
Internet Applications Design and Implementation

(Lecture 6 - on Security)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt),

contributions from Beatriz Moreira, APDC-INV 2017/2018)

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Software Security (Overview)

• Security is a hot topic in CS in present days!

• Cryptography can only protect data outside of systems, when properly

applied and if there are no “internal” information leaks.

• Security breaches are often caused by internal errors that cause: 

system crashes or erroneous behaviour due to unexpected inputs

• Security breaches are often caused by programming mistakes.

260

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security of Applications (Overview)

• Good engineering practices and correct usage of methods and tools ensures
that all specified data confidentiality rules are properly enforced.

• There are two elective courses in MIEI only about this topic.

• Software Security: fundamental concepts and technologies

• Network and Computer Systems Security: system-level security

• This lecture is about models and frameworks that implement software security.

261

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Outline

• Security Concepts Review

• Foundations of Computer Security

• Security Models

• Kotlin and Spring Security

• Model-Based Access Control in Spring

262

Internet Applications Design and Implementation

(Lecture 6 - Part 1 - Security Concepts)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security of Internet Applications

• Layers of internet application security

• Network Level (network security and system identification)

• System Level (firewalls, VPNs, SSL, DMZ)

• Application Level (our focus)

• Authentication

• Access control

• Information flow

264

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The Big Picture - Organisation Industry Standards (ISO 27002)

• Definition of General Security policies

• Organization of information security

• Asset management

• Human resources security

• Physical and environmental security

• Communications and operations management

• Access control (data, operations, and other resources)

• Acquisition, development, and maintenance of Software Systems

• Incident management

• Compliance with regulations

265

About software

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security Policies in Software Systems

• within an software system:

• “The set of restrictions and properties that specify how a computing system prevents

information and computing resources from being used to violate an organizational security
policy” in Computer Security, Dieter Gollmann 2011

• Policies define who has permission to access or operate on, a given resource.

• Access control lists,

• firewall settings,

• services that may be run on user devices,

• security protocols for protecting network traffic,

• …

266

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Attacks and Attackers

• Security can be defined and challenged based on the definition of attacks and
attackers. What does an attacker know and what operations can they perform
on a system.

• The correct functioning of a system is based on assumptions on the
environment.

• Attacks are designed to challenge system 
assumptions with illegal inputs, causing illegal 
states, erroneous behaviour or crashes.

267

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Classic Example: SQL injection

268

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Classic Example: SQL injection

269
https://www.w3schools.com/sql/sql_injection.asp

uName = getRequestString("username");

uPass = getRequestString("userpassword");

sql = 'SELECT * FROM Users WHERE Name ="'
+ uName + '" AND Pass ="' + uPass + '"'

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security flaws in software

270

OWASP Top 10 - 2017
The Ten Most Critical Web Application Security Risks

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International Licensehttps://owasp.org

4

What changed from 2013 to 2017?
Change has accelerated over the last four years, and the OWASP Top 10 needed to change. We've completely refactored the
OWASP Top 10, revamped the methodology, utilized a new data call process, worked with the community, re-ordered our risks, re-
written each risk from the ground up, and added references to frameworks and languages that are now commonly used.
Over the last few years, the fundamental technology and architecture of applications has changed significantly:
• Microservices written in node.js and Spring Boot are replacing traditional monolithic applications. Microservices come with their

own security challenges including establishing trust between microservices, containers, secret management, etc. Old code never
expected to be accessible from the Internet is now sitting behind an API or RESTful web service to be consumed by Single Page
Applications (SPAs) and mobile applications. Architectural assumptions by the code, such as trusted callers, are no longer valid.

• Single page applications, written in JavaScript frameworks such as Angular and React, allow the creation of highly modular
feature-rich front ends. Client-side functionality that has traditionally been delivered server-side brings its own security challenges.

• JavaScript is now the primary language of the web with node.js running server side and modern web frameworks such as
Bootstrap, Electron, Angular, and React running on the client.

New issues, supported by data:
• A4:2017-XML External Entities (XXE) is a new category primarily supported by source code analysis security testing tools

(SAST) data sets.

