
Internet Applications Design and Implementation

(Lecture 3 - Server side programming, RESTful APIs)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Outline

• The architectural style REST to instantiate webservices

• Specifying webservices with OpenAPI and Spring

• Richardson Maturity Model

• Server Side Patterns

• Model View Controller

• Dependency Injection

• Builder

94

Internet Applications Design and Implementation

(Lecture 3, Part 1 - Software Architecture - RESTful applications)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Restful interface design (Recap)

• Follows an architectural style (convention)

• Architectural style that promotes a simpler and more efficient way of providing and connecting web

services. Built on top of basic HTTP

• Promotes the decoupling from Data-centric server side applications and client user-
centric applications

• Implementations provide (convenient) flavours

• Web-service style pure JSON/XML Data

• Complete/partial HTML view responses

• Javascript code responses (e.g. Rails AJAX responses)

• Fielding, Roy Thomas (2000). "Chapter 5: Representational State Transfer (REST)".
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
University of California, Irvine

96

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

REST - Representational State Transfer

• Resource Based

• Representation

• Uniform Interface

• Stateless

• Cacheable

• Client-Server

• Layered System

• Code on Demand (optional)

97

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• vs Action Based

• Nouns and not verbs to identify data in the system

• Identified (represented) by URI

• Aliasing is admissible

• Representation

• Uniform Interface

• Stateless

• Cacheable

• Client-Server

• Layered System

• Code on Demand (not talking about it)

98

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• Representation

• JSON or XML representation of the state of a given resource transferred between client and server at a
given verb in a given URL.

• Well identified interface (the information retrieved at an URL — the type)

• Uniform Interface

• Stateless

• Cacheable

• Client-Server

• Layered System

• Code on Demand (not talking about it)

99

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• Representation

• Uniform Interface

• standard HTTP verbs (GET, PUT, POST, DELETE)

• standard HTTP response (status code, info in the response body)

• Uniform structure of URIs with a name, identifying the resource

• References inside responses must be complete.

• Stateless

• Cacheable

• Client-Server

• Layered System

• Code on Demand (not talking about it)

100

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• Representation

• Uniform Interface

• Stateless

• Server does not hold session state

• Messages are self contained

• Cacheable

• Client-Server

• Layered System

• Code on Demand (not talking about it)

101

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• Representation

• Uniform Interface

• Stateless

• Cacheable

• Responses can be tagged as cacheable (in the server)

• (also) Bookmarkable

• Layered System

• Code on Demand (not talking about it)

102

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Representational State Transfer

• Resource Based

• Representation

• Uniform Interface

• Stateless

• Cacheable

• Layered System

• Establishes an API between a client and a “database”

• Code on Demand (not talking about it)

103

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

EXAMPLES

104

in … http://rest.elkstein.org/2008/02/real-rest-examples.html

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Mirror API - Google Glasses

105

in … https://developers.google.com/glass/v1/reference/

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Mirror API - Google Glasses

106

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Mirror API - Google Glasses

107

in … https://developers.google.com/glass/v1/reference/

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Tesla API

108

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

RESTful design
• Resource = object or representation of something

• Collection = a set of resources

• URI = a path identifying resources and allowing actions on them

• URL methods represents standardised actions

• GET = request resources

• POST = create resources

• PUT = update or create resources

• DELETE = deletes resources

• HTTP Response codes = operation results

• 20x Ok

• 3xx Redirection (not modified)

• 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found

• 5xx Server Error

• Searching, sorting, filtering and pagination obtained by query string parameters

• Text Based Data format (JSON, or XML)

109

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Example

• Application to manage contacts of partner companies (e.g. for security
clearance in events)

• Resources

• Companies (name, address, email, list of contacts (employees))

• Contact/Employee (name, email, job, company)

• Operations (CRUD)

• List, add, update, and delete resources

110

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Partner companies
• GET /companies - List all the companies

• GET /companies?search=<criteria> - List all the companies that contain the substring <criteria>

• POST /companies - Create a company described in the payload. The request body must include all the necessary
attributes.

• GET /companies/{id} - Shows the company with identifier {id}

• PUT /companies/{id} - Updates the company with {id} having values in the payload. The updatable items may vary
(name, email, etc.)

• DELETE /companies/{id} - Removes the company with {id}

111

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Partner contacts
• GET /contacts - List all the contacts

• GET /contacts?search=<criteria> - List all the contacts that contain the substring <criteria>

• POST /contacts - Create a contact described in the payload. The request body must include all the necessary
attributes.

