
6/2/22

1

Sistemas de
Computação Móvel e
Ubíqua
2021/2022

Data
Management
2021/2022

2

6/2/22

2

Context
Mobile devices tend to have:
◦ Constrained resources (battery, storage)
◦ Variable network conditions
◦ Limited bandwidth
◦ High latency
◦ Periods of disconnection

Challenges for data management:
◦ Provide high availability
◦ Provide responsive data access

3

Disconnected operation
Disconnection
◦ Expected

◦ Due to communication costs, energy saving, location changes, etc.
◦ Unexpected

◦ Due to network unavailability, network congestion, server failures, etc.

Disconnected operation consists in allowing applications
to continue operating during periods of disconnection
◦ Necessary to prepare for disconnection while connected
◦ Design applications for Offline-first or Local-first

Ultimate goal: hide disconnection from users
◦ Can be provided by applications or by the system.

4

6/2/22

3

Challenges #1
How to ensure that clients can access data despite variable
connectivity (and even periods of disconnection)?
Clients need to keep copies of the data locally.

5

Challenges #2
How to ensure that clients have responsive data access and
minimize resource consumption?
Clients need to rely on the local data copies even while
connected. Need to keep local data copies up-to-date.

6

6/2/22

4

Challenges #3
Data needed in mobile devices is often location and
context-dependent.
◦ E.g. In a navigation application, users are interested in the areas

close to the users.

How to access the relevant data?
Caching/replication algorithms need to take location and
context into consideration.

7

Caching and Replication
Key technique to improve performance and availability (and
provide support for disconnected operation).

Caching (and replication) consist in creating and maintaining
several distributed copies of data used by applications.

The goal is to attempt to guarantee that most data requests are
serviced from near data replicas for…
◦ Providing availability even for disconnected nodes.
◦ Improving performance by servicing requests closer to the clients.

8

6/2/22

5

Caching vs. Replication
It is common for systems to have two levels of replication.

First-class replicas: replica
◦ Data replicas are long-lived
◦ Durability depends on first-class replicas

Second-class replicas: cache
◦ Cache replicas are short-lived – created and destroyed when

necessary
◦ Data durability is guaranteed by storing data in (cloud) servers

9

Challenges
What to replicate to ensure low latency?

How to maintain cache/replicas consistency with server or
between replicas?

What to replicate to ensure high data availability in the
presence of disconnections?
How to manage location-dependent data in the cache?
How to enable cooperation between multiple peer caches?

10

6/2/22

6

Caching in Mobile Computing
There are many challenges:
◦ Where to cache?
◦ What data to cache, when do we cache and for how

long?

◦ How to keep cache up-to-date?
◦ How to handle concurrent updates?

11

Where to cache?
Server
◦ Cache for popular items to improve performance
◦ minimize cost of retrieving from storage (or remote servers) the same

information multiple times

Mobile Device
◦ Cache data to improve performance and availability
◦ Provide support for disconnected operation

Proxy Server
◦ Cache data to improve performance and availability
◦ Remove storage burden from mobile device
◦ Device vs Proxy: access pattern, communication cost, update rate,

available resources at the device

12

6/2/22

7

What to cache?
Caching is used extensively in memory, file systems and
distributed systems
Ultimate goal:
◦ Cache all needed data item
◦ Cache no additional data item

Traditional caching algorithms:
◦ LRU – least recently used
Cache data items as they are accessed; when needing to free some
space, delete the least recently accessed item

Why isn’t this enough for supporting mobile devices?

13

Disconnected Operation
Whenever some information is better than no information

When availability is more important than consistency

14

6/2/22

8

What to cache? Pre-fetching (hoarding)
Pre-fetching consists in the process of populating the
cache with data before it is necessary

The term hoarding is often used for naming the pre-fetch
process executed by mobile nodes prior to disconnection.

15

Pre-fetching (hoarding)
Main issues:
◦ What data items to hoard?
◦ When and how often do we perform hoarding?
◦ How to deal with cache misses?
◦ How reconcile the cache version of the data item with the version

at the server.

