
Sequence Models
RNNs, GRU, LSTMs and 

applications to image captioning and summarization.

Web Search
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From static data to sequence data

• There are many domains where data samples have a 
dynamic nature or unknown size.

• CNNs and traditional multi-layer networks cope well with 
fixed-size input and output.

• However, there are many domains where:
• Input data is a sequence

• Output is a sequence
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Sequence problems: trend analysis
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Sequence problems: Machine translation

• Translating a sentence from one language to another 
language.
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Sequence problems: Sentiment analysis

• Detection of excitement, depression, frustration, etc. 

Majumder, Navonil, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, and Erik Cambria. 
"Dialoguernn: An attentive rnn for emotion detection in conversations." AAAI  2019.
Tang, Duyu, Bing Qin, and Ting Liu. "Aspect level sentiment classification with deep memory network." arXiv 2016. 5



Usually, data is not

Independent and Identically Distributed (IID).
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There are several possible architectures
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Web data sequence modeling tasks
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Web data sequence modeling tasks
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Information extraction with Spacy
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Information extraction
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Auto regressive models

• In auto-regressive models the current output depends on 
the current input and a limited span of past inputs.

𝑜𝑡 = 𝑝 𝑥𝑡 |𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝜏
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Latent auto regressive models (RNNs)

• In latent auto-regressive models, the model depends on the 
current input and a hidden state, capturing the past inputs:
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Input symbol and embedding

• Input symbol can be a word, any other symbol, or it may not 
exist because it is a direct measure.

• Input embedding is the vectorial representation of the 
symbol.
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Hidden state

• The hidden state:
• is propagated from state to state, and

• it works as a memory to help decisions in later parts of the sequence.
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Output embedding and symbol

• Output embedding the RNN prediction in the output space

• Output symbol is obtained by applying the softmax to the 
embedding to compute the most likely word
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Any type of RNN can be used in any sequence 
task
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Image captioning example

This layer captures a good 
high level embedding of the 

image semantic content.
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Image captioning example
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Image captioning example
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Image captioning example
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Image captioning example
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Image captioning example
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Image captioning example
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Image captioning example
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Image captioning examples

26



Image captioning (bad) examples
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Any type of RNN can be used in any sequence 
task
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Sequence to sequence

• The sequence to sequence (seq2seq) model is based on the 
encoder-decoder architecture to generate a sequence 
output for a sequence input

• Both the encoder and the decoder use RNNs to handle 
sequence inputs of variable length. 

• The hidden state of the encoder is used directly to initialize 
the decoder hidden state.
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Sequence to sequence

• Sequence to sequence models are a special case of encoder-
decoder architectures.

• The hidden state of the encoder is used directly to initialize 
the decoder hidden state to pass information from the 
encoder to the decoder.
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Encoder-decoder

• The encoder-decoder is a design pattern.

• The encoder’s role is to encode the inputs into state, which often 
contains several tensors. 

• Then the state is passed into the decoder to generate the outputs. 

• The encoder and the decoder can have different architectures, e.g., 
in image captioning the encoder is a CNN and the decoder is an RNN.

31



Feedforward in sequence-to-sequence models
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Encoder and decoder have different parameters
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Types of RNNs

• Recurrent Neural Networks

• Gated Recurrent Neural Network

• Long-term Short-Term Memory

• All three types of RNNs, try to tackle the memory problem of RNNs, 
also known as vanishing or exploding gradient problem.

• There are many variations of each one of these three types of RNNs.
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Feedforward
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Feedforward

𝑜1

𝑥1

ℎ1

𝑥2

Output predictions

Inputs

States
ℎ0

37



Feedforward
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Feedforward
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Feedforward
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Feedforward
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Parameter sharing

• There is only one RNN that runs through the sequence

• It has only one set of parameters
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Elman’s Recurrent Neural Network

• Elman’s Recurrent Neural Network (RNN) processes 
sequences of data by processing each step t.

• The RNN unit is a recurrent function.

• The goal is to predict the 
output y at each step t.

ℎ𝑡−1

𝑜𝑡

𝑥𝑡

ℎ𝑡

𝐿𝑡

𝑦𝑡

RNN
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Elman’s Recurrent Neural Network

• The RNN unit preserves information from:
• previous state ℎ𝑡−1; 
• current input data input 𝑥𝑡.

