Concurrent Programming:
Languages and Techniques

Lecture 1: Introduction

15 September 2022

MIEI - Integrated Masters in Comp. Science and Informatics
Specialization Block

Bernardo Toninho
(with Antonio Ravara and Carla Ferreira

)
. NOVALINCS

Part |
Administrivia

Administrivia

3 Modules:

1. Message-passing Concurrency (Go)
2. Message-passing Conc. + Distribution (Erlang)

3. Memory safe Shared-memory Concurrency (Rust)

Administrivia

Grading:
- 3 Mini-Projects (5% each, 2 best)
- 3 Projects (20% each)

- 3 Mini-tests (10% each, no min. grade)

Final grade is 70% projects (and mini) + 30% tests

Administrivia

Projects and Mini-Projects:
- Groups of 2 students (3 only If approved!)
- Mini-projects are 1 week-long small scale

- Projects are 2 week-long medium/small scale

Administrivia
Mini-tests (~1h30 duration):

- After each module, covers material from the module.

- Multiple choice (12 points), focusing more on the
concepts / theoretical aspects.

- Open answer (8 points)
- Includes (open answer) questions about the project!

- Sample test will be made available in due time.

Administrivia

Typical module structure:

- Week 1: Intro to language & prog. paradigm
- Week 2: Mini-Project handout (due following week)
- Week 3: Project handout (due in 2 weeks)

- Week 4: Final lecture and project support

Administrivia

Important dates (tentative):

- Week of Oct-3: Mini-Project 1 Deadline
- Week of Oct-17: Project 1 Deadline

- Week of Oct-24: Mini-Test 1

- Week of Oct-31: Mini-Project 2 Deadline

- Week of Nov-14: Project 2 Deadline
- Week of Nov-21: Mini-Test 2
- Week of Nov-28: Mini-Project 3 Deadline

- Week of Dec-12: Project 3 Deadline
- Week of Dec-19: Mini-Test 3

Part |l
| anguage-based Problem
Solving

Programming is Hard!

- Programming is about convincing machines to do what we

want them to do.

- Systematic and rigorous (“No more, no less”).

- The way In which we communicate with machines shapes

what we can (or can't) do.

- ...and how easy It Is achieve It.

Programming is Hard!

- Programming languages and their features shape
what our programs can and cannot do.

- "It the only tool you have is a hammer, you tend to
see every problem as a nall.”

- Lets think a bit about what kind of “hammers” we

have. ..

What about PLs?

- [wo axes:
e \What kind of runtime errors are allowed?

 What idioms and paradigms are facilitated by
language features?

Things go Wrong

- Different languages allow programs to go wrong in
different ways.

- We distinguish between runtime and compile-time errors:
* Anything goes (e.g. Python)

 Memory violation errors (e.g. C/C++)

* Null pointer dereferencing (e.g. Java)

 Memory safety (e.g. Rust)

Languages as lools

- Beyond errors, languages also provide abstractions

that can be better suited for certain problems.

- Languages and their implementations have a very

wide range of focus.

- Difterent problems are better solved using specific

(language) teatures.

L anguages as [ools

Writing a compiller / interpreter / static analyzer?

data Type
= Base
| Arrow Type Type
deriving (Eq, Ord, Read, Show)

Expr.java

ExprBetaReducer.java
data Term
= Const ExprBuilder.java
| Var Int —— deBruijn indexing; the nearest enclosing lambda binds Var ©

| Lam Type Term
| App Term Term
deriving (Eq, Ord, Read, Show)

ExprEtaReducer.java

ExprNone.java
check :: [Type]l] -> Term -> Maybe Type

check env Const = return Base

check env (Var v) = atMay env v \VISE;
check env (Lam ty tm) = Arrow ty <$> check (ty:env) tm

check env (App tm tm') = do
Arrow 1 o <— check env tm

ExprParser.java

ExprParserUntyped.java

i' <- check env tm' ExprPredicate.java
guard (i == 1i')
return o
ExprPrinter.java
eval :: Term —> Term

eval (App tm tm') = case eval tm of ExprRichBuilder.java
Lam _ body —> eval (subst @ tm' body)

il g = ExprToDeBruijn.java

subst :: Int —> Term —> Term —> Term

subst n tm Const = Const

subst n tm (Var m) = case compare m n of

LT — Var m

ExprToFreeNames.java

D
D
D
D
D
D
D
O
D
D
D
D
D

ExprToType.java

L anguages as [ools

Web development?