16

6/2/22

9

Pre-fetching: what to pre-fetch?
User defined: the user explicitly specifies the data that
should be cached

Automatic process: the system automatically infers the
data that needs to be cached for each user from context
◦ Based on prior access history, access patterns and known activity

◦ Recently used objects
◦ Groups of objects that are usually accessed together

◦ Having some help from the application
◦ E.g. a delivery person needs the information related with her deliveries – the

application can request this information at the beginning of day

17

Pre-fetching: when to pre-fetch?
Data must be pre-fetched during the connected period

For supporting unexpected disconnection, mobile nodes
need to maintain the cache populated at all times
◦ Add/remove items as users interests change
◦ Keep replicas synchronized

18

6/2/22

10

Data Dissemination: Interaction Models
Pull-model: (request/reply) each client actively requests data
from server
◦ The most common model
◦ Responses can be cached
◦ Pooling to get updates (Consumes energy and burdens servers)

Push-model: servers push data that clients need (or not)
◦ Interesting for scenarios where there is a broadcast channel that can be

shared by multiple clients: Publish/subscribe
◦ For example, we can subscribe to a stock ticker, and whenever the stock

information is updated, it will be sent to us.
◦ Asynchronous: decouples clients from servers in time
◦ Information broadcasting when it is available (can be resource efficient)

19

Data Maintenance
Data must be kept synchronized with official versions
(maintained in servers or other mobile computers)
◦ Not a problem for read-only data J

What about read-write data? Service

Cache Cache

20

6/2/22

11

Data consistency
Data replication algorithms are typically classified as:
◦ Strong consistency – (informally) if the system gives the illusion

that there is a single replica
◦ Weak consistency – otherwise, meaning that different copies may

(temporarily) present different states

◦ Weak consistency… by updating the cache more frequently we can
minimize the degree of inconsistency.

21

Cache maintenance in Mobile Computing
The resources of mobile environments, coupled with the need
to support seamless mobility, make maintaining a consistent
cache at the mobile client a challenging task.
Reasons:
◦ The underlying cache maintenance protocol should not overburden

wireless spectrum and the mobile device.
◦ Protocols should be energy-efficient, tolerant of disconnections, and

adaptive to varying the QoS provided by the wireless network.

Cache consistency requirements:
◦ Strong consistency: Cache is always up-to-date
◦ Weak consistency: Cache may not always be up-to-date

22

Strong consistency precludes disconnected
execution and introduces latency on data access

6/2/22

12

Cache maintenance: client-based
Polling
◦ On every data access, client polls the server to assess if data has

changed (no cache?)
◦ Data items can have an associated timestamp

◦ Realtime clock, logical clock or version vector

◦ TTL (Time To Live)
◦ When caching, the server (or client) assigns a time-to-live validity interval.
◦ When the TTL expires, the client polls the server to assess if data has changed

(immediately or on the next data access)

23

Polling for strong consistency, must be always
connected, generates more network traffic and
introduces latency on data access.

TTL introduces weak consistency

Cache maintenance: server-based
Servers initiates the cache consistency verification and
push invalidation reports when data has been modified
◦ Stateless Approach – server does not maintain info about the

cache contents of the clients
◦ Invalidation reports published on data modification or periodically (batch)
◦ Clients may subscribe some invalidation reports, depending on the data they

cache
◦ Stateful Approach – server keeps track of the cache contents of its

clients (invalidation reports tailored for each client)
◦ Stateful Asynchronous approach - use invalidation reports (callbacks)

◦ Using notification services
◦ Stateful Synchronous approach - periodic broadcast of invalidation reports

(server keeps track of objects that are recently updated and broadcast
information to clients periodically)

24

6/2/22

13

Publish-subscribe system
Publish-subscribe system model:
◦ Publishers publish events (messages);
◦ Subscribers subscribe to events – a subscriber will receive all

events published that match its subscription.

