Internet Application Design and Implementation —2019/2020

MidTerm Test November 2, 2020

Notes: The test is closed book and has a duration of 1Th30m. You may bring 2 handwriten A4 pages. There are 10 multiple
choice answer questions and 3 open answer questions that should be answered in the provided answer sheets. Correct answers
in multiple choice questions add 1 point, the first 3 wrong answers have a penalty of 1/8 of the value of a correct answer, the
following wrong answers have a penalty of 1/4 of the value of a correct answer. Open answers are awarded 3, 4 and 3 points
respectively. Do not unstaple the questions. You may use a pencil.

Version: RA
Name: Number:

Part1

Q-1 [3 pts] Describe the ER model of the resulting database after mapping the following JPA Entities.

QEntit
@Entity e
data class Room(
data class Hotel(QId
@Id Q@GeneratedValue
Q@GeneratedValue

var id: Long,
var number:Int,
var name:String,
@ManyToOne

var hotel:Hotel

var id: Long,

var name:String,
@0neToMany

var rooms:List<Room>

Q-2 [4 pts] Complete the following test to a service that provides data about a hotel room. Consider the skeleton of the test below
where rooms is a reference to a repository for the data class Room. Select the fragment that correctly completes the test (without
mocking). Make sure that the request is successful, that the result exists and that the name of the room is as expected.

@Test @WithMockUser (username = "userl", roles = "REGISTERED")
fun ‘testing the retrieval of one Room‘() {
val roomId = rooms.searchByName (BIG_SUITE_NAME) [0].id
mockMvc.perform(get("/rooms/" + roomId))

Q-3 [3 pts] Consider the data model presented in Q-1 extended with the entity HotelVisit defined below:

@Entity

data class HotelVisit(
Q@Id
Q@GeneratedValue
var id: Long,
var name:String,
@0OneToMany
var rooms:List<Room>

)

Define a repository for hotel visits implement a custom JPQL query that shows the rooms that were visited between two given
dates.

Internet Application Design and Implementation - MidTerm Test - November 2, 2020 page 2 of 2

Name: Number:

Part 2

System Description: Consider a system for the management of expense reports of employees of a company. The users of the
system are employees of the company, and they are organized in departments. The system allows for employees of a company to
create new expense reports for their activities within the context of a department. An expense report consists of a description, a
date, and an amount. The statuses of an expense report can be “created”, “submitted”, “approved”, and "paid”. Employees can
always see their expense reports, but can only edit their reports while the status has value "created”. Heads of department can
only approve expense reports when they on they have the status “submitted”. Each expense report must be approved by the head
of the department where the employee belongs to. The main resource here is an expense report.

The system described above is the development context for all questions below.

Q-4 [4 pts] Define a RESTful interface, Level 2 in the Richardson maturity scale, that defines the operations on the available
expense reports to both employees and heads of departments. List all the endpoints by means of a Kotlin interface using data
classes for DTO objects. No swagger annotations are needed.

Q-5 [3 pts] Define the JPA (data) classes for the system described above and relate them correctly using JPA annotations.

Q-6 [3 pts] Define two security policies, annotations and corresponding services, that regulates the access for reading, and also
for changing the status of the main resource of the scenario above.