• GET /contacts/{id} - Shows the contact with identifier {id}

• PUT /contacts/{id} - Updates the contact with {id} having values in the payload. The updatable items may vary
(name, email, etc.)

• DELETE /contacts/{id} - Removes the contact with {id}

112

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Partner contacts of companies
• GET /companies/{id}/contacts - List all the contacts of a company

• GET /companies/{id}/contacts?search=<criteria> - List all the contacts of a company that contain the
substring <criteria>

• POST /companies/{id}/contacts - Create a contact of company {id} described in the payload. The request body
must include all the necessary attributes.

• GET /companies/{id}/contacts/{cid} - Shows the contact of company {id} with identifier {cid}

• PUT /companies/{id}/contacts/{cid} - Updates the contact with {cid} of company {id} having values in the
payload. The updatable items may vary (name, email, etc.)

• DELETE /companies/{id}/contacts/{cid} - Removes the contact with {id}

113

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão 114

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Example: Contacts in a Spring Controller

115

@RestController

@RequestMapping("/people")

public class PeopleController {

 @Autowired

 PeopleRepository people;

 @Autowired

 PetRepository pets;

 @GetMapping("")

 Iterable<Person> getAllPersons(@RequestParam(required = false) String search)
{

 if(search == null)

 return people.findAll();

 else

 return people.searchByName(search);

 }

 @PostMapping("")

 void addNewPerson(@RequestBody Person p) {

 p.setId(0);

 people.save(p);

 }

 @GetMapping("{id}")

 Optional<Person> getOne(@PathVariable long id) {

 return people.findById(id);

 }

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JAX-RS: A standard for API declaration

• A lightweight specification
method with (Java) annotations

• Implemented by RESTEasy and
Jersey

• Similar to Spring annotations

• Official Java Specification

• //jcp.org/en/jsr/detail?id=339

116

@Path("/notifications")

public class NotificationsResource {

 @GET

 @Path("/ping")

 public Response ping() {

 return Response.ok().entity("Service online").build();

 }

 @GET

 @Path("/get/{id}")

 @Produces(MediaType.APPLICATION_JSON)

 public Response getNotification(@PathParam("id") int id) {

 return Response.ok()

 .entity(new Notification(id, "john", "test notification"))

 .build();

 }

 @POST

 @Path("/post/")

 @Consumes(MediaType.APPLICATION_JSON)

 @Produces(MediaType.APPLICATION_JSON)

 public Response postNotification(Notification notification) {

 return Response.status(201).entity(notification).build();

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Example

X

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Kotlin to the rescue

X

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Kotlin

• Language and idioms

X

Internet Applications Design and Implementation

2020 - 2021

(Lecture 3, Part 2 - Software Architecture - OpenAPI)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI

• Specification language for REST APIs (Yaml or JSON)

• Provides online (reflective) information on service(s)

• Paths and operations (GET /companies, POST /employees)

• Input and output parameters for each operation (samples)

• Authentication methods

• Contact information, license, terms of use and other information.

• Design, implementation and validation tools

• Editor, UI, Codegen, Spring Annotations

• Extensions to include more information about contracts

118

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• General information about the API

swagger: "2.0"

info:

 description: "This is a sample directory of partner companies."

 version: "1.0.0"

 title: "Partner Companies"

host: "partners.swagger.io"

basePath: "/"

tags:

- name: "companies"

 description: "Everything about your partner companies"

 externalDocs:

 description: "Find out more"

 url: "http://swagger.io"

- name: "contacts"

 description: "Know all about your partners employees"

schemes:

- "https"

- “http"

paths:

 ...

definitions:

 ...

externalDocs:

 description: "Find out more about Swagger"

 url: "http://swagger.io"

119

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• Specific information about each path/operation available

paths:

 /companies:

 get:

 tags:

 - "companies"

 summary: "Get the list of all companies"

 description: ""

 operationId: "getCompanies"

 produces:

 - "application/json"

 parameters:

 - in: "query"

 name: "search"

 description: "Filter companies by name, description, or address"

 type: "string"

 required: false

 responses:

 200:

 description: "successful operation"

 schema:

 type: "array"

 items:

120

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• Specific information about each path/operation available

 post:

 tags:

 - "companies"

 summary: "Add a new partner company to the collection"

 description: ""

 operationId: "addCompany"

 consumes:

 - "application/json"

 parameters:

