
Concurrent Programming:
Languages and Techniques

Lecture 1: Introduction

Bernardo Toninho
(with António Ravara and Carla Ferreira)

15 September 2022

MIEI - Integrated Masters in Comp. Science and Informatics  
Specialization Block

Part I
Administrivia

Administrivia
3 Modules:

1. Message-passing Concurrency (Go)

2. Message-passing Conc. + Distribution (Erlang)

3. Memory safe Shared-memory Concurrency (Rust)

Administrivia
Grading:

- 3 Mini-Projects (5% each, 2 best)

- 3 Projects (20% each)

- 3 Mini-tests (10% each, no min. grade)

Final grade is 70% projects (and mini) + 30% tests

Administrivia
Projects and Mini-Projects:

- Groups of 2 students (3 only if approved!)

- Mini-projects are 1 week-long small scale

- Projects are 2 week-long medium/small scale

Administrivia
Mini-tests (~1h30 duration):

- After each module, covers material from the module.

- Multiple choice (12 points), focusing more on the
concepts / theoretical aspects.

- Open answer (8 points)

- Includes (open answer) questions about the project!

- Sample test will be made available in due time.

Administrivia
Typical module structure:

- Week 1: Intro to language & prog. paradigm

- Week 2: Mini-Project handout (due following week)

- Week 3: Project handout (due in 2 weeks)

- Week 4: Final lecture and project support

Administrivia
Important dates (tentative):

- Week of Oct-3: Mini-Project 1 Deadline

- Week of Oct-17: Project 1 Deadline

- Week of Oct-24: Mini-Test 1

- Week of Oct-31: Mini-Project 2 Deadline

- Week of Nov-14: Project 2 Deadline

- Week of Nov-21: Mini-Test 2

- Week of Nov-28: Mini-Project 3 Deadline

- Week of Dec-12: Project 3 Deadline

- Week of Dec-19: Mini-Test 3

Part II
Language-based Problem

Solving

Programming is Hard!
- Programming is about convincing machines to do what we

want them to do.

- Systematic and rigorous (“No more, no less”).

- The way in which we communicate with machines shapes
what we can (or can’t) do.

- …and how easy it is achieve it.

Programming is Hard!
- Programming languages and their features shape

what our programs can and cannot do.

- “If the only tool you have is a hammer, you tend to
see every problem as a nail.”

- Lets think a bit about what kind of “hammers” we
have…

What about PLs?
- Two axes:

• What kind of runtime errors are allowed?

• What idioms and paradigms are facilitated by
language features?

Things go Wrong
- Different languages allow programs to go wrong in

different ways.

- We distinguish between runtime and compile-time errors:

• Anything goes (e.g. Python)

• Memory violation errors (e.g. C/C++)

• Null pointer dereferencing (e.g. Java)

• Memory safety (e.g. Rust)

Languages as Tools
- Beyond errors, languages also provide abstractions

that can be better suited for certain problems.

- Languages and their implementations have a very
wide range of focus.

- Different problems are better solved using specific
(language) features.

Languages as Tools
Writing a compiler / interpreter / static analyzer?

VS

Languages as Tools
Web development?

Javascript Typescript Elm

Languages as Tools
Device driver?

C/C++ Rust

Languages as Tools
Operating System?

Rust OCaml

Languages as Tools
- Different lang. impl. provide different trade-offs:

• Efficiency

• Correctness

• Rapid prototyping

• Ease of refactoring

• Interoperability

Languages as Tools
Correctness is mandatory, but how hard it is to get it
will often depend on the tool / language.

Part II
Concurrency

Concurrency
- In a single processor, programs executed

“simultaneously”

- Scheduler distributes “processor time” to running
programs (processes)

- Processes compete for processor access

- This is true regardless of the number of physical
processors.

Parallelism vs Concurrency
Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
independently executing processes.

picture from https://talks.golang.org/

https://talks.golang.org/

Parallelism vs Concurrency
Parallelism: Programming as the simultaneous
execution of (possibly related) computations.

Concurrency: Programming as the composition of
independently executing processes.

Concurrency vs Parallelism

- Concurrency is not parallelism, but parallelism is enabled by
concurrency!

- Programs can be concurrent and have 0 parallelism.
- Well-written concurrency may run better on a multiprocessor.

Concurrency and Independence

- Concurrency is a way to structure work into
independent pieces …

 Andrew Gerrand (Golang)

… but then you have to coordinate those pieces

- “Independent” here refers to a way of thinking about
problems, and structuring their solutions.

- Concurrent processes may indeed interfere/interact

Type of Concurrency
Shared memory concurrency:

- Processes coordinate by reading and writing to memory locations that
are shared.

