Internet Applications Design and Implementation
(Lecture 6 - on Security)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jo&o Leitdo (jc.leitao@fct.unl.pt),
contributions from Beatriz Moreira, APDC-INV 2017/2018)

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

Software Security (Overview)

e Security is a hot topic in CS in present days!

* Cryptography can only protect data outside of systems, when properly

applied and if there are no “internal” information leaks.

« Security breaches are often caused by internal errors that cause:

system crashes or erroneous behaviour due to unexpected inputs

» Security breaches are often caused by programming mistakes.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 260

Security of Applications (Overview)

* Good engineering practices and correct usage of methods and tools ensures

that all specified data confidentiality rules are properly enforced.

* There are two elective courses in MIEI only about this topic.

» Software Security: fundamental concepts and technologies

* Network and Computer Systems Security: system-level security

e This lecture is about models and frameworks that implement software security.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 261

Outline

Security Concepts Review

Foundations of Computer Security

Security Models

Kotlin and Spring Security

Model-Based Access Control in Spring

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 262

Internet Applications Design and Implementation
(Lecture 6 - Part 1 - Security Concepts)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
£ SCIENCE & TECHNOLOGY

Security of Internet Applications

e Layers of internet application security
* Network Level (network security and system identification)
e System Level (firewalls, VPNs, SSL, DMZ)

« Application Level (our focus)

e Authentication

SECURITY LEVEL 3

e Access control

* Information flow

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 264

The Big Picture - Organisation Industry Standards (ISO 27002)

» Definition of General Security policies
« Organization of information security

e Asset management

« Human resources security

« Physical and environmental security

« Communications and operations management

« Access control (data, operations, and other resources)
-~ . About software
« Acquisition, development, and maintenance of Software Systems

* Incident management

« Compliance with regulations

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 265

Security Policies in Software Systems

e Within an software system:

* “The set of restrictions and properties that specify how a computing system prevents
information and computing resources from being used to violate an organizational security
policy” in Computer Security, Dieter Gollmann 2011

* Policies define who has permission to access or operate on, a given resource.

 Access control lists,

firewall settings,

services that may be run on user devices,

security protocols for protecting network traffic,

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 266

Attacks and Attackers

e Security can be defined and challenged based on the definition of attacks and
attackers. What does an attacker know and what operations can they perform
on a system.

e The correct functioning of a system is based on assumptions on the
environment.

e Attacks are designed to challenge system
assumptions with illegal inputs, causing illegal
states, erroneous behaviour or crashes.

Firefox Bug Bounty
Rewards

2021

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 267

Classic Example: SQL injection

HI, THIS 1S OH, DEAR - DID HE
YOUR SON SCHOOL. | BREAK SOMETHING?
VERE HAVING SOME

COMPUTER TROWBLE. | ™M A WAY

o ﬁm

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~ OH.YES. UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
L TOSANMZE YOUR
DATARASE INPUTS.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

268

Classic Example: SQL injection

User Name: uName = getRequestString('"username") ;
" o M uPass = getRequestString("userpassword") ;
sql = 'SELECT * FROM Users WHERE Name ="'
Password: + uName + '" AND Pass ="' + uPass + '"'
n or llII=II
Result
SELECT * FROM Users WHERE Name ="" or ""="" AND Pass ="" or ""=""

https://www.w3schools.com/sqgl/sqgl_injection.asp
Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 269

Security flaws in software

*)ownAsp

OWASP Top 10 - 2017

The Ten Most Critical Web Application Security Risks

2017
A01:2017-Injection
A02:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration
A07:2017-Cross-Site Scripting (XSS)
A08:2017-Insecure Deserialization

A09:2017-Using Components with Known Vulnerabilities

A10:2017-Insufficient Logging & Monitoring

OWASP Top 10 - 2017

A1:2017-Injection
A2:2017-Broken Authentication

A3:2017-Sensitive Data Exnosure
2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
5 A03:2021-Injection
(New) A04:2021-Insecure Design
A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
= A07:2021-Identification and Authentication Failures
/ {(New) A08:2021-Software and Data Integrity Failures
/ A09:2021-Security Logging and Monitoring Failures*

(New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

@creative
This work is licensed under a commons

https://owasp.org Creative Commons Attribution-ShareAlike 4.0 International License

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jo&o Leitdo

A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

https://www.owasp.org/
270

Security flaws in software

Internet Applications Design and Imp

A01:2021-Broken Access Control moves up from the fifth position; 94% of applications were tested for
some form of broken access control. The 34 Common Weakness Enumerations (CWEs) mapped to Broken
Access Control had more occurrences in applications than any other category.

