which_trunk=front
headers:
Authorization:
— Bearer <TESLA_ACCESS_TOKEN>
response:
status:
code: 200
message: OK
headers:
Server:
- nginx
Date:
- Sun, 05 Aug 2018 17:04:59 GMT
Content-Type:
- application/json; charset=utf-8

g charging an
g charging an
g charging an
g charging an
le state calls.

g charging an

le state calls.



RESTful design

* Resource = object or representation of something
» Collection = a set of resources
* URI = a path identifying resources and allowing actions on them

* URL methods represents standardised actions

GET = request resources

POST = create resources

PUT = update or create resources

DELETE = deletes resources

« HTTP Response codes = operation results
20x Ok

3xx Redirection (not modified)

400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found

5xx Server Error

« Searching, sorting, filtering and pagination obtained by query string parameters

Text Based Data format (JSON, or XML)

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7¢c9

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 109



Example

« Application to manage contacts of partner companies (e.g. for security
clearance in events)

* Resources
 Companies (name, address, email, list of contacts (employees))

» Contact/Employee (name, email, job, company)

e Operations (CRUD)

e List, add, update, and delete resources

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 110



Partner companies

GET /companies - List all the companies
GET /companies?search=<criteria> - List all the companies that contain the substring <criteria>

POST /companies - Create a company described in the payload. The request body must include all the necessary
attributes.

GET /companies/{id} - Shows the company with identifier {id}

PUT /companies/{id} - Updates the company with {id} having values in the payload. The updatable items may vary
(name, email, etc.)

DELETE /companies/{id} - Removes the company with {id}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 111



Partner contacts

» GET /contacts - List all the contacts

« GET /contacts?search=<criteria> - List all the contacts that contain the substring <criteria>

« GET /contacts/{id} - Shows the contact with identifier {id}

« PUT /contacts/{id} - Updates the contact with {id} having values in the payload. The updatable items may vary
(name, email, etc.)

« DELETE /contacts/{id} - Removes the contact with {id}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 112



Partner contacts of companies

« GET /companies/{id}/contacts - List all the contacts of a company

« GET /companies/{id}/contacts?search=<criteria> - List all the contacts of a company that contain the
substring <criteria>

 POST /companies/{id}/contacts - Create a contact of company {id} described in the payload. The request body
must include all the necessary attributes.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 113



THE RICHARDSON MATURITY MODEL

LEVEL 2: INTERACTION WITH URI

HTTP RESOURCES USING DIFFERENT
HTTP VERBS

U RI LEVEL 1: MULTIPLE URI BASED
RESOURCES AND SINGLE VERBS

- SWAMP_

LEVEL 3: HYPERTEXT AS THE
ENGINE OF APPLICATION
STATE (HATEOAS)

HYPERMEDIA

APl MATURITY

LEVEL O: PLAIN OLD XML
(POX)

114



Example: Contacts in a Spring Controller

@RestController
@RequestMapping("/people™)
public class PeopleController {

@Autowired
PeopleRepository people;

@Autowired
PetRepository pets;

@GetMapping("")
Iterable<Person> getAllPersons(@RequestParam(required = false) String search)

if( search == null )
return people.findA11Q);
else
return people.searchByName(search);

}

@PostMapping("")

void addNewPerson(@RequestBody Person p) {
p.setId(@);
people.save(p);

}

@GetMapping("{id}")

Optional<Person> getOne(@PathVariable long id) {
return people.findById(id);

1

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 115



JAX-RS: A standard for API declaration

* A lightweight specification @Path ("/notifications")
. . public class NotificationsResource {
method with (Java) annotations eGET

@Path ( H/pingn )
public Response ping() {

() |mp|emented by RESTEasy and return Response.ok () .entity("Service online") .build();

}
Jersey .

