
Sequence Models
RNNs, GRU, LSTMs and

applications to image captioning and summarization.

Web Search

1

From static data to sequence data

• There are many domains where data samples have a
dynamic nature or unknown size.

• CNNs and traditional multi-layer networks cope well with
fixed-size input and output.

• However, there are many domains where:
• Input data is a sequence

• Output is a sequence

2

Sequence problems: trend analysis

3

Sequence problems: Machine translation

• Translating a sentence from one language to another
language.

4

Sequence problems: Sentiment analysis

• Detection of excitement, depression, frustration, etc.

Majumder, Navonil, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, and Erik Cambria.
"Dialoguernn: An attentive rnn for emotion detection in conversations." AAAI 2019.
Tang, Duyu, Bing Qin, and Ting Liu. "Aspect level sentiment classification with deep memory network." arXiv 2016. 5

Usually, data is not

Independent and Identically Distributed (IID).

6

There are several possible architectures

7

Web data sequence modeling tasks

A person riding a

motorbike on dirt road

RNNs are awesome.

Positive

Image

Captioning

Sentiment

Analysis

Input Output

8

Web data sequence modeling tasks

Happy birthday!

Machine

Translation

Information

Extraction

Word 1

Input Output

ADJ

NOUN

Sure! Here you are ….

9

Word 2

Word 3

Information extraction with Spacy

10

Information extraction

11

ℎ𝑡−2

𝑥𝑡−2

ℎ𝑡−1

𝑥𝑡−1

ℎ𝑡

𝑥𝑡

Output embedding

Input embeddings

Hidden states
ℎ𝑡−3

𝑥𝑡−3

ℎ𝑡−4

𝑥𝑡−4

Input wordsGoogle was founded in 1998

ORG DATE Output word/symbol

𝑜𝑡−2 𝑜𝑡−1 𝑜𝑡𝑜𝑡−3𝑜𝑡−4

Auto regressive models

• In auto-regressive models the current output depends on
the current input and a limited span of past inputs.

𝑜𝑡 = 𝑝 𝑥𝑡 |𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝜏

𝑜𝑡−2

𝑥𝑡−2

𝑜𝑡−1

𝑥𝑡−1

𝑜𝑡

𝑥𝑡

12

Latent auto regressive models (RNNs)

• In latent auto-regressive models, the model depends on the
current input and a hidden state, capturing the past inputs:

𝑜𝑡 =∼ 𝑝 𝑥𝑡|𝑥𝑡−1, ℎ𝑡

𝑜𝑡−2

𝑥𝑡−2

ℎ𝑡−2

𝑜𝑡−1

𝑥𝑡−1

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

Output predictions

Inputs

Hidden states

13

Input symbol and embedding

• Input symbol can be a word, any other symbol, or it may not
exist because it is a direct measure.

• Input embedding is the vectorial representation of the
symbol.

14

Google was founded

Hidden state

• The hidden state:
• is propagated from state to state, and

• it works as a memory to help decisions in later parts of the sequence.

15

Output embedding and symbol

• Output embedding the RNN prediction in the output space

• Output symbol is obtained by applying the softmax to the
embedding to compute the most likely word

16

Any type of RNN can be used in any sequence
task

17

Input

Output

Image captioning example

This layer captures a good
high level embedding of the

image semantic content.

18

Image captioning example

𝑥1

ℎ0
CNN

<START>

19

Image captioning example

𝑜1

𝑥1

ℎ1ℎ0
CNN

<START>

A

20

Image captioning example

𝑜1

𝑥1

ℎ1

𝑥2

ℎ0
CNN

<START> A

A

21

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2ℎ0
CNN

<START> A

A straw

22

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑥3

ℎ0
CNN

<START> A straw

A straw

23

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3ℎ0
CNN

<START> A straw

A straw hat

24

Image captioning example

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4ℎ0
CNN

<START> A straw hat

<END>A straw hat

25

Image captioning examples

26

Image captioning (bad) examples

27

Any type of RNN can be used in any sequence
task

28

Input

Output

Sequence to sequence

• The sequence to sequence (seq2seq) model is based on the
encoder-decoder architecture to generate a sequence
output for a sequence input

• Both the encoder and the decoder use RNNs to handle
sequence inputs of variable length.