Different approach for matching:
◦ Events are published to channels – subscribers can subscribe to a

channel;
◦ Events have tags – subscribers can specify a tag filter to identify

which events it is interested on.

25

Invalidation using Publish-subscribe system
How to do it?
◦ Servers publish an invalidation event whenever there is a change

in an object;
◦ Mobile devices subscribe to the events associated with the object

identifiers they cache.

Challenges?
◦ While disconnected there might be multiple messages regarding

the same object.

26

6/2/22

14

E.g. Disconnected Execution
Asynchronous Stateful Invalidation
◦ Frank Adelstein, et. al. Fundamentals of Mobile and Pervasive Computing.

McGraw-Hill. 2005. sec. 3.4.5

Asynchronous invalidation reports when data changes.
Addresses the problem of how to manage invalidation reports
when the mobile device is disconnected
Components:
◦ Home Agent (HA)

◦ Can be maintained at any thrusted static host
◦ Closer to the mobile host for improving performance

◦ Home Location Cache (HLC)
◦ Keeps the last invalidation timestamp of every object in cache of a mobile

◦ Mobile host (MH)
◦ Two modes: awake and asleep (connected/disconnected)

For each mobile host a HLC is maintained by its HA

27

E.g. Home location cache
Home Agent (HA)
◦ Can be viewed as a Proxy
◦ Pass all messages between the Mobile Host and Data server to assist with handling

disconnections
◦ Keep track of what data have been locally cached at its mobile hosts (cache state info

of the mobile host)

28

29

Figure 3.9 AS scheme for cache consistency maintenance.

Home agent (HA)

Wireless access
point

Time

Mobile host
(MH)

1) Fetch y from server
2) Add (y,t2) to HLC
3) Forward y to MH

x
t0

z

t1

z
y

t2

z
*

t5

Cache

Timestamp

Data

(x,t1)

t1

x changed

Query
(y,t1)

(y,t2)

t2

Invalidation
Data

y changed

z changed

t3 t4

MH awake Sleeping

Lost

Ignored

First query
after wakeup

t5

(y,z,t5)

Home location
cache (HLC)

Data id

x
z

*
*

F
F z * F

y
z

t3
*

T
T

x
z

t0
*

Y
F

y
z

t3
*

T
T

Timestamp
Invalid flag

t0

Query
+

probe
(*,t2)

Maintained
in HA

Dataserver

Dataserver

Internet

Au:Pls.
provide
callout of Fig
3.9 in text.

Richard_CH3.qxd 8/24/04 3:25 PM Page 29

6/2/22

15

E.g. Home location cache (cont.)
Home Location Cache (HLC) for each MH
◦ Buffers invalidation messages
◦ Keeps the last invalidation timestamp of every object in MH cache

29

29

Figure 3.9 AS scheme for cache consistency maintenance.

Home agent (HA)

Wireless access
point

Time

Mobile host
(MH)

1) Fetch y from server
2) Add (y,t2) to HLC
3) Forward y to MH

x
t0

z

t1

z
y

t2

z
*

t5

Cache

Timestamp

Data

(x,t1)

t1

x changed

Query
(y,t1)

(y,t2)

t2

Invalidation
Data

y changed

z changed

t3 t4

MH awake Sleeping

Lost

Ignored

First query
after wakeup

t5

(y,z,t5)

Home location
cache (HLC)

Data id

x
z

*
*

F
F z * F

y
z

t3
*

T
T

x
z

t0
*

Y
F

y
z

t3
*

T
T

Timestamp
Invalid flag

t0

Query
+

probe
(*,t2)

Maintained
in HA

Dataserver

Dataserver

Internet

Au:Pls.
provide
callout of Fig
3.9 in text.

Richard_CH3.qxd 8/24/04 3:25 PM Page 29

E.g. Home location cache (cont.)
When the data server updates any data items, it sends an
Invalidation Message to all Home Agents
When HA receives an invalidation report

◦ updates HLC info regarding the data item with invalidation tag specifying
whether an invalidation report has been sent to the mobile device or not.

30

29

Figure 3.9 AS scheme for cache consistency maintenance.