< method="post" action="#" id="formvalue" onkeyup="
drawChart()" />

</ >
</ >

type="text/javascript” src="https://www.google.com/jsapi”></
>
< type="text/javascript">
var bid = 43;
var ask 21;

google.load("visualization”, "1", {packages:["corechart™]});
google.setOnLoadCallback(drawChart);
function drawChart() {
var data = google.visualization.arrayToDataTable([
['Price’, 'Quantity’'],
['value #1', bid],
['value #2', ask],

1);

Javascript

view :
o0

div

type filterFn = (item: string) => bool;

/ The higher-order-function takes an array and a function as
function filterItems(arr: string[], fn: filterFn): string[] {
const newArray: string[] = [];
arr.forEach(item => {
if(fn(item)){
newArray.push(item);

}

arguments

});

return newArray;

} viewlnput :

Model -> Html Msg
view model =

class "todomvc-wrapper”
style [("visibility”, "hidden”)]

section

L
L

)

)

]

class "todoapp”]

lazy viewlInput model,field

lazy2 viewEntries model.visibility model.entries
lazy2 viewControls model.visibility model.entries

infoFooter

String -> Html Msg

viewlnput task =

header
[class "header”]

function checkNameLength(name: string) {

return name.length >= 10; [hi

} ;

const doctorList = ["DoctorOne", "DoctorTwo", "DoctorThree", "DoctorFour"];

sing the array and a function as

'/ We are pas arguments to filterItems method.

tonst output = filterItems(doctorList, checkNameLength);

console. log(output); ["DoctorThree", "DoctorFour"]

Typescript

[] [text "todos”]

input

L

[| J - - - - - -

class "new-todo”

placeholder "What needs to be done?”
autofocus True

value task

name "newTodo”

onlnput UpdateField

onEnter Add

Elm

L anguages as [ools

Device driver?

#include ¥ >
#include]
#include <lin ‘
#include <asm/uaccess.

/// Communicating to the sensor, updates the latest wrench.
/// # Returns
/// ‘Ok(wrench)' if succeeds, ‘Err(reason)’ if failed.
pub fn update(&mut self) —> Result<Wrench, Error> {
let res = receive_message(&mut self.port);
MODULE LICENSE("GPL");
MODULE DESCRIPTION("Device Drivel
MODULE_AUTHOR("Appu Sajeev");

// Regardless of success or failure of receive_message(), request the next single data.
// If we do not so, after updating failed once, updating will fail everytime due to no reception from the sensor.

: Wirc t t h()?;
snsiT e msg[1={6}; self.request_next_wrench()

static short readPos=0;

static int times = 0; let res = match res {

Ok(res) => res,
Err(e) => {
static int dev_open(struct inode *, struct file *); return Err(e);
static int dev rls(struct inode *, struct file *);

static ssize t dev_read(struct file *, char *, size t, loff_t *);

: 5 . . . = i
static ssize t dev write(struct file *, const char *, size t, loff t *);

let (fx, fy, fz, mx, my, mz) = (0..6)

static struct file operations fops = oL JeS] 5 B s 7l

{

.filter_map(|start| res.get(start..start + 2))
.map(|res| i16::from_le_bytes(res.try_into().unwrap()))
.map(|digital| digital as f64)

.next_tuple()

.read = dev read,
.open = dev_open,
.write = dev write,

.release = dev rls, .ok_or(Error::ParseData)?;

let rated_binary = self.product.rated_binary();
let force = Triplet::new(fx, fy, fz)

int init_module(void) .map_entrywise(self.rated_wrench.force, |left, right| {

{

left / rated_binary * right
R

let torque = Triplet::new(mx, my, mz)

int t = register chrdev(29,"

if (t<0) printk(KERN ALERT "De
else printk(KERN ALERT "De

.map_entrywise(self.rated_wrench.torque, |left, right| {

left / rated_binary * right

1);
return t;

self.last_raw_wrench = Wrench::new(force, torque);

Ok(self.last_wrench())
void cleanup module(void)