New issues, supported by the community:
We asked the community to provide insight into two forward looking weakness categories. After over 500 peer submissions, and
removing issues that were already supported by data (such as Sensitive Data Exposure and XXE), the two new issues are:
• A8:2017-Insecure Deserialization, which permits remote code execution or sensitive object manipulation on affected platforms.
• A10:2017-Insufficient Logging and Monitoring, the lack of which can prevent or significantly delay malicious activity and breach

detection, incident response, and digital forensics.

Merged or retired, but not forgotten:
• A4-Insecure Direct Object References and A7-Missing Function Level Access Control merged into A5:2017-Broken Access

Control.
• A8-Cross-Site Request Forgery (CSRF), as many frameworks include CSRF defenses, it was found in only 5% of applications.
• A10-Unvalidated Redirects and Forwards, while found in approximately 8% of applications, it was edged out overall by XXE.

OWASP Top 10 - 2013 Î OWASP Top 10 - 2017
A1 – Injection Î A1:2017-Injection

A2 – Broken Authentication and Session Management Î A2:2017-Broken Authentication

A3 – Cross-Site Scripting (XSS) Ô A3:2017-Sensitive Data Exposure

A4 – Insecure Direct Object References [Merged+A7] ∪ A4:2017-XML External Entities (XXE) [NEW]

A5 – Security Misconfiguration Ô A5:2017-Broken Access Control [Merged]

A6 – Sensitive Data Exposure Ò A6:2017-Security Misconfiguration

A7 – Missing Function Level Access Contr [Merged+A4] ∪ A7:2017-Cross-Site Scripting (XSS)

A8 – Cross-Site Request Forgery (CSRF) : A8:2017-Insecure Deserialization [NEW, Community]

A9 – Using Components with Known Vulnerabilities Î A9:2017-Using Components with Known Vulnerabilities

A10 – Unvalidated Redirects and Forwards : A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

RN Release Notes

https://www.owasp.org/

Still U
p-to-Date

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security flaws in software

271

OWASP Top 10 - 2017
The Ten Most Critical Web Application Security Risks

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International Licensehttps://owasp.org

4

What changed from 2013 to 2017?
Change has accelerated over the last four years, and the OWASP Top 10 needed to change. We've completely refactored the
OWASP Top 10, revamped the methodology, utilized a new data call process, worked with the community, re-ordered our risks, re-
written each risk from the ground up, and added references to frameworks and languages that are now commonly used.
Over the last few years, the fundamental technology and architecture of applications has changed significantly:
• Microservices written in node.js and Spring Boot are replacing traditional monolithic applications. Microservices come with their

own security challenges including establishing trust between microservices, containers, secret management, etc. Old code never
expected to be accessible from the Internet is now sitting behind an API or RESTful web service to be consumed by Single Page
Applications (SPAs) and mobile applications. Architectural assumptions by the code, such as trusted callers, are no longer valid.

• Single page applications, written in JavaScript frameworks such as Angular and React, allow the creation of highly modular
feature-rich front ends. Client-side functionality that has traditionally been delivered server-side brings its own security challenges.

• JavaScript is now the primary language of the web with node.js running server side and modern web frameworks such as
Bootstrap, Electron, Angular, and React running on the client.

New issues, supported by data:
• A4:2017-XML External Entities (XXE) is a new category primarily supported by source code analysis security testing tools

(SAST) data sets.

New issues, supported by the community:
We asked the community to provide insight into two forward looking weakness categories. After over 500 peer submissions, and
removing issues that were already supported by data (such as Sensitive Data Exposure and XXE), the two new issues are:
• A8:2017-Insecure Deserialization, which permits remote code execution or sensitive object manipulation on affected platforms.
• A10:2017-Insufficient Logging and Monitoring, the lack of which can prevent or significantly delay malicious activity and breach

detection, incident response, and digital forensics.