• The hidden state of the encoder is used directly to initialize
the decoder hidden state.

29

Sequence to sequence

• Sequence to sequence models are a special case of encoder-
decoder architectures.

• The hidden state of the encoder is used directly to initialize
the decoder hidden state to pass information from the
encoder to the decoder.

30

Encoder-decoder

• The encoder-decoder is a design pattern.

• The encoder’s role is to encode the inputs into state, which often
contains several tensors.

• Then the state is passed into the decoder to generate the outputs.

• The encoder and the decoder can have different architectures, e.g.,
in image captioning the encoder is a CNN and the decoder is an RNN.

31

Feedforward in sequence-to-sequence models

DecoderEncoder

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5ℎ0

𝑜6

𝑥6

ℎ6

Input sequence

Hello world <END> <START>

Predicted output sequence

Olá mundo <END>

32

Encoder and decoder have different parameters

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

Input sequence

Hello world <END> <START>

𝑊∗ 𝑊∗

DecoderEncoder

Olá mundo <END>

33

Types of RNNs

• Recurrent Neural Networks

• Gated Recurrent Neural Network

• Long-term Short-Term Memory

• All three types of RNNs, try to tackle the memory problem of RNNs,
also known as vanishing or exploding gradient problem.

• There are many variations of each one of these three types of RNNs.

34

Feedforward

Output predictions

Inputs

States

𝑥1

ℎ0

35

Feedforward

𝑜1

𝑥1

ℎ1

Output predictions

Inputs

States
ℎ0

36

Feedforward

𝑜1

𝑥1

ℎ1

𝑥2

Output predictions

Inputs

States
ℎ0

37

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

Output predictions

Inputs

States
ℎ0

38

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑥3

Output predictions

Inputs

States
ℎ0

39

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

Output predictions

Inputs

States
ℎ0

40

Feedforward

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Output predictions

Inputs

States
ℎ0

41

Parameter sharing

• There is only one RNN that runs through the sequence

• It has only one set of parameters

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Output predictions

Inputs

States
ℎ0

𝑊∗

42

Elman’s Recurrent Neural Network

• Elman’s Recurrent Neural Network (RNN) processes
sequences of data by processing each step t.

• The RNN unit is a recurrent function.

• The goal is to predict the
output y at each step t.

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

𝐿𝑡

𝑦𝑡

RNN

43

Elman’s Recurrent Neural Network

• The RNN unit preserves information from:
• previous state ℎ𝑡−1;
• current input data input 𝑥𝑡.

• The RNN unit is a recurrent function:

ℎ𝑡 = 𝜙 𝑊ℎℎ 𝑊𝑥ℎ ⋅
ℎ𝑡−1
𝑥𝑡

+ 𝑏ℎ

• W𝑥ℎ and Wℎℎ are the RNN parameters matrix
• The output at each step t is:

𝑜𝑡 = ℎ𝑡 ⋅ 𝑊ℎ𝑞 + 𝑏𝑞

ℎ𝑡−1

𝑥𝑡

𝑥𝑡

ℎ𝑡ℎ𝑡−1

𝑜𝑡

44

State and output are too tightly connected

• In Elman’s RNN the output and the state are derived from the
same variable.

• A unit’s state should give more emphasis to the current data or
the previous state.

• State passing mechanism should be able to control the amount of
information from data and/or previous state that is encoded in a
state
• A better approach is to make a stronger separation between state and

output.

• GRUs and LSTMs are the best examples of such idea.

45

Gated Recurrent Unit: Old state information

• Introduces a reset memory and update state functions

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

46

Gated Recurrent Unit: New candidate state

• Introduces a reset memory and update state functions

• Computes a candidate hidden state

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

47

Gated Recurrent Unit

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 1 − 𝑍𝑡 ⨀ ෨ℎ𝑡+ 𝑍𝑡⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

• The new hidden state is a mixture of the candidate hidden
state and the previous hidden state.