Home agent (HA)

Wireless access
point

Time

Mobile host
(MH)

1) Fetch y from server
2) Add (y,t2) to HLC
3) Forward y to MH

x
t0

z

t1

z
y

t2

z
*

t5

Cache

Timestamp

Data

(x,t1)

t1

x changed

Query
(y,t1)

(y,t2)

t2

Invalidation
Data

y changed

z changed

t3 t4

MH awake Sleeping

Lost

Ignored

First query
after wakeup

t5

(y,z,t5)

Home location
cache (HLC)

Data id

x
z

*
*

F
F z * F

y
z

t3
*

T
T

x
z

t0
*

Y
F

y
z

t3
*

T
T

Timestamp
Invalid flag

t0

Query
+

probe
(*,t2)

Maintained
in HA

Dataserver

Dataserver

Internet

Au:Pls.
provide
callout of Fig
3.9 in text.

Richard_CH3.qxd 8/24/04 3:25 PM Page 29

6/2/22

16

E.g. Home location cache (cont.)
After a disconnection, a mobile device need to ask its HLC
whether there is any missing invalidation report or not.

31

29

Figure 3.9 AS scheme for cache consistency maintenance.

Home agent (HA)

Wireless access
point

Time

Mobile host
(MH)

1) Fetch y from server
2) Add (y,t2) to HLC
3) Forward y to MH

x
t0

z

t1

z
y

t2

z
*

t5

Cache

Timestamp

Data

(x,t1)

t1

x changed

Query
(y,t1)

(y,t2)

t2

Invalidation
Data

y changed

z changed

t3 t4

MH awake Sleeping

Lost

Ignored

First query
after wakeup

t5

(y,z,t5)

Home location
cache (HLC)

Data id

x
z

*
*

F
F z * F

y
z

t3
*

T
T

x
z

t0
*

Y
F

y
z

t3
*

T
T

Timestamp
Invalid flag

t0

Query
+

probe
(*,t2)

Maintained
in HA

Dataserver

Dataserver

Internet

Au:Pls.
provide
callout of Fig
3.9 in text.

Richard_CH3.qxd 8/24/04 3:25 PM Page 29

E.g. Home location cache (cont.)
An Example Scenario
MH Cache with timestamp t0 and two data items:
◦ IDs x and z (x updated at t0)

The HA has received an Invalidation Message (IM) notifying
that data item x changed at the server
◦ At t1 adds IM to HLC and forwards it to mobile host with ID and

timestamp (x; t1)
◦ MH updates its cache with timestamp t1, and deletes x from cache

MH wants to access y it sends a data request (y; t1) to the
HLC
◦ HLC fetches y, and sends it (y; t2)
◦ MH updates its timestamp to t2, adds y to the cache

32

6/2/22

17

E.g. Home location cache (cont.)
MH get disconnected – e.g. sleep mode

T3: y changed, and IM for y is lost
MH Wakeup
◦ Z changed, and invalidation message for z is sent and ignored
◦ Ignore all invalidation messages until the 1st query

◦ To keep data in sync

◦ Query + Probe (*, t2) asking for all invalidation messages
◦ Reply at t5 with batch of Invalidate message (y, z; t5)
◦ Update cache to t5 and invalidate y and z

33

Cache and local updates
For being responsive and supporting disconnection, mobile
system must accept updates in the clients

◦ Whenever some information is better than no information
◦ When availability is more important than consistency
◦ Cache as a secondary replica

Client updates must be sent to the servers (and other
clients) asynchronously
This leads to the need to handle concurrent updates

34

6/2/22

18

Data management solutions
Single replica service
◦ Only needs cache management

35

single

Data management solutions

Multiple replicas – pessimistic
approach (single master)
◦ Updates are coordinated; only one

update at a time on the master
◦ Any host may contact any replica ,

but writes to master
◦ Simple synchronization process

PrimarySecundary Secundary

Coordination

36

6/2/22

19

Data management solutions

Multiple replicas – optimistic
approach
◦ Uncoordinated updates; users

can execute update at any time,
any replica

◦ Good scalability
◦ May lead to replica divergence

due to concurrent updates
◦ Need mechanism to detect

conflicts and solve conflicts
(reconciliation)