Merged or retired, but not forgotten:
• A4-Insecure Direct Object References and A7-Missing Function Level Access Control merged into A5:2017-Broken Access

Control.
• A8-Cross-Site Request Forgery (CSRF), as many frameworks include CSRF defenses, it was found in only 5% of applications.
• A10-Unvalidated Redirects and Forwards, while found in approximately 8% of applications, it was edged out overall by XXE.

OWASP Top 10 - 2013 Î OWASP Top 10 - 2017
A1 – Injection Î A1:2017-Injection

A2 – Broken Authentication and Session Management Î A2:2017-Broken Authentication

A3 – Cross-Site Scripting (XSS) Ô A3:2017-Sensitive Data Exposure

A4 – Insecure Direct Object References [Merged+A7] ∪ A4:2017-XML External Entities (XXE) [NEW]

A5 – Security Misconfiguration Ô A5:2017-Broken Access Control [Merged]

A6 – Sensitive Data Exposure Ò A6:2017-Security Misconfiguration

A7 – Missing Function Level Access Contr [Merged+A4] ∪ A7:2017-Cross-Site Scripting (XSS)

A8 – Cross-Site Request Forgery (CSRF) : A8:2017-Insecure Deserialization [NEW, Community]

A9 – Using Components with Known Vulnerabilities Î A9:2017-Using Components with Known Vulnerabilities

A10 – Unvalidated Redirects and Forwards : A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

RN Release Notes

https://www.owasp.org/

Still U
p-to-Date

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

In a nutshell

Most common attacks are at the application level and can be avoided by
properly using well tested and tested frameworks and well established methods.

272

Internet Applications Design and Implementation

(Lecture 6 - Part 2 - Foundations)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Foundations of Computer Security

• Fundamental Properties:

• confidentiality - prevention of unauthorised disclosure of information,

• integrity - prevention of unauthorised modification of information,

• availability - prevention of unauthorised withholding of information or resources

• … more… accountability; non-repudiation; reliability/dependability; …

“Computer security deals with the prevention and detection of unauthorized actions by users
of a computer system” - Dieter Gollmann,

See also the wikipedia page

274

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Foundations of Software Security

• Main concepts used in software security

• Principal (the active subject)

• Resourse (the passive object)

• Authentication - the principal provides proof that they are who they say they are

• Authorisation - the principal is trusted to access or perform an operation on a resource

• Delegation - can you operate on behalf of other principal?

• Declassification operations in confidentiality analysis

• Endorsement operations in integrity analysis

275

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Principal/Authentication

• An authenticated entity (or group) that uses the system

• The active subject on system operations

• Authentication:

• The certification process of determining the identity of an external entity that uses the
system, invokes actions, produces and consumes data.

276

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Resource/Authorisation

• The process of checking what resources a principal is allowed to access and
manipulate, and what operations is it allowed to execute at a given time and
system state (data, parameters, context, etc.).

• Authorisation (to observe or change)

• read, execute, write, append, delete, change access, change ownership, …

• Classic access control models

• Access Control Matrix

• Capabilities

• Access Control Lists

277

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

• Base models

• Access Control Matrix; Capabilities; Access Control Lists

• Intermediate control structures

• Groups and negative permissions

Authorisation and access control models

278

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

• Base models

• Access Control Matrix; Capabilities; Access Control Lists

• Intermediate control structures

• Role-based access control

• Principal

• Roles

• Permissions

• Operations

• Resources

Authorisation and access control models

279

Internet Applications Design and Implementation

(Lecture 6 - Part 3 - Security Models)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security Models

• Access Control List

• Capability-based access control

• Role-based access control

• Bell–LaPadula model for confidentiality

• Biba Integrity model for data integrity

• Model-based access control

281

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Access Control Lists

• ACLs are lists of permissions (identity, operation) attached to objects stored
within the system.

• It must explicitly assign individual identities to operations on resources.