48

Gated Recurrent Unit

• The reset gate controls the information that is
deleted from the previous state:

• The update gate controls the information that is
preserved from the previous state:

• The output is computed from the cell memory:
𝑜𝑡 = 𝑔𝑦 𝑐𝑡

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

𝐿𝑡

𝑦𝑡

GRU

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 1 − 𝑍𝑡 ⨀ ෨ℎ𝑡+ 𝑍𝑡⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

49

Long-Short Term Memory

• Key idea 1: Separate state from memory.
• This allows to better preserve memory from past states and still

generate the correct output from the hidden state.

• Key idea 2: Put the memory along an uninterrupted path.
• It avoids the vanishing gradient problem and lets information

propagate backwards.

ℎ𝑡−2

𝑜𝑡

𝑥𝑡

LSTM

𝑐𝑡−2

ℎ𝑡−1

𝑐𝑡−1

𝑜𝑡

𝑥𝑡

LSTM ℎ𝑡

𝑐𝑡

ℎ𝑡−3

𝑐𝑡−3

𝑜𝑡

𝑥𝑡

LSTM

50

𝑊∗

Training loss

𝑜1

𝑥1

ℎ1

𝑜2

𝑥2

ℎ2

𝑜3

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

𝐿1 𝐿2 𝐿3 𝐿4 𝐿5

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 Output ground truth

Output predictions

Inputs

States

Parameters matrix

Loss function

ℎ0

56

Training with teacher forcing

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

𝐿4 𝐿5 𝐿6

𝑦4 𝑦5 𝑦6

True output sequence

Input sequence True output sequence

Hello world <END> Olá mundo<START>

Olá mundo <END>

58

Training with reinjection

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑜4

𝑥4

ℎ4

𝑜5

𝑥5

ℎ5

Predicted output sequence

ℎ0

𝑜6

𝑥6

ℎ6

𝐿4 𝐿5 𝐿6

𝑦4 𝑦5 𝑦6

True output sequence

Input sequence

Hello world <END> <START>

Olá mundo <END>

59

Inference – Greedy Search

61

• The conditional probability of this
output sequence is

0.5×0.4×0.4×0.6=0.048

• The conditional probability of the
output sequence “A”, “C”, “B”, and
“<eos>” is

0.5×0.3×0.6×0.6=0.054

Inference – Beam Search

62

RNN-based dialog state tracking

• A first RNN is used to track the state of the conversation.

• It’s input data are the utterances of the conversation.

• Agent utterances can be generated from the conversation
state.

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. 2015. "Building End-
To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/11957/12160

𝑜𝑡−2

𝑥𝑡−2

ℎ𝑡−2

𝑜𝑡−1

𝑥𝑡−1

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

63

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/11957/12160

Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN
64

Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

State tracking RNN

65

Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

Language generator decoder RNN

State tracking RNN

66

Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

Language generator decoder RNN

State tracking RNN

67
Utterance’s encoder RNN

Initialization

• Word embeddings are initialized from word2vec

• Utterance encoders and decoders are initialized with QA
from movie subtitles

68

Sample neural chatbot output

69

Summary

• Sequence models:
• RNNs can nicely model sequence data.
• GRUs and LSTMs overcome some of the memory limitations.

• Architectures:
• Deep archictures to capture complex interactions
• Bi-direction architectures to capture long-term dependencies
• Encoder-decoder
• Sequence to sequence

• Tasks: machine translation, image captioning, summarization.

• Dive into Deep Learning chapters 8 and 9:
• http://d2l.ai/chapter_recurrent-neural-networks/index.html
• http://d2l.ai/chapter_recurrent-modern/index.html

70

http://d2l.ai/chapter_recurrent-neural-networks/index.html
http://d2l.ai/chapter_recurrent-modern/index.html