A02:2021-Cryptographic Failures shifts up one position to #2, previously known as Sensitive Data
Exposure, which was broad symptom rather than a root cause. The renewed focus here is on failures
related to cryptography which often leads to sensitive data exposure or system compromise.
A03:2021-Injection slides down to the third position. 94% of the applications were tested for some form of
injection, and the 33 CWEs mapped into this category have the second most occurrences in applications.
Cross-site Scripting is now part of this category in this edition.

A04:2021-Insecure Design is a new category for 2021, with a focus on risks related to design flaws. If we
genuinely want to “move left” as an industry, it calls for more use of threat modeling, secure design patterns
and principles, and reference architectures.

A05:2021-Security Misconfiguration moves up from #6 in the previous edition; 90% of applications were
tested for some form of misconfiguration. With more shifts into highly configurable software, it’s not
surprising to see this category move up. The former category for XML External Entities (XXE) is now part of
this category.

A06:2021-Vulnerable and Outdated Components was previously titled Using Components with Known
Vulnerabilities and is #2 in the Top 10 community survey, but also had enough data to make the Top 10 via
data analysis. This category moves up from #9 in 2017 and is a known issue that we struggle to test and
assess risk. It is the only category not to have any Common Vulnerability and Exposures (CVEs) mapped
to the included CWEs, so a default exploit and impact weights of 5.0 are factored into their scores.
A07:2021-Identification and Authentication Failures was previously Broken Authentication and is sliding
down from the second position, and now includes CWEs that are more related to identification failures. This
category is still an integral part of the Top 10, but the increased availability of standardized frameworks

trol
ires

uration

tdated Components
Authentication Failures
Integrity Failures

1d Monitoring Failures*
it Forgery (SSRF)*

m.]

org/
271

In a nutshell

Most common attacks are at the application level and can be avoided by
properly using well tested and tested frameworks and well established methods.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 272

Internet Applications Design and Implementation
(Lecture 6 - Part 2 - Foundations)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
a4 SCIENCE & TECHNOLOGY

Foundations of Computer Security

e Fundamental Properties:
» confidentiality - prevention of unauthorised disclosure of information,
 integrity - prevention of unauthorised modification of information,
 availability - prevention of unauthorised withholding of information or resources

e ... more... accountability; non-repudiation; reliability/dependability; ...

“Computer security deals with the prevention and detection of unauthorized actions by users
of a computer system” - Dieter Gollmann,

See also the wikipedia page

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 274

Foundations of Software Security

* Main concepts used in software security
* Principal (the active subject)
* Resourse (the passive object)
« Authentication - the principal provides proof that they are who they say they are
» Authorisation - the principal is trusted to access or perform an operation on a resource

* Delegation - can you operate on behalf of other principal?

» Declassification operations in confidentiality analysis

 Endorsement operations in integrity analysis

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 275

Principal/Authentication

* An authenticated entity (or group) that uses the system
* The active subject on system operations
e Authentication:

* The certification process of determining the identity of an external entity that uses the
system, invokes actions, produces and consumes data.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

276

Resource/Authorisation

e The process of checking what resources a principal is allowed to access and
manipulate, and what operations is it allowed to execute at a given time and
system state (data, parameters, context, etc.).

« Authorisation (to observe or change)
* read, execute, write, append, delete, change access, change ownership, ...

* (Classic access control models
 Access Control Matrix
« Capabilities

 Access Control Lists

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 277

Authorisation and access control models

e Base models

* Access Control Matrix; Capabilities; Access Control Lists

 [ntermediate control structures

« Groups and negative permissions " @ ‘s /@; users

g1 £ groups

M

&1

osicRoIRo

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 278

Authorisation and access control models

e Base models

* Access Control Matrix; Capabilities; Access Control Lists

 [ntermediate control structures

 Role-based access control

Organisation

* Principal \
* Roles

role hierarchy b ¥

. = Role ermission assignment| Permission * 7| operation
* Permissions g = e e
* Qperations poos assugnment Role Activation Constraint
User/Role Constraint|---"~ * *

* Resources Subject Session

=/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 279

Internet Applications Design and Implementation
(Lecture 6 - Part 3 - Security Models)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
£ SCIENCE & TECHNOLOGY

Security Models

« Access Control List

« Capability-based access control

* Role-based access control

* Bell-LaPadula model for confidentiality
» Biba Integrity model for data integrity

* Model-based access control

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 281

Access Control Lists

 ACLs are lists of permissions (identity, operation) attached to objects stored
within the system.

|t must explicitly assign individual identities to operations on resources.