@Path ("/get/{id}")

° S|m||ar to Sp”ng annotations @Produces (MediaType .APPLICATION JSON)
public Response getNotification (@lPathParam("id") int id) {

return Response.ok()
1A i 1 .entity(new Notification(id, "john", "test notification"))

» Official Java Specification enty (e
}

°

//icp.org/en/jsr/detail?id=339 N

@Path ("/post/")

@Consumes (MediaType.APPLICATION JSON)

@Produces (MediaType.APPLICATION JSON)

public Response postNotification(Notification notification) {
return Response.status (201) .entity(notification) .build()

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 116



Spring Example

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, JAcome Cunha, Jo&o Leitdo




Kotlin to the rescue

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, JAcome Cunha, Jo&o Leitdo



Kotlin

e Language and idioms

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao



Internet Applications Design and Implementation

2020 - 2021
(Lecture 3, Part 2 - Software Architecture - OpenAPI)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
a0 SCIENCE & TECHNOLOGY




Swagger/OpenAP|

Specification language for REST APIs (Yaml or JSON)

Provides online (reflective) information on service(s)
e Paths and operations (GET /companies, POST /employees)
* Input and output parameters for each operation (samples)
* Authentication methods

e (Contact information, license, terms of use and other information.

Design, implementation and validation tools

Editor, Ul, Codegen, Spring Annotations

Extensions to include more information about contracts

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 118



Swagger/OpenAPI - Yam!

 General information about the API

swagger: "2.0"
info:
description: "This is a sample directory of partner companies."
version: "1.0.0"
title: "Partner Companies"
host: "partners.swagger.io"
basePath: "/"
tags:
- name: "companies"
description: "Everything about your partner companies"
externalDocs:
description: "Find out more"
url: "http://swagger.io"
- name: "contacts"
description: "Know all about your partners employees”
schemes:
- "https"
_ uhttpn
paths:

definitions:
externalDocs:

description: "Find out more about Swagger"
url: "http://swagger.io”

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

119



Swagger/OpenAPI - Yam!

e Specific information about each path/operation available

paths:
/companies:
get:
tags:
- "companies"
summary: "Get the list of all companies”
description: ""
operationId: "getCompanies™
produces:
- "application/json"
parameters:
- in: "query"
hame: "search"
description: "Filter companies by name, description, or address"
type: "string"
required: false
responses:
200:
description: "successful operation"
schema:
type: "array"
items:

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 120



Swagger/OpenAPI - Yam!

e Specific information about each path/operation available

post:
tags:
- "companies"
summary: "Add a new partner company to the collection"
description: ""
operationId: "addCompany"
consumes:
- "application/json"
parameters:
- in: "body"
name: "company"
description: "Company object that needs to be added to the collection”
required: true
schema:
$ref: "#/definitions/Company"
responses:
200:
description: "Company added"
405:
description: "Invalid input"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 121



Swagger/OpenAPI - Yam!

e Specific information about each path/operation available

/companies/{id}:
get:
tags:
- "companies"
summary: "Gets an existing company with {id} as identifier"
description: "Gets an existing company with {id} as identifier"
operationId: "getCompany"
parameters:
- in: "path"
name: "id"
description: "The identifier of the company to be updated"
required: true
type: "integer"
format: "into4"
responses:
200:
description: "The company data"
schema:
$ref: "#/definitions/Company"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 122



Swagger/OpenAPI - Yam!

» Specific information about each path/operation available

put:
tags:
- "companies"
summary: "Update an existing company with {id} as identifier"
description: "Update an existing company with {id} as identifier"
operationId: "updateCompany"
consumes:
- "application/json"
parameters:
- in: "path"
name: "id"
description: "The identifier of the company to be updated"
required: true
type: "integer"
format: "int64"
- in: "body"
name: "company"
description: "Company object that needs to be updated in the collection”
required: true
schema:
$ref: "#/definitions/Company"
responses:
200:
description: "Updated company"
400:
description: "Invalid ID supplied"”
404:
description: "Company not found"
405:
description: "Validation exception”

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 123



Swagger/OpenAPI - Yam!

» Specific information about datatypes

definitions:

Company:
type: "object"
required:
- "name"
- "address"
- "email"
properties:
id:
type: "integer"
format: "int64"
name:
type: "string"
example: "ecma"
address:
type: "string"
example: "Long Street"
email:
type: "string"
example: "info@acme.com"
employees:
type: "array"
items:
$ref: "#/definitions/Employee"

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

124



Generated API code (in Java)

@Api(value = "companies", description = "the companies API")
public interface CompaniesApi {

nn

@ApiOperation(value = "Add a new partner company to the collection"”, nickname = "addCompany", notes = "", tags={ "company", })
@ApiResponses(value = { @ApiResponse(code = 405, message = "Invalid input") })
@RequestMapping(value = "/companies"”,
produces = { "application/json" },
consumes = { "application/json" },
method = RequestMethod.POST)
ResponseEntity<Void> addCompany(@ApiParam(value = "Company object that needs to be added to the collection" ,required=true ) @Valid @RequestBody Company company);