• Spring Security ACL implements ACL on top of explicitly managed database

tables

282
https://www.baeldung.com/spring-security-acl

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Capability-based access control

• A decentralised method that provides a scalable approach to access control

• No need for centralised access control lists and mechanisms;

• A capability refers to an object and a set of rights, the user that owns it can

perform the operation described in the capability

• Example: a pair (“/etc/pass”, O_RDWR) gives readwrite access

• Common in micro-service based architectures and IoT scenarios

283

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Capability-based access control

• A capability is transmitted through unforgeable (and ephemeral) tokens

• Capabilities can be explicitly and dynamically managed

• Good support for authorisation and delegation

• To perform an operation on a particular object, the principal has first to

acquire the associated capability via some dynamic authorisation method.

284

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

• Standard approach to authorise users to perform operations in software systems.

• Roles are specified for system related tasks

• Permissions are assigned to specific roles

• Users are dynamically assigned roles 
according to their profile/function

Role-Base Access Control

285

https://upload.wikimedia.org/wikipedia/en/c/c3/RBAC.jpg

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Role-Base Access Control

• Standard approach to authorise users to perform operations in software systems.

• Roles are specified for system related tasks

• Permissions are assigned to specific roles

• Users are dynamically assigned roles 
according to their profile/function

286

https://upload.wikimedia.org/wikipedia/en/c/c3/RBAC.jpg

• Roles can also be combined in hierarchies or lattices

• Delegation can be integrated in the general model

• RBAC provides a framework for a verification based on
interceptors and filters

• Roles can also be parameterised and depend on actual data.

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Bell–LaPadula model - Confidentiality

• Formalises the U.S. Department of Defense multilevel
security policies.

• The security level of a subject is compared to the
classification of the object (and the security compartment
where it is stored)

• The access control rules state that:

• A subject cannot read up

• A subject cannot write down

• + an access control matrix

287

TOP SECRET

SECRET

CONFIDENTIAL

PUBLIC

No Read Up
No Write Down

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Information Flow Control - Confidentiality

• The process of ensuring that data is only seen by trusted principals. This
involves assigning a level of trust to data and principals.

• General technique to check it is called information flow control

• Declassification: The process of lowering the level of trust needed to access

a given data item.

288

var high = 1

var low = … 10 + high …

var low = 2

if (high > 0) low else 3

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Biba Integrity model - Data Integrity

• Data integrity has three goals:

• Prevent data modification by unauthorised principals

• Prevent unauthorised data modification by authorised principals

• Maintain internal and external data consistency

• The access control rules state that:

• A subject cannot read up

• A subject cannot write down

• + an access control matrix

289

TOP SECRET

SECRET

CONFIDENTIAL

PUBLIC

No Write Up
No Read Down

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Information Flow Control - Data Integrity

• The process of ensuring that data is only provided by trusted principals.

• Also an information flow control property (dual of confidentiality)

• Endorsement: the process of increasing the level of trust o a given data item.

290

var untrusted = 1

var trusted = … 10 + untrusted …

var trusted = 2

if (untrusted > 0) trusted else 3

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Model-Based Access Control

• Security conditions are many times hidden in query filters and program
conditions. These policies are very difficult to get right, maintain, and modify.

• Developer-defined roles usually depend on the current state of the application.  
(e.g. ModeratorOf(…)). Role-based models usually ignore this and require the
application logic to validate it.

• Example: authorisations usually depend on the state of the target entity  
(status == “submitted”)

• Capabilities defined by the developer  
can extend the standard read/write/delete 
(not hardwired to the basic  
 programming elements)

291

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Model-Based Access Control

292

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Further Reading
Computer Security. Dieter Gollmann. 3rd edition. Wiley, 2011.

OWASP Testing Guide V4. Owasp foundation, 2016. https://www.owasp.org/images/1/19/OTGv4.pdf

– CIA triad: confidentiality, integrity, and availability (A1, A6)

– Authentication, authorization, non-repudiation (A1, A2, A6)

– Risk, threats, vulnerabilities, and attack vectors (A3, A6)

– Concept of trust and trustworthiness (A4)

– Threat and attacker modelling (A3, A5, B1)

– Identification and authentication (A2, B3)

– Authorization and access control models (B2, B4, B5)

– Defensive programming (C2, D1)

– Software security testing (A5, C2, D2)

– Secure design basic principles (B2, B4, C1)