« Spring Security ACL implements ACL on top of explicitly managed database
tables

ACL_CLASS ACL_SID
1D ID
class username
Principal/Role @PostFilter ("hasPermission(filterObject, 'READ')")
List<NoticeMessage> findAll();
ACL_OBJECT_IDENTITY ACL_ENTRY

D D @PostAuthorize("hasPermission(returnObject, 'READ')")
OBJECT_CLASS_'D } ACL_OBJECT_ENTITY NoticeMessage 'f:-l ndById(Integer jd),
OBJECT_IDENTITY_ID ACE_ORDER
Parent_object SID @PreAuthorize("hasPermission(#noticeMessage, 'WRITE')")
Owner_SID MASK NoticeMessage save(@Param("noticeMessage")NoticeMessage noticeMessage);
Entries_INHERITING:boolean GRANTING
) AUDIT_INFO

https://www.baeldung.com/spring-security-acl
Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 282

Capability-based access control

* A decentralised method that provides a scalable approach to access control
* No need for centralised access control lists and mechanisms;

* A capability refers to an object and a set of rights, the user that owns it can

perform the operation described in the capability
 Example: a pair (“/etc/pass”, O_RDWR) gives readwrite access

e Common in micro-service based architectures and loT scenarios

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 283

Capability-based access control

* A capability is transmitted through unforgeable (and ephemeral) tokens

« Capabilities can be explicitly and dynamically managed
» Good support for authorisation and delegation

e To perform an operation on a particular object, the principal has first to

acquire the associated capability via some dynamic authorisation method.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 284

Role-Base Access Control

» Standard approach to authorise users to perform operations in software systems.
* Roles are specified for system related tasks
» Permissions are assigned to specific roles

» Users are dynamically assigned roles
according to their profile/function

Organisation

role hierarchy b <
* Role permission assignment| Permission = Operation
user assignment S 3
B s R A (LT TS Role Activation Constraint
User/Role Constraint|---"~ * -
Subject Session

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 285

Role-Base Access Control

» Standard approach to authorise users to perform operations in software systems.
* Roles are specified for system related tasks
» Permissions are assigned to specific roles

* Users are dynarr
according to thei

Roles can also be combined in hierarchies or lattices

Delegation can be integrated in the general model

Operation

RBAC provides a framework for a verification based on
interceptors and filters

Roles can also be parameterised and depend on actual data.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 286

Bell-LaPadula model - Confidentiality

e Formalises the U.S. Department of Defense multilevel
security policies.

FOP-SECRET

* The security level of a subject is compared to the
classification of the object (and the security compartment
where it is stored)

CONFIDENTIAL

* The access control rules state that:

* A subject cannot read up

PUBLIC

* A subject cannot write down

e 4+ an access control matrix No Write Down
No Read Up

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 287

Information Flow Control - Confidentiality

e The process of ensuring that data is only seen by trusted principals. This
iInvolves assigning a level of trust to data and principals.

 General technique to check it is called information flow control

* Declassification: The process of lowering the level of trust needed to access

a given data item.

var high =1
var low = ... 10 + high ...
var low = 2

if (high>0) low else 3

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

Operating R.S. Gaines
Systems Editor
A Lattice Model of

Secure Information
Flow

Dorothy E. Denning
Purdue University

288

Biba Integrity model - Data Integrity

« Data integrity has three goals:
FTOR-SECREE

* Prevent data modification by unauthorised principals
* Prevent unauthorised data modification by authorised principals

* Maintain internal and external data consistency

e The access control rules state that: CONFIDENTIAL

* A subject cannot read up

PUBLIC

e A subject cannot write down

e 4+ an access control matrix
No Read Down

No Write Up

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 289

Information Flow Control - Data Integrity

e The process of ensuring that data is only provided by trusted principals.