• The RNN unit is a recurrent function:

ℎ𝑡 = 𝜙 𝑊ℎℎ 𝑊𝑥ℎ ⋅
ℎ𝑡−1
𝑥𝑡

+ 𝑏ℎ

• W𝑥ℎ and Wℎℎ are the RNN parameters matrix
• The output at each step t is:

𝑜𝑡 = ℎ𝑡 ⋅ 𝑊ℎ𝑞 + 𝑏𝑞

ℎ𝑡−1

𝑥𝑡

𝑥𝑡

ℎ𝑡ℎ𝑡−1

𝑜𝑡
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State and output are too tightly connected

• In Elman’s RNN the output and the state are derived from the 
same variable.

• A unit’s state should give more emphasis to the current data or 
the previous state.  

• State passing mechanism should be able to control the amount of 
information from data and/or previous state that is encoded in a 
state
• A better approach is to make a stronger separation between state and 

output.

• GRUs and LSTMs are the best examples of such idea.
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Gated Recurrent Unit: Old state information

• Introduces a reset memory and update state functions

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡
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Gated Recurrent Unit: New candidate state

• Introduces a reset memory and update state functions

• Computes a candidate hidden state

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡
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Gated Recurrent Unit

෨ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊𝑐 ⋅
𝑅𝑡⨀ ℎ𝑡−1

𝑥𝑡

𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 1 − 𝑍𝑡 ⨀ ෨ℎ𝑡+ 𝑍𝑡⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡

• The new hidden state is a mixture of the candidate hidden 
state and the previous hidden state.
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Gated Recurrent Unit

• The reset gate controls the information that is 
deleted from the previous state:

• The update gate controls the information that is 
preserved from the previous state:

• The output is computed from the cell memory: 
𝑜𝑡 = 𝑔𝑦 𝑐𝑡
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𝑍𝑡 = 𝜎𝑡 𝑊𝑢 ⋅
ℎ𝑡−1
𝑥𝑡

ℎ𝑡 = 1 − 𝑍𝑡 ⨀ ෨ℎ𝑡+ 𝑍𝑡⨀ ℎ𝑡−1

𝑅𝑡 = 𝜎𝑟 𝑊𝑟 ⋅
ℎ𝑡−1
𝑥𝑡
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Long-Short Term Memory

• Key idea 1: Separate state from memory. 
• This allows to better preserve memory from past states and still 

generate the correct output from the hidden state.

• Key idea 2: Put the memory along an uninterrupted path. 
• It avoids the vanishing gradient problem and lets information 

propagate backwards.
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𝑊∗
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Training with teacher forcing
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Training with reinjection
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Inference – Greedy Search

61

• The conditional probability of this 
output sequence is

0.5×0.4×0.4×0.6=0.048

• The conditional probability of the 
output sequence “A”, “C”, “B”, and 
“<eos>” is

0.5×0.3×0.6×0.6=0.054



Inference – Beam Search
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RNN-based dialog state tracking

• A first RNN is used to track the state of the conversation.

• It’s input data are the utterances of the conversation.

• Agent utterances can be generated from the conversation 
state.

Serban, Iulian V., Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.  2015.  "Building End-
To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/11957/12160
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Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN
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Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

State tracking RNN
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Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

Language generator decoder RNN

State tracking RNN
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Hierarchical Recurrent Encoder-Decoder

Utterance’s encoder RNN

Language generator decoder RNN

State tracking RNN
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Utterance’s encoder RNN



Initialization

• Word embeddings are initialized from word2vec

• Utterance encoders and decoders are initialized with QA 
from movie subtitles
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Sample neural chatbot output
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Summary

• Sequence models:
• RNNs can nicely model sequence data.
• GRUs and LSTMs overcome some of the memory limitations.

• Architectures:
• Deep archictures to capture complex interactions
• Bi-direction architectures to capture long-term dependencies
• Encoder-decoder
• Sequence to sequence

• Tasks: machine translation, image captioning, summarization.

• Dive into Deep Learning chapters 8 and 9:
• http://d2l.ai/chapter_recurrent-neural-networks/index.html
• http://d2l.ai/chapter_recurrent-modern/index.html
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