@ApiOperation(value = "Get the list of all companies", nickname = "getCompanies", notes = "", response = Company.class, responseContainer = "List", tags={ "company", })
@ApiResponses(value = { @ApiResponse(code = 200, message = "successful operation", response = Company.class, responseContainer = "List") })
@RequestMapping(value = "/companies",

produces = { "application/json" },

consumes = { "application/json" },

method = RequestMethod.GET)

ResponseEntity<List<Company>> getCompanies(@ApiParam(value = "Filter companies by name, description, or address") @Valid @RequestParam(value = "search", required = false) String
search);
@ApiOperation(value = "Update an existing company", nickname = "updateCompany", notes = "", tags={ "company", })

@ApiResponses(value = { @ApiResponse(code = 400, message = "Invalid ID supplied"),

@ApiResponse(code = 404, message = "Company not found"),
@ApiResponse(code = 405, message = "Validation exception") })
@RequestMapping(value = "/companies",

produces = { "application/json" },
consumes = { "application/json" },
method = RequestMethod.PUT)
ResponseEntity<Void> updateCompany(@ApiParam(value = "Company object that needs to be updated in the collection" ,required=true ) @Valid @RequestBody Company company);

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 125



Generated Model Code

public class Company  {
@JsonProperty("id")
private Long id = null;

@JsonProperty("name")
private String name = null;

@JsonProperty("address")
private String address = null;

@JsonProperty("email™)
private String email = null;

@JsonProperty("employees")

@Valid
private List<Employee> employees = null;

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 126



Online information about AP|

Internet Applications Design and Implen

¢} swagger

Partner Companies

This is a sample directory of partner companies.

company

cl3@ /companies

Response Class (Status 200)
successful operation

Mode! Example Value

"address": '"Long Street",
"email": "info@acme.com",
"employees": [
{
"company": {
"address": "Long Street",
"email": "info@acme.com",
"employees": [

Response Content Type application/json

Show/Hide

default (/api-docs) |

Explore

List Operations = Expand Operations

Get the list of all companies

Parameters
Parameter Value Description Parameter Type Data Type
search \ | Filter companies by name, query string

description, or address

127



Online information about AP|

o538 /companies

Add a new partner company to the collection

Parameters
Parameter Value Description ?arameter Data Type
ype
company (required) Company object that body Model Example Value
needs to be added to the
collection {
"address": '"Long Street",
"email": "info@acme.com",
. "employees": [
{
Parameter content type: application/json “company”: {},
"email": "john@acme.com",
"id": o,
"jobs": "boss",
"name": "John"
’ y
Response Messages
HTTP Status Code Reason Response Model Headers
200 OK
201 Created
401 Unauthorized
403 Forbidden
404 Not Found
405 Invalid input
Try it out!

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, JAcome Cunha, Jodo Leitdo

128



Machine readable specification

@RestController

@RequestMapping("/product")

@Api(value="onlinestore", description="Operations pertaining to products in Online Store")
public class ProductController {

private ProductService productService;
@Autowired

public void setProductService(ProductService productService) {
this.productService = productService;

}

@ApiOperation(value = "View a list of available products", response = Iterable.class)

@ApiResponses(value = {
@ApiResponse(code = 200, message = "Successfully retrieved list"),
@ApiResponse(code = 401, message = "You are not authorized to view the resource"),
@ApiResponse(code = 403, message = "Accessing the resource you were trying to reach is forbidden"),
@ApiResponse(code = 404, message = "The resource you were trying to reach is not found")

}

)

@RequestMapping(value = "/list", method= RequestMethod.GET, produces = "application/json")

public Iterable<Product> list(Model model){
Iterable<Product> productList = productService.listAllProducts();
return productList;

}
@ApiOperation(value = "Search a product with an ID",response = Product.class)
@RequestMapping(value = "/show/{id}", method= RequestMethod.GET, produces = "application/json")

public Product showProduct (@PathVariable Integer id, Model model) {
Product product = productService.getProductById(id);
Internet Applicatio return product;T © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 129