« Also an information flow control property (dual of confidentiality)

 Endorsement: the process of increasing the level of trust o a given data item.

var untrusted =1
var trusted = ...

var trusted = 2
if (untrusted > 0) trusted else 3

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

10 + untrusted ...

Operating R.S. Gaines
Systems Editor

A Lattice Model of
Secure Information

Dor othy E. Dennin g Hybrid Information FCII?)ZeControl for Low-level

Purdue University

Eduardo Geraldo!, José Fragoso Santos?, and Jodo Costa Seco!

1 NOVA LINCS - NOVA University Lisbon, Portugal
2 Instituto Superior Técnico & INESC-ID, Portugal

SNIFFER: Information Flow Aware Test Generation for SNITCH*

Abstract 1 Introduction

Verifying security properties in Software Systems is a cumbersome Testing is the de facto industrial method used for validating soft-
and painful task. Despite sophisticated techniques for detecting ware and detecting programming mistakes

information leaks, as information flow aware static typ sys- Us f t t ly the tre nd for ing ingly larger sy:

tems and runtime ence monitors, the tuldpt real mg codebases, harder to test and mai

code i: tgﬁ ant. Relev: tftsmldth vt'e the

i d e per of critical s ,
mk it almost impos: bl omnallyd sign test cases in a timely

char: t fth tatic analy tools and the impra t 1 eed for
fashion Antomatic test generatios a nromisine alternative for

manv test cases taking cconnt the subtleties of data secnri ity

Model-Based Access Control

e Security conditions are many times hidden in query filters and program
conditions. These policies are very difficult to get right, maintain, and modify.

* Developer-defined roles usually depend on the current state of the application.

(e.g. ModeratorOf(...)). Role-based models usually ignore this and require the
application logic to validate it.

« Example: authorisations usually depend on the state of the target entity
(status == “submitted”)

Type-based Access Control in Data-Centric Systems

uis Caires', . Pérez", Jodo C. , Hugo T. Vieira®, tci a
Lufs Caires?, Jorge A. Pérez!, Jodo C. Seco!, Hugo T. Vieira!, and Liicio Ferrio?

« Capabilities defined by the developer
can extend the standard read/write/delete 1ot Dot o, Pt i et
(not hardwired to the basic o
programming elements) Daoe il o s, st 1 b ppctons i el vt e

crafted security layer, which adds extra complexity and often leads to error prone cod-
ing, easily causing severe security breaches. In this paper, we introduce a programming
language approach for enforcing access control policies to data in data-centric programs
by static typing. Our development is based on the general concept of refinement type,
Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao but extended so as to address realistic and challenging scenarios of permission-based

data carnrity in which naliciee dunamicallv danand an tha datahace ctate and flavihla

91

Model-Based Access Control

U LvioveTus s

a9 United States

a2 Patent Application Publication o) Pub. No.: US 2013/0246995 A1
Ferrio et al. 43) Pub. Date: Sep. 19, 2013

(54) SYSTEMS, METHODS, AND APPARATUS FOR
MODEL-BASED SECURITY CONTROL

Publication Classification

(51) Int.ClL
(75) Inventors: Liicio Emanuel Represas Ferrio, GOGF 9/44 (2006.01)
Lisboa (PT): Joio Ricardo Viegas da GOGF 9/45 (2006.01)

Costa Seco, Cascais (PT); Luis Manuel
Marques da Costa Caires, Lisboa (PT);
Gongalo Filipe Xavier Caleira
Borréga, Alcabideche (PT); Anténio
Augusto Vieira Melo, Lisboa (PT) 67

(52) US.CL
USPC

ABSTRACT

An i del-dri ication development and
execution environment enables declaration of a data-role in
an application model. The data-role is based on a property of
adata entity in the application model. The data-role provides
for the enforcement of domain-specific security policies with
respect to data elements corresponding to the data entity.