– Security best practices and standards (B3, B4, B5, B6, C2)

– Techniques for preserving security across modules and trust maintenance (A4, B1, B6, D1, D2, D3)

– Web security model (B6)

– Session management, authentication (B3, C3)

– Web application vulnerabilities and defenses (A5, B1, C3, C4)

– Client-side security (C4, D3, D4)

– Server-side security tools (C4, D3, D5)

293

Internet Applications Design and Implementation

(Lecture 6 - Part 4 - Using Kotlin & Spring)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Using frameworks for security

• Frameworks such as Spring, with Spring Security project promote the reuse of
(correct) code, good practices, and great number of base features.

295

https://spring.io/projects/spring-security

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Using frameworks for security

• Frameworks such as Spring Security promote the reuse of (correct) code,
good practices, and great number of base features.

296

	 •	 HTTP BASIC authentication headers (an IETF RFC-based standard)

	 •	 HTTP Digest authentication headers (an IETF RFC-based standard)

	 •	 HTTP X.509 client certificate exchange (an IETF RFC-based standard)

	 •	 LDAP (a very common approach to cross-platform authentication needs, especially in large environments)

	 •	 Form-based authentication (for simple user interface needs)

	 •	 OpenID authentication

	 •	 Authentication based on pre-established request headers (such as Computer Associates Siteminder)

	 •	 JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source single sign-on system)

	 •	 Transparent authentication context propagation for Remote Method Invocation (RMI) and HttpInvoker (a Spring remoting protocol)

	 •	 Automatic “remember me" authentication (so you can tick a box to avoid re-authentication for a predetermined period of time)

	 •	 Anonymous authentication (allowing every unauthenticated call to automatically assume a particular security identity)

	 •	 Run-as authentication (which is useful if one call should proceed with a different security identity)

	 •	 Java Authentication and Authorization Service (JAAS)

	 •	 JEE container autentication (so you can still use Container Managed Authentication if desired)

	 •	 Kerberos

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

297

https://spring.io/guides/gs/securing-web/

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

298

https://spring.io/guides/gs/securing-web/
https://spring.io/guides/topicals/spring-security-architecture

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

299

https://spring.io/guides/gs/securing-web/

@Configuration

@EnableWebSecurity

class WebSecurityConfig : WebSecurityConfigurerAdapter() {

 @Throws(Exception::class)

 override fun configure(http: HttpSecurity) {

 http

 .authorizeRequests()

 .antMatchers("/").permitAll()

 .anyRequest().authenticated()

 .and()

 .formLogin()

 .permitAll()

 .and()

 .logout()

 .permitAll()

 }

 @Bean

 public override fun userDetailsService(): UserDetailsService {

 val user: UserDetails = User.withDefaultPasswordEncoder()

 .username("user")

 .password("password")

 .roles("USER")

 .build()

 return InMemoryUserDetailsManager(user)

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

300

https://spring.io/guides/gs/securing-web/

@Configuration

@EnableWebSecurity

class WebSecurityConfig : WebSecurityConfigurerAdapter() {

 @Throws(Exception::class)

 override fun configure(http: HttpSecurity) {

 http

 .authorizeRequests()

 .antMatchers("/").permitAll()

 .anyRequest().authenticated()

 .and()

 .formLogin()

 .permitAll()

 .and()

 .logout()

 .permitAll()

 }

 @Bean

 public override fun userDetailsService(): UserDetailsService {

 val user: UserDetails = User.withDefaultPasswordEncoder()

 .username("user")

 .password("password")

 .roles("USER")

 .build()

 return InMemoryUserDetailsManager(user)

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

301

https://spring.io/guides/gs/securing-web/

@Configuration

@EnableWebSecurity

class WebSecurityConfig : WebSecurityConfigurerAdapter() {

 override fun configure(http: HttpSecurity) {

 http

 .csrf().disable()

 .authorizeRequests()

 .antMatchers("/").permitAll()

 .anyRequest().authenticated()

 .and().httpBasic()