 - in: "body"

 name: "company"

 description: "Company object that needs to be added to the collection"

 required: true

 schema:

 $ref: "#/definitions/Company"

 responses:

 200:

 description: "Company added"

 405:

 description: "Invalid input"

121

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• Specific information about each path/operation available

 /companies/{id}:

 get:

 tags:

 - "companies"

 summary: "Gets an existing company with {id} as identifier"

 description: "Gets an existing company with {id} as identifier"

 operationId: "getCompany"

 parameters:

 - in: "path"

 name: "id"

 description: "The identifier of the company to be updated"

 required: true

 type: "integer"

 format: "int64"

 responses:

 200:

 description: "The company data"

 schema:

 $ref: "#/definitions/Company"

122

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• Specific information about each path/operation available

 put:

 tags:

 - "companies"

 summary: "Update an existing company with {id} as identifier"

 description: "Update an existing company with {id} as identifier"

 operationId: "updateCompany"

 consumes:

 - "application/json"

 parameters:

 - in: "path"

 name: "id"

 description: "The identifier of the company to be updated"

 required: true

 type: "integer"

 format: "int64"

 - in: "body"

 name: "company"

 description: "Company object that needs to be updated in the collection"

 required: true

 schema:

 $ref: "#/definitions/Company"

 responses:

 200:

 description: "Updated company"

 400:

 description: "Invalid ID supplied"

 404:

 description: "Company not found"

 405:

 description: "Validation exception"

123

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Swagger/OpenAPI - Yaml

• Specific information about datatypes

definitions:

 Company:

 type: "object"

 required:

 - "name"

 - "address"

 - "email"

 properties:

 id:

 type: "integer"

 format: "int64"

 name:

 type: "string"

 example: "ecma"

 address:

 type: "string"

 example: "Long Street"

 email:

 type: "string"

 example: "info@acme.com"

 employees:

 type: "array"

 items:

 $ref: "#/definitions/Employee"

124

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Generated API code (in Java)
@Api(value = "companies", description = "the companies API")

public interface CompaniesApi {

 @ApiOperation(value = "Add a new partner company to the collection", nickname = "addCompany", notes = "", tags={ "company", })

 @ApiResponses(value = { @ApiResponse(code = 405, message = "Invalid input") })

 @RequestMapping(value = "/companies",

 produces = { "application/json" },

 consumes = { "application/json" },

 method = RequestMethod.POST)

 ResponseEntity<Void> addCompany(@ApiParam(value = "Company object that needs to be added to the collection" ,required=true) @Valid @RequestBody Company company);

 @ApiOperation(value = "Get the list of all companies", nickname = "getCompanies", notes = "", response = Company.class, responseContainer = "List", tags={ "company", })

 @ApiResponses(value = { @ApiResponse(code = 200, message = "successful operation", response = Company.class, responseContainer = "List") })

 @RequestMapping(value = "/companies",

 produces = { "application/json" },

 consumes = { "application/json" },

 method = RequestMethod.GET)

 ResponseEntity<List<Company>> getCompanies(@ApiParam(value = "Filter companies by name, description, or address") @Valid @RequestParam(value = "search", required = false) String
search);

 @ApiOperation(value = "Update an existing company", nickname = "updateCompany", notes = "", tags={ "company", })

 @ApiResponses(value = { @ApiResponse(code = 400, message = "Invalid ID supplied"),

 @ApiResponse(code = 404, message = "Company not found"),

 @ApiResponse(code = 405, message = "Validation exception") })

 @RequestMapping(value = "/companies",

 produces = { "application/json" },

 consumes = { "application/json" },

 method = RequestMethod.PUT)

 ResponseEntity<Void> updateCompany(@ApiParam(value = "Company object that needs to be updated in the collection" ,required=true) @Valid @RequestBody Company company);
}

125

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Generated Model Code

public class Company {

 @JsonProperty("id")

 private Long id = null;

 @JsonProperty("name")

 private String name = null;

 @JsonProperty("address")

 private String address = null;

 @JsonProperty("email")

 private String email = null;

 @JsonProperty("employees")

 @Valid
 private List<Employee> employees = null;

…

126

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Online information about API

127

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Online information about API

128

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Machine readable specification

129

@RestController

@RequestMapping("/product")

@Api(value="onlinestore", description="Operations pertaining to products in Online Store")

public class ProductController {

 private ProductService productService;

 @Autowired

 public void setProductService(ProductService productService) {
 this.productService = productService;
 }