(73) Assignee: OutSystems - Software em Rede S.A.,
Linda-A-Velha (PT)

(21) Appl. No.: 13/418,922

(22) Filed: Mar. 13,2012

Integrated Development and
100 - Execution Environment

Madel

Model Editor Validator

102
Model, Data &
Code
Repository

Model
Compiler /
Interpreter

/106

&) SecuritylssuesProj - [Entity Diagram) - Service Studio o 8 ®
Flle Edit View Insert eSpace Debugger Help
- QEHd@ $ 0B 90 A FOHBE DPNorg ~ON R LT Search Online P
£ Projectissue — ol =
=1 mm
::::“ [8 ProjectUser
Pricrity — f =
B8 Project | & e
Eio pran —=~ul G e
é”““ - @ Autolndex_Projectld
#&: Organizationld } Autolndex_Userld -
[= Status I\ —— - .
Project bemos v ‘ Entity Properties
/ Orgarizations Name Project -
y— Description
Public No v
Identifier Id v
p———— Label v
Is Active v
\ Crder By |
7 xpose Read... Yes 1
£ RegionMan: pose Proce... Yes v
& Usedd ivileges . -
& Regiorld Cr&ate OrganizationMember(Organization)
Read ProjectMember() or OrganizationMer
Update ProjectMember() B
Delete ProjectOwner()
. " More... -
 ©TrueChange™ |Detugge] | Not Logged In

D\users\avm\os\CITI-UNL\OutSystems CMU-PT 2010-10-15\SecuritylssuesProj.oml 14-10-2010-

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, JAcome Cunha, Jodo Leitdo

Application

112

Runtime

Infrastructure

[l 120

292

Further Reading

Computer Security. Dieter Gollmann. 3rd edition. Wiley, 2011.

OWASP Testing Guide V4. Owasp foundation, 2016. https://www.owasp.org/images/1/19/0TGv4.pdf COMPUTER

— ClA triad: confidentiality, integrity, and availability (A1, A6) -
— Authentication, authorization, non-repudiation (A1, A2, A6) SECURITY
— Risk, threats, vulnerabilities, and attack vectors (A3, A6) D I
— Concept of trust and trustworthiness (A4) 1)

— Threat and attacker modelling (A3, A5, B1)

— |dentification and authentication (A2, B3)

— Authorization and access control models (B2, B4, B5)
— Defensive programming (C2, D1)

— Software security testing (A5, C2, D2)

— Secure design basic principles (B2, B4, C1) Dieter Gollmann
— Security best practices and standards (B3, B4, B5, B6, C2)
— Techniques for preserving security across modules and trust maintenance (A4, B1, B6, D1, D2, D3)

— Web security model (B6)

— Session management, authentication (B3, C3)

— Web application vulnerabilities and defenses (A5, B1, C3, C4)
— Client-side security (C4, D3, D4)

— Server-side security tools (C4, D3, D5)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 293

Internet Applications Design and Implementation
(Lecture 6 - Part 4 - Using Kotlin & Spring)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
£ SCIENCE & TECHNOLOGY

Using frameworks for security

e Frameworks such as Spring, with Spring Security project promote the reuse of
(correct) code, good practices, and great number of base features.

Spring Security (s 06

OVERVIEW LEARN

Spring Security is a powerful and highly customizable authentication and access-control framework. It is
the de-facto standard for securing Spring-based applications.

Spring Security is a framework that focuses on providing both authentication and authorization to Java
applications. Like all Spring projects, the real power of Spring Security is found in how easily it can be
extended to meet custom requirements

https://spring.io/projects/spring-security

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 295

Using frameworks for security

* Frameworks such as Spring Security promote the reuse of (correct) code,
good practices, and great number of base features.

« HTTP BASIC authentication headers (an IETF RFC-based standard)
« HTTP Digest authentication headers (an IETF RFC-based standard)
« HTTP X.509 client certificate exchange (an IETF RFC-based standard)
« LDAP (a very common approach to cross-platform authentication needs, especially in large environments)
Form-based authentication (for simple user interface needs)
OpenlD authentication
Authentication based on pre-established request headers (such as Computer Associates Siteminder)
JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single sign-on system)
« Transparent authentication context propagation for Remote Method Invocation (RMI) and Httplnvoker (a Spring remoting protocol)
« Automatic “remember me" authentication (so you can tick a box to avoid re-authentication for a predetermined period of time)
« Anonymous authentication (allowing every unauthenticated call to automatically assume a particular security identity)
* Run-as authentication (which is useful if one call should proceed with a different security identity)
Java Authentication and Authorization Service (JAAS)
JEE container autentication (so you can still use Container Managed Authentication if desired)
Kerberos

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 296

Including Spring Security 4

e By just including the dependency In the application, security is automatically
enabled.