ReplicaReplica Replica

37

Coordination

Data management: Reconciliation
Desirable properties
◦ Eventual convergence

◦ When the system is idle all copies converge to the same state.
◦ Integration of all contributions
◦ Intention preservation (whenever possible)

◦ The effects of the operations must be preserved

Approaches
◦ State-based

◦ Reconciliation mechanism uses different data version as the basis to create a
reconciled version

◦ Operation-based
◦ When users execute updates, the system creates a log of operations; these logs

are used to merge concurrent updates

38

6/2/22

20

The need for convergence (example)
To do On-going Done To do On-going Done

To do On-going Done

Slides

To do On-going Done

SW

Sync

To do On-going Done

Slides

SW

To do On-going Done

Slides

SW

39

Convergence
Last-writer wins
◦ Timestamp every update. On concurrent updates, the last update

prevails.

◦ What to version?

40

6/2/22

21

Last-writer-wins
To do On-going Done To do On-going Done

To do On-going Done

Slides

To do On-going Done

SW

To do On-going Done

SW

To do On-going Done

SW

Sync

41

Convergence
Last-writer wins
◦ Timestamp every update. On concurrent updates, the last update

prevails.
◦ Leads to lost-updates.
◦ Variants: first-writer-wins, boss-wins, wife-wins, etc.

Keep multiple versions
◦ Need to manage and merge multiple version in the application

code.

42

6/2/22

22

SW

The need for convergence
To do On-going Done To do On-going Done

To do On-going Done

Slides

To do On-going Done

SW

Sync

To do On-going Done

Slides
SW

To do On-going Done

Slides

43

Convergence
Semantic merge
◦ Merge updates taking into consideration the data type.

Alternatives:
◦ Application-defined conflict resolution policy

◦ Allow application to define the conflict resolution policy for each data object

◦ Operational transformation
◦ Used (mostly) for text documents – arrays of characters

◦ Conflict-free replication data types
◦ Used for general data types

44

6/2/22

23

Operational transformation
Example: Used in Google Docs

Data model
◦ Sequence of atoms

Operations
◦ Insert (atom, pos)
◦ Remove (pos)

45

Operational Transformation: key idea

46

A B C D

Réplica 1

A B C D

Réplica 2

insert(2,’X’)

A B X C D

insert(3,’Y’)

A B C Y D

insert(2,’X’)

A B X C Y DA B X Y C D

insert(3,’Y’)

6/2/22

24

Operational transformation
Transformation algorithm
◦ Defines how operations are processed
◦ To be correct:

◦ Convergence
◦ Causality
◦ Intention preservation

Transformation function
◦ Defines how an operation is transformed against other operations
◦ Transformation functions are notoriously hard to design for

algorithms supporting peer-to-peer interaction

47

Transformation function examples
Transformations for document editor

Tii (Insert(p1, c1, u1), Insert(p2, c2, u2)) :
if p1 <p2 or (p1 = p2 and u1 < u2)

return Insert(p1, c1, u1)
else

return Insert(p1+1,c1,u1)

Tid (Insert (p1, c1, u1), Delete(p2, u2)) :
if p1 ≤ p2

return Insert(p1, c1, u1)
else

return Insert(p1 − 1, c1, u1)

48

pi — position
ci — character
ui — user

6/2/22

25

Operational transformation: key idea

49

A B C D

Réplica 1

A B C D

Réplica 2

insert(2,’X’)

A B X C D

insert(3,’Y’)

A B C Y D

insert(2,’X’)

A B X C Y D

insert(3,’Y’)

transform(insert(3,’Y’),[insert(2,’X’)])

A B X C Y D

insert(4,’Y’)

Tii (Ins(p1, c1, u1), Ins(p2, c2, u2)) :−
if p1 <p2 or (p1 =p2 and u1 <u2)

return Ins (p1, c1, u1)
else

return Ins(p1+1, c1, u1)

transform(insert(2,’X’),[insert(3,’Y’)])

insert(2,’X’)

Conflict-free Replicated Data Types
Data type
◦ Well defined interface.
◦ Interface as the sequential abstract data type.