Rust

pub struct Elf<'a> {
pub data: &'a [u8],
header: &'a header::Header

impl<'a> Elf<'a> {

pub fn from(data: &'a [u8]) -> Result<Elf<'a>, String> {

L anguages as [ools

Operating System?

if data.len() < header::SIZEOF_EHDR {

Err(format!("Elf: Not enough data: {} < {}", data.len(), header::SIZEOF_EHDR))
:SELFMAG] != header::ELFMAG {
Err(format!("Elf: Invalid magic: {:?} !'= {:?}", &datal..header::SELFMAG], header::ELFMAG))
} else if data.get(header::EI_CLASS) !'= Some(&header::ELFCLASS) {
Err(format!("El1f: Invalid architecture: {:?} != {:?7}", data.get(header::EI_CLASS), header::ELFCLASS))

} else if &datal..header:

} else {
Ok(Elf {
data,

header: unsafe { &k(data.as_ptr() as usize as *const header::Header) }

})

pub fn sections(&'a self) ->
ElfSections {
data: self.data,
header: self.header,
i: 0

pub fn segments(&'a self) ->
ElfSegments {
data: self.data,
header: self.header,
i: 0

ElfSections<'a> {

E1fSegments<'a> {

Rust

module Rx(Time:Mirage_time.S) (ACK: Ack.M) = struct

open Tcp_packet
module StateTick = State.Make(Time)

(x Individual received TCP segment
TODO: this will change when IP fragments work)
type segment = { header: Tcp_packet.t; payload: Cstruct.t }

let pp_segment fmt {header; payload} =
Format. fprintf fmt
"RX seg seq=%a acknum=%a ack=%b rst=%b syn=%b fin=%b win=%d len=%d"
Sequence.pp header.sequence Sequence.pp header.ack_number
header.ack header.rst header.syn header.fin
header.window (Cstruct.length payload)

let len seg =
Sequence.of_int ((Cstruct.length seg.payload) +
(if seg.header.fin then 1 else 0) +

(if seg.header.syn then 1 else 0))

(x Set of segments, ordered by sequence number x)
module S = Set.Make(struct
type t = segment
let compare a b = (Sequence.compare a.header.sequence b.header.sequence)
end)

type t = {
mutable segs: S.t;
rx_data: (Cstruct.t list option * Sequence.t option) Lwt_mvar.t; (% User receive channel x)
ack: ACK.t;
tx_ack: (Sequence.t * int) Lwt_mvar.t; (% Acks of our transmitted segs x)
wnd: Window.t;
state: State.t;

OCaml

L anguages as [ools

- Difterent lang. impl. provide different trade-offs:

Efficiency
Correctness

Rapid prototyping
Ease of refactoring

Interoperabillity

L anguages as [ools

Correctness is mandatory, but how hard it is to get it
will often depend on the tool / language.

yuvraj@DeathNote:
Search Results:

William: SBM GSOH likes sports,TV,dining

Josh:SIM likes sports,movie theatre
Segmentation fault (core dumped)
yuvraj@bDeathNote:~ ad- "St-C-exer S l

Part |
Concurrency

Concurrency

INn a single processor, programs executeao
‘simultaneously”

- Scheduler distributes “processor time” to running

programs (processes)

- Processes compete for processor access

- This Is true regardless of the number of physical

Drocessors.

Parallelism vs Concurrency

Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
iINndependently executing processes.

B
3

picture from https://talks.golang.org/

https://talks.golang.org/

Parallelism vs Concurrency

Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
iINndependently executing processes.

Concurrency vs Parallelism

- Concurrency is not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have O parallelism.

- Well-written concurrency may run better on a multiprocessor.

Concurrency and Independence

- Concurrency is a way to structure work into
iINndependent pieces ...

... but then you have to coordinate those pieces

Andrew Gerrand (Golang)

- “Independent” here refers to a way of thinking about
problems, and structuring their solutions.

- Concurrent processes may indeed interfere/interact

Type of Concurrency

Shared memory concurrency:

- Processes coordinate by reading and writing to memory locations that

are shared.

- Concurrent memory accesses managed by locks.

Message-passing concurrency:

- Processes coordinate by sending and receiving messages along

channels.

- More abstract / higher-level than shared memory concurrency

-C
per

nanne

‘orm C

operations need not be managed (processes may concurrently

nannel ops safely).