<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactld>spring-boot-starter-security</artifactld>
</dependency>

<dependency>
<groupld>org.springframework.security</groupld>
<artifactld>spring-security-test</artifactld>
<scope>test</scope>

</dependency>

« Configuration is then possible
by declaring basic access
properties and basic user
information. https://spring.io/guides/gs/securing-web/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 297

Including Spring Security N

* By just including the dependenc

enabled. Client Spring Security Filters
<dependency> ¢ E E
<groupId>org.springframework.boot</groupIld> : ' ; '
<artifactId>spring-boot-starter-security</artifc Filter : " Filter '
</dependency> i : i E
<dependency> FilterChainP E Filt E
<groupld>org.springframework.security</groupIld> LRI 1020 ' — !
<artifactld>spring-security-test</artifactld> ¢ ! ¢ .
<scope>test</scope> : E
</dependency> Filter — Filter :
« Configuration is then possible ¢ e emmmemmaa—a- :

by declaring basic access
properties and basic user

information. https://spring.io/guides/gs/securing-web/
https://spring.io/guides/topicals/spring-security-architecture

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 298

Including Spring Security

° ES}/ ijsst ir](:lLJ(jir]gg tr]ea CjEEF)EBFTCjEBFWCDB/ i class WebSecurityConfig : WebSecurityConfigurerAdapter() {

enabled.

<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactld>spring-boot-starter-security</artifactl
</dependency>

<dependency>
<groupld>org.springframework.security</groupld>
<artifactld>spring-security-test</artifactld>
<scope>test</scope>

</dependency>

« Configuration is then possible
by declaring basic access
properties and basic user
information.

@Configuration
@EnableWebSecurity
@Throws (Exception::class)
override fun configure(http: HttpSecurity) {
http
.authorizeRequests|()
.antMatchers("/").permitAll()
.anyRequest().authenticated()
.and()
.formLogin()
.permitAll()
.and()
.logout ()
.permitAll()
}
@Bean
public override fun userDetailsService(): UserDetailsService {
val user: UserDetails = User.withDefaultPasswordEncoder ()
.username("user")
.password("password")
.roles("USER")
Lbuild()
return InMemoryUserDetailsManager (user)
}
}
299

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

Including Spring Security N

@Configuration
@EnableWebSecurity
° EB}/ jLJESt ir]czlLJ(jir]gg tr]Ea (1F;rqurj(1F;r1(j\/ i class WebSecurityConfig : WebSecurityConfigurerAdapter() {
enabled >Security) {
<dependency> F’|€3€i£§€3 ESIQ;I1 1 cAll()
<groupId>org.springframework. b zed()
<artifactld>spring-boot-startei Username
</dependency>
<dependency> Password

<groupIld>org.springframework. s

<artifactld>spring-security-te
</dependency> arvice(): UserDetailsService {

.withDefaultPasswordEncoder ()

« Configuration is then)
by declaring basic a
properties and basic usci ,
information.

rager(user)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 300

Including Spring Security

e By just including the dependen
enabled.

<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactld>spring-boot-starter-security</arti
</dependency>

<dependency>
<groupld>org.springframework.security</grouplc
<artifactld>spring-security-test</artifactld>
<scope>test</scope>

</dependency>

« Configuration is then possible
by declaring basic access
properties and basic user
information.

@Configuration
@EnableWebSecurity
class WebSecurityConfig : WebSecurityConfigurerAdapter() {
override fun configure(http: HttpSecurity) {
http
.csrf().disable()
.authorizeRequests()
.antMatchers("/").permitAll()
.anyRequest().authenticated()
.and().httpBasic()

}

override fun configure(auth: AuthenticationManagerBuilder) {
auth.inMemoryAuthentication()
.withUser("user")
.password(BCryptPasswordEncoder () .encode("password"))
.authorities(emptyList())
.and()
.passwordEncoder (BCryptPasswordEncoder ())

https://spring.io/guides/gs/securing-web/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 301

Including Spring Security N

° I i N.®°e 7 jes — -zsh — 80x24
EBB/ JLJE;t InCIudInS’J’cs@Joaos—iMac ~ % http :8080/applications]
enabled HTTP/1.1 403 . pter() {
' Cache-Control: no-cache, no-store, max—age=0, must-revalidate
Connection: keep-alive
<dependency> Content-Type: application/json
Date: Mon, 19 Oct 2020 14:30:34 GMT