 }

 override fun configure(auth: AuthenticationManagerBuilder) {

 auth.inMemoryAuthentication()

 .withUser("user")

 .password(BCryptPasswordEncoder().encode("password"))

 .authorities(emptyList())

 .and()

 .passwordEncoder(BCryptPasswordEncoder())

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

302

https://spring.io/guides/gs/securing-web/

@Configuration

@EnableWebSecurity

class WebSecurityConfig : WebSecurityConfigurerAdapter() {

 override fun configure(http: HttpSecurity) {

 http

 .csrf().disable()

 .authorizeRequests()

 .antMatchers("/").permitAll()

 .anyRequest().authenticated()

 .and().httpBasic()

 }

 override fun configure(auth: AuthenticationManagerBuilder) {

 auth.inMemoryAuthentication()

 .withUser("user2")

 .password(BCryptPasswordEncoder().encode("password"))

 .authorities(emptyList())

 .and()

 .passwordEncoder(BCryptPasswordEncoder())

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Including Spring Security

• By just including the dependency in the application, security is automatically
enabled.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <scope>test</scope>
</dependency>

• Configuration is then possible 
by declaring basic access  
properties and basic user 
information.

303

https://spring.io/guides/gs/securing-web/

@Configuration

@EnableWebSecurity

class WebSecurityConfig : WebSecurityConfigurerAdapter() {

 override fun configure(http: HttpSecurity) {

 http

 .csrf().disable()

 .authorizeRequests()

 .antMatchers("/").permitAll()

 .anyRequest().authenticated()

 .and().httpBasic()

 }

 override fun configure(auth: AuthenticationManagerBuilder) {

 auth.inMemoryAuthentication()

 .withUser("user2")

 .password(BCryptPasswordEncoder().encode("password"))

 .authorities(emptyList())

 .and()

 .passwordEncoder(BCryptPasswordEncoder())

 }

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Authentication - Simple starter code

• The default security setting provides that all requests are protected, a login
form is created, RESTful interface for login/logout…

304

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth

 .inMemoryAuthentication()
 .withUser("user").password("password").roles("USER");
 }
}

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Fundamental Concepts mapped to Spring Context

• Principal - Who is the entity behind a particular request

• Authentication: Certify that a given set of credentials identify one principal

305

@RequestMapping("/messages/inbox")

public ModelAndView findMessagesForUser(@AuthenticationPrincipal CustomUser user) {

 // .. find messages for this user and return them ...
}

@Autowired
public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth

 .jdbcAuthentication()
 .dataSource(dataSource)
 .withDefaultSchema()
 .withUser("user").password("password").roles("USER").and()
 .withUser("admin").password("password").roles("USER", "ADMIN");
}

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Linking to the application model

• Dynamic verification of user credentials is part of the application model

306

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Linking to the application model

• Dynamic verification of user credentials is part of the application model

307

Look into the documentation for the up-to-date API!!

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Security of Internet Applications

• Authorisation - Check if a given principal has rights to access a given piece of information

• Delegation - to be able to temporarily 
assign one principals capabilities’ to  
another principal (e.g. sudo)

308

protected void configure(HttpSecurity http) throws Exception {
 http

 .authorizeRequests()

 .antMatchers("/resources/**", "/signup", "/about").permitAll()

 .antMatchers("/admin/**").hasRole("ADMIN")

 .antMatchers("/db/**").access("hasRole('ROLE_ADMIN') and hasRole('ROLE_DBA')")

 .anyRequest().authenticated()

 .and()
 // ...
 .formLogin();
}

http://docs.spring.io/autorepo/docs/spring-security/3.2.1.RELEASE/apidocs/ 
org/springframework/security/web/authentication/switchuser/SwitchUserFilter.html

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Basic Spring Security Guaranties

309

From Spring Security docs

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Basic Spring Security Guaranties

310

From Spring Security docs

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

CSRF - token issued by the server / recognised by the same server

311

From Spring Security docs

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

CSRF - token issued by the server / recognised by the same server

• Template example…

312

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

CSRF - token issued by the server / recognised by the same server

• Actual page example

313