Challenges

- Reasoning about possible executions Is a combinatoric

poroblem — state explosion problem.

- With P =P+ ; P2and Q = Q1; Q2, P and Q in parallel

have 6 possible executions / interleavings.

- Errors can be quite difficult to diagnose / reproduce.

Safe Concurrency

What do we mean by safe”? What can go wrong?
- Uncontrolled concurrent accesses to data (Data Races)
- Being stuck forever acquiring a lock (Deadlock)

- Being stuck forever trying to read / write to a channel
(Deadlock)

- Repeating the same interaction without doing any useful
work (Livelock)

Safe Concurrency

Correctness properties:

- Mutual exclusion (no conflicts — ensures safety/
consistency)

- Deadlock-freedom (the system as a whole is never
fully “stuck”)

- Progress (No subsystem is stuck waiting forever)

Part ||
Concurrency and
Programming Languages

Concurrency and PLs

- Concurrency is about how processes/threads
coordinate to achieve a goal.

- ...but we don't program in “concurrency’, we do it in a
concrete PL.

- Concurrency primitives and programming paradigms
change drastically from language to language.

Concurrency and PLs

Can / how do languages help in achieving correctness / ruling out
errors’?

- Rust: Resource ownership (compile-time analysis)

- Go: High-level concurrency realized via channels and
‘goroutines”.

- Erlang: RHigh-level concurrency realized with the actor model.

Concurrency and PLs

Rust:
- No garbage collector (a la C/C++).
- Memory safety (not a la C/C++!).

- Memory is managed through a system of ownership with a set
of rules that the compiler checks:

- Each value in Rust has an owner
- There can be only one owner at a time

- When the owner goes out of scope, the value is be dropped.

Concurrency and PLs

Rust:
- Ownership can be borrowed.

- (Im)mutable references generate (Im)mutable
DOrrows.

- At any given time, you can have either one mutable
reference or any number of immutable references.

- Everything else is a compiler error.

Concurrency and PLs

Rust:

- At any given time, you can have either one
mutable reference or any number of immutable
references.

- Sounds a lot like the discipline to prevent data-
races Iin shared memory concurrency, doesn’t it?
More later :)

Concurrency and PLs
Go:

- Designed by Google for systems / cloud
programming.

- Implementation Is garbage-collected.
- Channel-based concurrency built-in.
- (Typed) channels are first-class objects.

- Lightweight threads built-in (goroutines)

Concurrency and PLs

Go:

- Threads can read/write to channels concurrently, safely...
but not all concurrency woes are solved!

- Pushes developers to synchronize threads using channels.

- Provides various primitives to use and interact with
channels.

- Various concurrency prog. patterns become crucial when
structuring your code... more later :)

Concurrency and PLs

Erlang:
- Aimed at large telecom applications

- Distributed, reliable, soft real-time concurrent
systems

- Actor-based concurrency

- Special case of message-passing concurrency

Concurrency and PLs

Erlang:
- Actors are Isolated computational units

- Communicate by exchanging asynchronous
MEeSSages

- Messages are gueued In a mailbox and
processed sequentially.

- No assumptions on message delivery guarantees.

Concurrency and PLs

Erlang:
- Robust failure-handling mechanism.

- Actors can monitor other actors and detect
termination.

- "Let It crash™ philosophy
- Monitors can restart / kill monitored actors.

- ...more later :)

Some new “hammers” for specific “nails”:

Concurrency and PLs

- Rust: Compile-time guarantees of memory safety and race-freedom
for shared memory concurrency. Systems / low-level programming.

- Go: High-level concurrency realized by “goroutines” that

share

memory by communicating over channels. High-level / Cloud /

Backend programming.

- Erlang: High-level concurrency realized with the actor model. Actors

exchange messages asynchronously. Faillure-handling via
agents and supervision trees. Distributed, reliable, soft rea
concurrent systems.

monitor

-time

Takeaway

- Programming languages should be just like any other tool In

your arsenal.

- You should be flexible enough to use the right tool for the job!

- In this course, you will explore three ditferent concurrent

programming paradigms and thelr common idioms.

- By the end, you will have (hopefully) more tools in your toolbox!

That’s it for today...

Next week:
- Message-passing concurrency module (Go)
- Intro to Go and its message-passing concurrency features

- Some simple programming exercises in Go to get you started.