Replicated data type
◦ Objects can be replicated at multiple nodes.

Conflict-free replicated data types
◦ Replicas can be modified without coordination but...
◦ Eventual convergence guaranteed in a decentralized way.

◦ All replicas converge to the same state after receiving the same set of updates.
◦ Well defined concurrency semantics.

50

6/2/22

26

CRDTs for application developers
Key aspect is to define the semantics of the data type

With no concurrent updates, the semantics should be the
same of the sequential data type.
With concurrent updates, it is necessary to define the
concurrency semantics.
◦ When operation commute, it is possible to provide the same

semantics of the sequential data type.
◦ Often, this is not possible and there is a need for arbitrate the

result of concurrent executions.
◦ Causal-order, total-order, total-causal-order, …
(for total-order can use some clock, last-writer-wins, etc…)

51

Example CRDT: Register
Interface
◦ Assign(val)

Concurrency semantics
◦ Some operations can be ordered, some are concurrent

◦ Eventually all replicas have the same value
◦ Last-writer-wins

◦ Keep the value with the highest timestamp (total order)
◦ Multi-value register

◦ Keep all values written concurrently (causal-order)
◦ (read returns a list of possible values)

52

6/2/22

27

Replica A

Replica B
0

0

Example CRDT: Counter
Starts with 0

Interface:
◦ inc(n)
◦ dec(n)

Concurrency semantics
◦ inc and dec commute.
◦ Combine all updates

◦ adding all increments and
subtracting all decrements

sync

dec(3)

-3

inc(5)

5

2

2

53

Replica A

Replica B

{ Alice → 10 }

Example CRDT: Map
Interface
◦ put(k, o)
◦ rmv(k)

Concurrency semantics
◦ put and rmv for different k commute
◦ For concurrent on the same k must

arbitrate or use multivalue (versions)
◦ E.g: last writer wins

rmv(Alice), put(Bob,1)

{Bob->1}

{Alice → 10, Bob -> 3}

54

Put(Bob, 3)

{ Bob->1}

If put(Bob,1)<put(Bob,3)

6/2/22

28

Replica A

Replica B

{ Alice → { Coin → 10
Objects → {hammer}}}

Example CRDT: Map of CRDTs

Interface
◦ put(k, o)
◦ rmv(k)
◦ upd(k, op) update internal CRDT

Eg. Map of map of counter and set

Concurrency semantics
◦ Updating a value, use semantics of

internal CRDT
◦ Diferent value types for same k?

◦ Eg. k with values of each type (key is
k+valueType)

rmv(Alice)

{ }

upd(Alice.Objects, add(nail))

{ Alice → { Coin → 10
Objects → {hammer,nail}}}

55

Replica A

Replica B

{ Alice → { Coin → 10
Objects → {hammer}}}

Example CRDT: Map of CRDTs

Interface
◦ put(k, o)
◦ rmv(k)
◦ upd(k, op) update internal CRDT

Eg. Map of map of counter and set

Concurrency semantics
◦ Update wins

rmv(Alice)

{}

upd(Alice.Objects, add(nail))

{ Alice → { Coin → 10
Objects → {hammer,nail}}} { Alice → { Coin → 10

Objects → {hammer,nail}}}

56

6/2/22

29

Replica A

Replica B

Example CRDT: Map of CRDTs
Interface
◦ put(k, o)
◦ rmv(k)
◦ upd(k, op) update internal CRDT

Eg. Map of map of counter and set

Concurrency semantics
◦ Update-wins
◦ Remove-wins

rmv(Alice)

{ }

upd(Alice.Objects, add(nail))