Machine readable specification

@ Swagger Ul X

& & ‘ ® localhost:8080/swagger-ui.html#!/product-controller/listUsingGET

product-controller : Operations pertaining to products in Online Store

/product/add

/product/delete/{id}

/product/list

Response Class (Status 200)
Successfully retrieved list

Show/Hide

Model Example Value

{3

Response Content Type | application/json ¥

Response Messages

List Operations = Expand Operations

Add a product

Delete a product

View a list of available products

trying to reach is forbidden

Internet Applications Design and Impler] isnot found

HTTP Status Code  Reason Response Model Headers
401 You are not authorized to view the

resource
403 Accessing the resource you were

hitBs://springffarigwork. glrt/sprg-boot-restful-api-documentation-with-swagger-2/

130



Machine readable specification

@Entity
public class Product {
@Id

@GeneratedValue(strategy = GenerationType.AUTO)

@ApiModelProperty(notes = "The
private Integer id;

@vVersion
@ApiModelProperty(notes = "The
private Integer version;
@ApiModelProperty(notes = "The
private String productId;
@ApiModelProperty(notes = "The
private String description;
@ApiModelProperty(notes = "The
private String imageUrl;
@ApiModelProperty(notes = "The
private BigDecimal price;

database generated product ID")

auto-generated version of the product")
application-specific product ID")
product description")

image URL of the product")

price of the product", required = true)

Internet Applications Design and Implem@ggagoﬁ,:d&gggq %%@{Uc%%osﬁbsggna!osng Eiqufgg)?;[igoeStfu |_api_dOCUmentation_With_Swagger_2/

131



Machine readable specification

® Swagger Ul X

& (& ‘ @ localhost:8080/swagger-ui.html#!/product-controller/showProductUsingGET

¢

/product/show/{id}

Response Class (Status 200)
OK

Model

Product {
description (string, optional): The product description,
id (integer, optional): The database generated product ID,
imageUrl (string, optional): The image URL of the product,
price (number): The price of the product,
productld (string, optional): The application-specific product ID,
version (integer, optional): The auto-generated version of the product

Search a product with an ID

Internet Applications Design and Implem}’e];;[ago%:d&/wggq 8%@{0(%%%&589:%!53!(%@ Eiuq}%,_ge%?)Q;[Egc?Stfu |-api—dOCUmentation-with—swagger—2/

132



SN
e

Internet App
Design and Imp

ications
ementation

2020 - 2021
(Lab class 2)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

Eduardo Geraldo (e.geraldo@campus.fct.unl.pt)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY



Lab Class 2&3
Swagger/Rest in Spring and Kotlin



Internet Applications Design and Implementation
(Lecture 3 - Server side programming, Data Sources)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY




Internet Applications Design and Implementation
2020 - 2021

(Lecture 3 - Part 3 - RESTful interfaces in practice)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
. SCIENCE & TECHNOLOGY




RESTful design

* Resource = object or representation of something
» Collection = a set of resources
* URI = a path identifying resources and allowing actions on them

* URL methods represents standardised actions

GET = request resources

POST = create resources

PUT = update or create resources

DELETE = deletes resources
« HTTP Response codes = operation results
+ 20x Ok
* 3xx Redirection (not modified)
* 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found
* 5xx Server Error
« Searching, sorting, filtering and pagination obtained by query string parameters

Text Based Data format (JSON, or XML)

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7¢c9

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 134



THE RICHARDSON MATURITY MODEL

LEVEL 3: HYPERTEXT AS THE
ENGINE OF APPLICATION
STATE (HATEOAS)

LEVEL 2: INTERACTION WITH URI

HTTP RESOURCES USING DIFFERENT
HTTP VERBS

URI LEVEL 1: MULTIPLE URI BASED
RESOURCES AND SINGLE VERBS

-~ SWAMP_

https://martinfowler.com/articles/richardsonMaturityModel.html
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/

HYPERMEDIA

APl MATURITY

LEVEL O: PLAIN OLD XML
(POX)

135



Richardson Maturity Model @

TN
Glory of REST j

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

https://martinfowler.com/articles/richardsonMaturityModel.html
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, J&come Cunha, Jodo Leitdo 136




The Richardson Maturity Model - Level O @

« POX Swamp

* To send an XML/JSON that contains everything: operation, arguments, options

<openSlotList>
POST /appointmentService HTTP/1.1 <slot start = "1400" end = "1450">
[various other headers] <doctor id = "mjones"/>
</slot>
<openSlotRequest date = "2010-01-04" doctor = "mjones"/> <slot start = "1600" end = "1650">
<doctor id = "mjones"/>
</slot>
</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 137