 @ApiOperation(value = "View a list of available products",response = Iterable.class)
 @ApiResponses(value = {
 @ApiResponse(code = 200, message = "Successfully retrieved list"),
 @ApiResponse(code = 401, message = "You are not authorized to view the resource"),
 @ApiResponse(code = 403, message = "Accessing the resource you were trying to reach is forbidden"),
 @ApiResponse(code = 404, message = "The resource you were trying to reach is not found")
 }
)
 @RequestMapping(value = "/list", method= RequestMethod.GET, produces = "application/json")
 public Iterable<Product> list(Model model){
 Iterable<Product> productList = productService.listAllProducts();
 return productList;
 }
 @ApiOperation(value = "Search a product with an ID",response = Product.class)
 @RequestMapping(value = "/show/{id}", method= RequestMethod.GET, produces = "application/json")
 public Product showProduct(@PathVariable Integer id, Model model){
 Product product = productService.getProductById(id);
 return product;
 }

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Machine readable specification

130https://springframework.guru/spring-boot-restful-api-documentation-with-swagger-2/

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Machine readable specification

131https://springframework.guru/spring-boot-restful-api-documentation-with-swagger-2/

@Entity

public class Product {
 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)
 @ApiModelProperty(notes = "The database generated product ID")
 private Integer id;
 @Version

 @ApiModelProperty(notes = "The auto-generated version of the product")
 private Integer version;
 @ApiModelProperty(notes = "The application-specific product ID")
 private String productId;
 @ApiModelProperty(notes = "The product description")
 private String description;
 @ApiModelProperty(notes = "The image URL of the product")
 private String imageUrl;
 @ApiModelProperty(notes = "The price of the product", required = true)
 private BigDecimal price;
…

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Machine readable specification

132https://springframework.guru/spring-boot-restful-api-documentation-with-swagger-2/

Internet Applications
Design and Implementation

2020 - 2021

(Lab class 2)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

Eduardo Geraldo (e.geraldo@campus.fct.unl.pt)

Lab Class 2&3

Swagger/Rest in Spring and Kotlin

Internet Applications Design and Implementation

(Lecture 3 - Server side programming, Data Sources)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation

2020 - 2021

(Lecture 3 - Part 3 - RESTful interfaces in practice)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

RESTful design
• Resource = object or representation of something

• Collection = a set of resources

• URI = a path identifying resources and allowing actions on them

• URL methods represents standardised actions

• GET = request resources

• POST = create resources

• PUT = update or create resources

• DELETE = deletes resources

• HTTP Response codes = operation results

• 20x Ok

• 3xx Redirection (not modified)

• 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found

• 5xx Server Error

• Searching, sorting, filtering and pagination obtained by query string parameters

• Text Based Data format (JSON, or XML)

134

https://hackernoon.com/restful-api-designing-guidelines-the-best-practices-60e1d954e7c9

RECAP

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão 135
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/
https://martinfowler.com/articles/richardsonMaturityModel.html

RECAP

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão 136
http://restcookbook.com/Miscellaneous/richardsonmaturitymodel/
https://martinfowler.com/articles/richardsonMaturityModel.html

Richardson Maturity Model

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 0

• POX Swamp

• To send an XML/JSON that contains everything: operation, arguments, options

137

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 0

• POX Swamp

• To send an XML/JSON that contains everything: operation, arguments, options

138

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 1

• Multiple URI Based Resources and Single verbs

139

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 1

• Multiple URI Based Resources and Single verbs

140

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 2

• Interaction with URI resources using different HTTP verbs

141

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 2

• Interaction with URI resources using different HTTP verbs

142

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 2

• Interaction with URI resources using different HTTP verbs

143

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Richardson Maturity Model - Level 3

• Hypermedia Controls - HATEOAS

• Resources are interconnected by links in the response, one entry point

144

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

REST = Resource state transformation

• The resources that are provided by the API do not have to map the structure of
the internal system state.

• Provided resources may have a nested structure that results from a relational
structure of several database tables.

145

Client
name:String
address:String
telephone:String

Pet
name:String
species:String
age:Int

[{“name”:”joe”,

 “address”: “London, UK”,

 “telephone”:”555000222”,

 “pets”:[

 {“name”:“Max”,

 “species”:”Canis lupus familiaris”,

 ”age”:3},

 {“name”:“Max”,

 “species”:”Canis lupus familiaris”,

 ”age”:3}

]},

 {“name”,”mary”,

 “address”:…. }

