
Concurrent Programming:
Languages and Techniques

Channel-based Concurrency Module
Lab 1: Introduction to Go

Bernardo Toninho
(with António Ravara and Carla Ferreira)

22 September 2022

MIEI - Integrated Masters in Comp. Science and Informatics  
Specialization Block

Course Infrastructure
- We are going to use GitHub Classroom to handle labs, mini-project and

project submissions.

 http://ctp.di.fct.unl.pt/~btoninho/teaching/lpc-22/

- Today’s (ungraded) assignment is available here:

https://classroom.github.com/a/AgJ6bVhd

- Sign up, get a git repo and hack away. Don’t forget to push.

- Mini-project coming up next week, deadline enforced by GitHub Classroom.

Setup
- Install (a recent version of) Go

- Use whatever IDE you want. Some suggestions:

- VIM + vim-go

- Emacs + go-mode / lsp-mode / …

- VSCode + Go plugin

- GoLand (JetBrains — Free for students)

Go Packages and Modules
- Go relies on modules to manage (external) dependencies and build projects.

- Go relies on packages to manage compilation units and namespaces.

- A module can contain many packages.

- A package can be made up of multiple files, all contained in the same folder.

- Folder names need not match package names, but it is helpful if the names
match.

- Can’t have different package declarations in the same folder.

Go Packages

package main

import (
"fmt"

)

func main() {
fmt.Println("Hello, world!")

}

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…}

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…}

Non-capitalized symbols are not exported.

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…} Visible in packages that import this one.

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…}

package main

import (
“fmt"

 “MyApp/solver”
)

func main() {
 solver.New(…).solve()

fmt.Println("Hello, world!")
}

Assuming a go.mod file defining a MyApp module:

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…}

package main

import (
“fmt"

 “MyApp/solver”
)

func main() {
 solver.New(…).solve()

fmt.Println("Hello, world!")
}

Assuming a go.mod file defining a MyApp module:

Go Packages

package solver

import (
…

)

type internalT struct {…}
func f1() {…}
func f2() {…}
…
type Solver = …
func (x Solver) Solve() {…}

package main

import (
“fmt"

 s “MyApp/solver”
)

func main() {
 s.New(…).solve()

fmt.Println("Hello, world!")
}

Assuming a go.mod file defining a MyApp module:

Lab 1

- Just to get a feel for some simple Go programming.

- Some sprinkles of concurrency with goroutines and channels.

- Enjoy… :)

