
Regression and Model Selection 
 

Prediction with Least-squares 
Given a set of observed inputs X=(X1, X2, … Xp), we wish to devise a model that predicts the 

true value Y of the output variable. As an example, X can be the words in an email, and Y the 

indication if that email is spam Y>0 or not Y<0. 

ModelX1, X2,  , Xp Y

Observed data Prediction

 
A model can only make a prediction 𝑌̂ that is the best guess of the true value 𝑌. Thus, the 

model can be formalized as a linear model: 

𝑌̂ = 𝛽0 + ∑ 𝛽𝑗 ∙ 𝑋𝑗

𝑝
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The goal is then to learn the model parameters 𝛽 = (𝛽0, … , 𝛽𝑝). The least-squares approach is 

the most popular approach to learn these parameters. The goal is to minimize the residual sum 

of squares between the true label and the predicted label: 

𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑖̂ − 𝑦𝑖)2

𝑁

𝑖=1

 

The Residual Sum of Squares gives an indication of how well a model the model can make a 

prediction. 

Model fitting 
Consider the simple case of a polynomial fitting with the following data  

x     y 

0.5588 1.1561 

0.5475 1.1408 

0.1899 0.5806 

0.3065 0.7987 

… … 

 

𝑦 = 𝑥
𝑝

𝛽𝑝 + 𝑥
𝑝−1

𝛽𝑝−1 + ⋯ + 𝑥2 𝛽2 + 𝑥1 𝛽1 + 𝛽0 

In this case we need to compute the polynomial coefficients 𝛽 = (𝛽0, … , 𝛽𝑝). The following code 

is an example of how to fit a third-degree polynomial to the data: 

sinpoints=importdata('sin_mat.dat'); 
dataSet=sinpoints; 
numSets=200 
numPoints=size(dataSet,1); 
coefs=polyfit(dataSet(:,1),dataSet(:,2),3); 

 

 



Discuss how you can cast the polynomial fitting problem as a least-squares problem. Consider 

that the X matrix can be written as 𝑋 = (𝑥
𝑝

, 𝑥
𝑝−1

, … , 𝑥2 , 𝑥1 , 1). 

 

 

 

 

Given the polynomial coefficients, we can compute the predicted values and the Residual Sum 

of Squares: 

predicted=polyval(coefs,dataSet(:,1)); 
rss =mean((dataSet(:,2)-predicted).^2); 

 

To examine the observed data versus the computed model, we can plot this information: 

xs=linspace(min(dataSet(:,1)), max(dataSet(:,1)), 50) 
ys=polyval(coefs,xs); 
plot(xs,ys,'-r'); 
hold on 
plot(dataSet(:,1),dataSet(:,2),'xb') 

 

Repeat the same procedure for different polynomial degrees. Plot the RSS for each polynomial 

degree. 

 

The main questions arising from these graphs are: 

 Which polynomial degree should we chose? (model complexity) 

 How can we examine the model behavior as the complexity increases? 

 How to estimate the error on the test set? 



Exercise 1: Bias-variance decomposition with bootstrapping 
Download the file sin.dat (or sin_mat.dat for MATLAB) to your working folder. Load it with the 

importdata command. This will create a 40x2 matrix containing a simulated dataset of a 

sinusoidal curve (x on the first column, y on the second). 

Using bootstrapping, with S=10 sets, plot the estimated bias2 and variance values as a function 

of the polynomial degree used to fit these data, ranging from degree 0 (a constant) to degree 

10. The error of a model is decomposed as follows: 

𝐸𝑟𝑟 = 𝐸 [(𝑌 − 𝑌̂)
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𝐸𝑟𝑟 = 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟 + 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
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Create the figure shown on the previous page. 

Exercise 2: Model selection with Cross-Validation. 
From the same data as in exercise 1, extract 10 points for a test set. Use the remaining points 

as a training set for cross-validation: 

1. Using 5-fold cross-validation, select the appropriate degree for your polynomial 

(assume from degree 1 through 8). Then train your selected model with the training 

set and estimate the generalization error with the test points.  

2. Repeat the procedure with leave-one-out cross-validation. 

3. Compare both procedure by plotting the CV-error, the polynomial with the selected 

degree, and residuals to make a visual evaluation of the resulting fit. 

 



Exercise 3: Turtles and eggs 
Load the turtles_mat.dat file. Each of these 18 points (one per row) represents the carapace 

length (mm) and number of eggs on a set of 18 gopher turtles. The goal is to predict the eggs 

size of a turtle given its carapace length.  

Assume that the model is a polynomial and use CV to find the best fit. Retain 6 points for 

testing and use cross-validation to find the best polynomial fit (up to degree 8) for these data. 

Note that since there are very few data points for training, use a leave-one-out cross-validation 

scheme.  

Estimate the error on the test set and plot the residuals to evaluate the fit graphically. 

 

The turtle dataset was copied from the Handbook of Biological Statistics, and originally from 

Ashton, K.G., R.L. Burke, and J.N. Layne. 2007. Geographic variation in body and clutch size of 

gopher tortoises. Copeia 2007: 355-363. 

 