The Richardson Maturity Model - Level O

« POX Swamp

* To send an XML/JSON that contains everything: operation, arguments, options

POST /appointmentService HTTP/1.1
[various other headers]

<appointmentRequest>
<slot doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>

_ HTTP/1.1 200 OK
</appointmentRequest>

[various headers]

<appointmentRequestFailure>
<slot doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>
<reason>Slot not available</reason>
</appointmentRequestFailure>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitao 138



The Richardson Maturity Model - Level 1

* Multiple URI Based Resources and Single verbs

HTTP/1.1 200 OK

POST /doctors/mjones HTTP/1.1 ,
[various headers]

[various other headers]

<openSlotRequest date = "2010-01-04"/> <openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
</openSlotList>
POST /slots/1234 HTTP/1.1 HTTP/1.1 200 OK
[various other headers] [various headers]
<appointmentRequest> <appointment>
<patient id = "jsmith"/> <slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
</appointmentRequest> <patient id = "jsmith"/>
</appointment>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 139



The Richardson Maturity Model - Level 1

* Multiple URI Based Resources and Single verbs

@Controller @RequestMapping(value =

||/pets|| )

class PetController @Autowired constructor (val db: MongoDB) {

@RequestMapping(value =

public fun add(@RequestParam("ownerId") ownerIdParam: String, model: Model): String {

db.withSession {

val owner = Owners.find { id.equal(Id(ownerIdParam)) }.single()

"/add",

method = arrayOf(RequestMethod.GET))

model.addAttribute("owner", owner)

val petTypes = PetTypes.find().toList()

model.addAttribute("petTypes", petTypes)

by

return "pets/add"

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, JAcome Cunha, Jo&o Leitdo

140



The Richardson Maturity Model - Level 2

 Interaction with URI resources using different HTTP verbs

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1
Host: royalhope.nhs.uk

HTTP/1.1 200 OK
[various headers]

<openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>

</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 141



The Richardson Maturity Model - Level 2

 Interaction with URI resources using different HTTP verbs

POST /slots/1234 HTTP/1.1 HTTP/1.1 201 Created
Location: slots/1234/appointment

[various headers]

[various other headers]

<appointmentRequest>
<patient id = "jsmith"/>
</appointmentRequest>

<appointment>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>

</appointment>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 142



The Richardson Maturity Model - Level 2 @

 Interaction with URI resources using different HTTP verbs

HTTP/1.1 201 Created
Location: slots/1234/appointment
[various headers]

POST /slots/1234 HTTP/1.1

) <appointment>
[various other headers] PP

<slot id = "1234" doctor = "mjones" start = "1400" end = "1450"/>
<patient id = "jsmith"/>

<appointmentRequest> </appointment>

<patient id = "jsmith"/>

</appointmentRequest> HTTP/1.1 409 Conflict

[various headers]

<openSlotList>

<slot id = "5678" doctor = "mjones" start = "1600" end = "1650"/>
</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

143



The Richardson Maturity Model - Level 3

* Hypermedia Controls - HATEOAS

* Resources are interconnected by links in the response, one entry point

GET /doctors/mjones/slots?date=20100104&status=open HTTP/1.1

Host: royalhope.nhs.uk
HTTP/1.1 200 OK

[various headers]

<openSlotList>
<slot id = "1234" doctor = "mjones" start = "1400" end = "1450">
<link rel = "/linkrels/slot/book"
uri = "/slots/1234"/>
</slot>
<slot id = "5678" doctor = "mjones" start = "1600" end = "1650">

<link rel = "/linkrels/slot/book"
uri = "/slots/5678"/>
</slot>
</openSlotList>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

144



REST = Resource state transformation

e The resources that are provided by the APl do not have to map the structure of
the internal system state.

e Provided resources may have a nested structure that results from a relational
structure of several database tables. {“name”"joe”,

“address”: “London, UK”,
“telephone”;”555000222”,
“pets”:[

Client Pet {*name”:*Max”,
name:String | name:String “species”:”Canis lupus familiaris”,
address:String species:String q "age”:3},
telephone:String age:Int {*name”:*Max”,
“species”:”Canis lupus familiaris”,
"age”:3}

I
{“name”,”mary”,
“address”..... }

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

145