<gr01.JpId>or'g.sp|.*'1ngfr'am(EX T

<art1factId>spr'1ng—boot-_p—Keep_AliVE: tineout-‘o
</dependency> Pragma: no-cache
Set-Cookie: JSESSIONID=2454FD5814FB3EEBF8QEQ7CF1737C10D; Path=/; HttpOnly
Transfer—Encoding: chunked

<dependency> - ;
b y . X-Content-Type-Options: nosniff
<groupId>org.spr1ngfr'ameX_Frame_options: DENY

<artifactId>spring-secut x-xss-Protection: 1; mode=block

agerBuilder) {

<scope>test</scope>
</dependency> { y .
/dep Y "error": "Forbidden", encode ("password”))
Ilmessagell: IIII'
I I | "path": "/applications"
« Configurationis 2, /oo ' oder())

t)x/ CjEE(:lEirir]EJ k)Ei} "timestamp": "2020-10-19T14:30:34.051+00:00"
properties and |jcsesoaos-imac ~ % i
information. https://spring.io/guides/gs/securing-web/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, J&come Cunha, Jo&o Leitdo 302

Including Spring Security N

e By justincludinge e 2 jos — -2sh — 80x24
“/jcs@Joaos-iMac ~ % http :8080/applications —--auth user:password
enab|ed. HTTP/1.1 200 ter() {

Cache—-Control: no—-cache, no-store, max—age=0, must-revalidate
Connection: keep—alive
<dependency> Content-Type: application/json
<groupId>org,springfrqme‘Date: Mon, 19 Oct 2020 14:57:40 GMT

<artifactId>spring-boot- Expires: 6
Keep—Alive: timeout=60

</dependency> Pragma: no-cache
Set—Cookie: JSESSIONID=2361CEB5951A39C2967863030D2EBA48; Path=/; HttpOnly

<dependency> Transfer—Encoding: chunked

<groupld>org.sprin frame‘X—Content—Type—Options: nosniff _

<grti?actldgs ﬁin £—;secur"X_Frame_omions‘: DERY e

p g X—XSS-Protection: 1; mode=block

<scope>test</scope>

</dependency> [] ncode ("password"))

jcs@Joaos-iMac ~ % [

« Configuration is B
by declaring ba
properties and k
information. https://spring.io/guides/gs/securing-web/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 303

Authentication - Simple starter code =

* The default security setting provides that all requests are protected, a login
form is created, RESTful interface for login/logout...

@ Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

@ Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
auth
.inMemoryAuthentication()
.withUser("user").password("password").roles("USER");

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 304

Fundamental Concepts mapped to Spring Context =5

* Principal - Who is the entity behind a particular request

@RequestMapping("/messages/inbox")
public ModelAndView findMessagesForUser(@ AuthenticationPrincipal CustomUser user) {

/I .. find messages for this user and return them ...

)
» Authentication: Certify that a given set of credentials identify one principal

@ Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
auth
JjdbcAuthentication()
.dataSource(dataSource)
.withDefaultSchema()
withUser("user").password("password").roles("USER").and()
withUser("admin").password("password").roles("USER", "ADMIN");

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 305

Linking to the application model N

* Dynamic verification of user credentials is part of the application model

override fun configure(auth: AuthenticationManagerBuilder) {
auth.inMemoryAuthentication()
.withUser(username: "user™)
.password(BCryptPasswordEncoder().encode(rawPassword: "password™))
.authorities(emptylList())
.andQ)
.passwordEncoder(BCryptPasswordEncoder())
.andQO
.userDetailsService(customUserDetails)

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 306

Linking to the application model N

* Dynamic verification of user credentials is part of the application model

override fun configure(auth: AuthenticationManagerBuilder) {
auth.inMemoryAuthentication()

.withUser(username:

dCBC @Service
.passwor F ryptPas§v class CustomUserDetailsService(
-authorities(emptyl1: val users: UsersService
-andQ)) : UserDetailsService {
.passwordEncoder(BCr
-and() override fun loadUserByUsername(username: String?): UserDetails {
.userDetailsService(«
} username?. let { it: String

val userDAO = users.findUser(it)
if(userDAO.isPresent) {

return CustomUserDetails(userDAO.get().username, userDAO.get().password, mutablelList0f())
} else

throw UsernameNotFoundException(username)

}

throw UsernameNotFoundException(username)

} Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 307

Security of Internet Applications Eﬁ%

» Authorisation - Check if a given principal has rights to access a given piece of information

protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.antMatchers("/resources/**", "/signup", "/about").permitAli()
.antMatchers("/admin/**").hasRole("ADMIN")
.antMatchers("/db/**").access("hasRole('ROLE_ADMIN') and hasRole('ROLE_DBA")")
.anyRequest().authenticated()

.and()
...
formLogin();
} org.springframework.security.web.authentication.switchuser
Class SwitchUserFilter
* Delegation - to be able to temporarily java.lang.Object
: : : g) .springfi k.web . filter.G icFilterB

aSSIgn one prInCIDaIS Capabllltles to o s%?gi;?i:geﬁ“;zlor;exsrk.ls:(:uri?;.]\(:/:;;;u?;eﬁzgation.switchuser.SwitchUserFiIte
another principal (e.g. sudo) All Implemented Interfaces:

javax.servlet.Filter, Aware, BeanNameAware, DisposableBean, InitializingBean, Ap

http: .spring.i I ring- rity/3.2.1. RELEASE/api
org/springframework/security/web/authentication/switchuser/SwitchUserFilter.html

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 308

Basic Spring Security Guaranties

There really isn’t much to this configuration, but it does a lot. You can find a summary of the features below:

¢ Require authentication to every URL in your application

¢ (Generate a login form for you

¢ Allow the user with the Username user and the Password password to authenticate with form based authentication
¢ Allow the user to logout

e CSREF attack prevention

e Session Fixation protection

e Security Header integration

o HTTP Strict Transport Security for secure requests

o X-Content-Type-Options integration

e Cache Control (can be overridden later by your application to allow caching of your static resources)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 309

Basic Spring Security Guaranties

e Security Header integration

o HTTP Strict Transport Security for secure requests

o X-Content-Type-Options integration

o (Cache Control (can be overridden later by your application to allow caching of your static resources)

o)

X-XSS-Protection integration

o X-Frame-Options integration to help prevent Clickjacking

¢ Integrate with the following Serviet APl methods

HitoServietFlequestgetRemoteUser) From Spring Security docs

| — —

o

o

HttpServietRequest.html#getUserPrincipall()

o

HttpServletRequest.html#isUserlnRole(java.lang.String)

(o)

HttpServietRequest.html#login(java.lang.String, java.lang.String)

(o)

HttpServletRequest.html#logout()

CSRF - token issued by the server / recognised by the same server

6. Cross Site Request Forgery (CSRF)

This section discusses Spring Security’s Cross Site Request Forgery (CSRF) support.

6.1. CSRF Attacks

Before we discuss how Spring Security can protect applications from CSRF attacks, we will explain what a CSRF attack is. Let’s take a
look at a concrete example to get a better understanding.

Assume that your bank’s website provides a form that allows transferring money from the currently logged in user to another bank

account. For example, the HTTP request might look like:

POST /transfer HTTP/1.1 —
Host: bank.example.com

Cookie: JSESSIONID=randomid; Domain=bank.example.com; Secure; HttpOnly

Content-Type: application/x-www-form-urlencoded

amount=100.00&routingNumber=1234&account=9876

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 311

CSRF - token issued by the server / recognised by the same server

e Template example...

<div th:if="${#httpServietRequest.remotelser}!=null">
<label>User: </label>
<form style="display:inline-block" th:action="@{/logout}" method="post">
<input type="submit" value="Sign Out"/>
</form>
</div>

<div th:if="${#httpServletRequest.remotelser} == null" >
<form th:action="@{/}" method="post">
<label> User : <input type="text" name="username"/> </label>
<label> Password: <input type="password" name="password"/> </label>
<input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}"/>
<input type="submit" value="Sign In"/>
</form>

</div>

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 312

CSRF - token issued by the server / recognised by the same server

* Actual page example

¥ <div class="container">
V¥ <div>
v <form method="post" action="/">
¥ <label>
" User : "
P <input type="text" name="username'>
</label>
¥ <label>
" Password: "
P <input type="password" name="password">
</label>
p <input type="hidden" name="${_csrf.parameterName}" value="${ csrf.token}">
P <input type="submit" value="Sign In">
p <input type="hidden" name="_csrf" value="f067a25f-c6f5-4de@-bbad-ea7416986b22">
</form>
</div>
</div>

A

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, JAcome Cunha, Jodo Leitdo

313