{ Alice → { Coin → 10
Objects → {hammer,nail}}} { }{ Alice → { Coin → 10

Objects → {hammer}}}

57

Replica A

Replica B

Map
Interface
◦ put(k, o)
◦ rmv(k)
◦ upd(k, op) update internal CRDT

Eg. Map of map of counter and set

Concurrency semantics
◦ Update-wins
◦ Remove-wins
◦ Remove as recursive reset

◦ Each CRDT supports a reset operation

rmv(Alice)

{}

upd(Alice.Objects, add(nail))

{ Alice → { Coin → 10
Objects → {hammer,nail}}} { Alice → {Objects → {nail}}}{ Alice → { Coin → 10

Objects → {hammer}}}

58

6/2/22

30

Example - Designing a CRDT: Set
Sequential specification of Set:

S.add(e) {e ∈ S}
S.rmv(e) {e ∉ S}

Commutative operations (e ≠ f):
S.add(e) || S. add(e) {e ∈ S}
S. rmv(e) || S. rmv(e) {e ∉ S}
S. add(e) || S. add(f) {e,f ∈ S}
S. rmv(e) || S. rmv(f) {e, f ∉ S}
S. add(e) || S. rmv(f) {e ∈ S, f ∉ S}

Non-commutative operations:
S. add(e) || S. rmv(e) {????}

59

Design alternatives for add(e) || rmv(e)
S. add(e) || S. rmv(e) {????}

add wins: {e ∈ S}
remove wins: {e ∉ S}
error state: {⊥e ∈ S}
last writer wins: { add(e) < rmv(e) ⇒ e ∉ S,

rmv(e) < add(e) ⇒ e ∈ S }

60

6/2/22

31

Not Sequentially Consistent
Consider Add-wins set such that:

S.add(e) {e ∈ S}
S. remove(e) {e ∉ S}
S. add(e) || S. remove(e) {e ∈ S}

But…

(add(e); remove(f)) || (add(f); remove(e)) {e, f ∈ S}

Not sequentially consistent!

61

Takeaway lesson
Most operations do not commute.

Concurrency semantics defines the outcome in the
presence of concurrent updates.
◦ Multiple alternatives exist for each data type.

Right concurrency semantics depends on the application.

62

6/2/22

32

Libraries for building mobile applications
Multiple libraries exist for managing CRDT data of mobile
applications, usually supporting peer-to-peer
synchronization.
Examples of these libraries are:
◦ Automerge – supports synchronizing JSON object among multiple

clients.
◦ YJS – supports synchronizing multiple object types among multiple

clients.
◦ Legion – supports synchronizing multiple object types among

multiple clients.

63

Data Management in current mobile phones
Mobile OSs support
◦ SQL databases
◦ Key-value pairs
◦ Files

HTML 5 supports
◦ Session storage – key/value pairs maintained during one application

session
◦ Local storage – key/value pairs maintained for an application across

sessions

◦ IndexedDB – key/value object-oriented database for Web browsers
◦ stores JSON objects with indexes
◦ limited support on latter versions of most known Web browsers

64

6/2/22

33

Databases Services for mobile applications
Cloud’s Mobile platform as a service often include
databases with support for caching in mobile device.
◦ Example: Firebase.

A number of (independent) databases exist supporting
mobile applications.
◦ Example: Couchbase / Pouchdb

65

Bibliography
Books:
◦ Frank Adelstein, et. al. Fundamentals of Mobile and Pervasive

Computing. McGraw-Hill. 2005. Chap 3. (outdated)

Papers
◦ Operational Transform (just the concept): Imine A., Molli P., Oster G.,

and Rusinowitch M. (2003) Proving correctness of transformation
functions in real-time groupware. In Proceedings of the eighth
conference on European Conference on Computer Supported Cooperative
Work (ECSCW'03), 277-293.

◦ Nuno Preguiça. 2018. Conflict-free Replicated Data Types: An Overview.
arXiv:1806.10254 (June 2018). Retrieved January 11, 2021
from http://arxiv.org/abs/1806.10254

66

http://arxiv.org/abs/1806.10254