- Concurrent memory accesses managed by locks.

Message-passing concurrency:

 - Processes coordinate by sending and receiving messages along
channels.

 - More abstract / higher-level than shared memory concurrency

 - Channel operations need not be managed (processes may concurrently
perform channel ops safely).

Challenges
- Reasoning about possible executions is a combinatoric

problem — state explosion problem.

- With P = P1 ; P2 and Q = Q1 ; Q2, P and Q in parallel
have 6 possible executions / interleavings.

- Errors can be quite difficult to diagnose / reproduce.

Safe Concurrency
What do we mean by safe? What can go wrong?

- Uncontrolled concurrent accesses to data (Data Races)

- Being stuck forever acquiring a lock (Deadlock)

- Being stuck forever trying to read / write to a channel
(Deadlock)

- Repeating the same interaction without doing any useful
work (Livelock)

Safe Concurrency
Correctness properties:

- Mutual exclusion (no conflicts — ensures safety/
consistency)

- Deadlock-freedom (the system as a whole is never
fully “stuck”)

- Progress (No subsystem is stuck waiting forever)

Part III
Concurrency and

Programming Languages

Concurrency and PLs
- Concurrency is about how processes/threads
coordinate to achieve a goal.

- …but we don’t program in “concurrency”, we do it in a
concrete PL.

- Concurrency primitives and programming paradigms
change drastically from language to language.

Concurrency and PLs
Can / how do languages help in achieving correctness / ruling out
errors?

- Rust: Resource ownership (compile-time analysis)

- Go: High-level concurrency realized via channels and
“goroutines”.

- Erlang: High-level concurrency realized with the actor model.

Concurrency and PLs
Rust:

 - No garbage collector (a la C/C++).

 - Memory safety (not a la C/C++!).

 - Memory is managed through a system of ownership with a set
of rules that the compiler checks:

 - Each value in Rust has an owner

 - There can be only one owner at a time

 - When the owner goes out of scope, the value is be dropped.

Concurrency and PLs
Rust:

 - Ownership can be borrowed.

 - (Im)mutable references generate (im)mutable
borrows.

 - At any given time, you can have either one mutable
reference or any number of immutable references.

 - Everything else is a compiler error.

Concurrency and PLs
Rust:

 - At any given time, you can have either one
mutable reference or any number of immutable
references.

 - Sounds a lot like the discipline to prevent data-
races in shared memory concurrency, doesn’t it?
More later :)

Concurrency and PLs
Go:

 - Designed by Google for systems / cloud
programming.

 - Implementation is garbage-collected.

 - Channel-based concurrency built-in.

 - (Typed) channels are first-class objects.

 - Lightweight threads built-in (goroutines)

Concurrency and PLs
Go:

 - Threads can read/write to channels concurrently, safely…
but not all concurrency woes are solved!

 - Pushes developers to synchronize threads using channels.

 - Provides various primitives to use and interact with
channels.

 - Various concurrency prog. patterns become crucial when
structuring your code… more later :)

Concurrency and PLs
Erlang:

 - Aimed at large telecom applications

 - Distributed, reliable, soft real-time concurrent
systems

 - Actor-based concurrency

 - Special case of message-passing concurrency

Concurrency and PLs
Erlang:

 - Actors are isolated computational units

 - Communicate by exchanging asynchronous
messages

 - Messages are queued in a mailbox and
processed sequentially.

 - No assumptions on message delivery guarantees.

Concurrency and PLs
Erlang:

 - Robust failure-handling mechanism.

 - Actors can monitor other actors and detect
termination.

 - “Let it crash” philosophy

 - Monitors can restart / kill monitored actors.

 - …more later :)

Concurrency and PLs
Some new “hammers” for specific “nails”:

- Rust: Compile-time guarantees of memory safety and race-freedom
for shared memory concurrency. Systems / low-level programming.

- Go: High-level concurrency realized by “goroutines” that share
memory by communicating over channels. High-level / Cloud /
Backend programming.

- Erlang: High-level concurrency realized with the actor model. Actors
exchange messages asynchronously. Failure-handling via monitor
agents and supervision trees. Distributed, reliable, soft real-time
concurrent systems.

Takeaway

- Programming languages should be just like any other tool in
your arsenal.

- You should be flexible enough to use the right tool for the job!
- In this course, you will explore three different concurrent

programming paradigms and their common idioms.
- By the end, you will have (hopefully) more tools in your toolbox!

That’s it for today…

Next week:
- Message-passing concurrency module (Go)
- Intro to Go and its message-passing concurrency features
- Some simple programming exercises in Go to get you started.

