Arquitectura de Computadores

Licenciatura em Engenharia Informática Teste 3 (B) – 2010/05/31 – Duração: 1h45m

N	NZ
Nome:	Número:
Teste sem consulta. A interpretação do enunciado faz parte da avaliação. Explicite nas suas respostas todas as hipóteses a Por favor, tente ser conciso nas sua respostas para que estas caibam na zona delimitada.	ssumidas.
Escolha Múltipla	
Indique o número da resposta que achar correcta no quadrado definido para o efeito. Cada resposta e pergunta. A cotação mínima nesta parte é 0.0 valores.	rrada desconta 20% da cotação da
Q-1 [0.5 val.] No Pentium a instrução máquina <i>iret</i> (interrupt return)	
1. restaura o program counter e todos os registos de uso geral para o valor que estes tinham quand	do ocorreu a interrupção.
2. restaura o estado da computação que decorria quando ocorreu a interrupção.	
3. coloca o CPU em modo utilizador e desinibe o sistema de interrupções	
4. restaura o program counter e o registo de flags para os valores que estes tinham quando ocorrei	u a interrupção.
Opção correcta	
Q-2 [0.5 val.] Quando uma rotina de tratamento de interrupção está em execução,	
1. ela pode ser interrompida por outra rotina de tratamento de interrupção, se o sistema de interru	pções não estiver inibido
2. ela pode ser sempre interrompida por outra rotina de tratamento de interrupção	
 ela pode ser interrompida por outra rotina de tratamento de interrupção, se o periférico que prov rápido. 	ocou a nova interrupção for muito
4. ela não pode ser interrompida por outra rotina de tratamento de interrupção	
Opção correcta	
Q-3 [0.5 val.] Quando a linha de interrupção do CPU é accionada por um controlador, o CPU	_
1. salta para a rotina de tratamento da interrupção, mas só se as interrupções estiverem desinibida	s.
2. acaba a instrução corrente e salta para a rotina de tratamento da interrupção, mas só se as interr	rupções estiverem desinibidas.
3. acaba a instrução corrente e salta para a rotina de tratamento da interrupção.	
4. salta imediatamente para a rotina de tratamento da interrupção.	
Opção correcta	
Q-4 [0.5 val.] Na arquitectura hardware de um PC existe um controlador de interrupções (PIC). Qu interrupções termina, antes de fazer <i>iret</i> , é preciso executar a instrução máquina	nando uma rotina de tratamento de
out 0x20, 0x20 ; Enviar EndOfInterrupt para o PIC	
Porque é que é preciso fazer isto?	
1. para permitir interrupções com prioridade igual ou inferior à corrente	
2. para reinicializar o PIC	
3. para permitir que o CPU seja interrompido	
4. para permitir interrupções com prioridade superior à corrente	
Opção correcta	

Q-5 [0.5 val.] Quando a memória física é gerida por páginas
1. a fragmentação interna é um problema grave.
2. a fragmentação externa é um problema grave, porque a memória física livre não está contígua.
3. a fragmentação interna é pouco grave; a memória física livre não está contígua e esta situação causa problemas.
 a fragmentação interna é pouco grave; a memória física livre não está contígua, mas isto não é importante porque as páginas virtuais de um processo não precisam de ficar contíguas na memória física.
Opção correcta
Q-6 [0.5 val.] Quando a memória física é gerida por partições dinâmicas, as partições são criadas com tamanho igual ao da imagem do processo que se pretende carregar e são destruídas quando o programa termina. Nestas condições,
1. existe fragmentação interna e fragmentação externa.
2. não existe fragmentação interna nem fragmentação externa.
3. não existe fragmentação interna, mas existe fragmentação externa.
4. existe fragmentação interna, mas não existe fragmentação externa.
Opção correcta
Q-7 [0.5 val.] Num dado CPU, a unidade de transformação de endereços (MMU) tem um registo base e um registo limite. Neste hardware, é executado um sistema operativo que suporta multiprogramação. Usando estes dois registos, o sistema operativo:
1. assegura a recolocação dos programas, e impede que um processo faça acesso ao espaço de endereçamento de outro processo.
 não assegura a recolocação dos programas, nem impede que um processo faça acesso ao espaço de endereçamento de outro processo.
3. assegura a recolocação dos programas, mas não impede que um processo faça acesso ao espaço de endereçamento de outro processo.
 não assegura a recolocação dos programas, mas impede que um processo faça acesso ao espaço de endereçamento de outro processo.
Opção correcta
Q-8 [0.5 val.] Suponha que um dado CPU emite endereços virtuais com 36 bits e que a unidade de transformação de endereços gere a memória física dividindo-a em páginas de 8 KBytes.
 O número de bits usado para identificar o número da página virtual é 20 e o número de bits usado para o deslocamento dentro da página é 16.
 O número de bits usado para identificar o número da página virtual é 23 e o número de bits usado para o deslocamento dentro da página é 13.
 O número de bits usado para identificar o número da página virtual é 22 e o número de bits usado para o deslocamento dentro da página é 12.
 O número de bits usado para identificar o número da página virtual é 12 e o número de bits usado para o deslocamento dentro da página é 24.
Opção correcta
 Q-9 [0.5 val.] Suponha que um dado CPU emite endereços virtuais com 36 bits e que a unidade de transformação de endereços gere a memória física dividindo-a em páginas de 8 KBytes. Admitindo que cada entrada da tabela de páginas ocupa 4 bytes, a tabela de páginas de um processo ocupará: 1. 2²⁵ bytes 2. 2²³ bytes 3. 2²⁶ bytes 4. 2²⁴ bytes
Opção correcta

Teórica

a) [0.5 va	uponha que um dado CPU gera endereços virtuais e que existe uma MMU que gera a memória física dividindo-a em páginas. al.] Admita que a tabela de páginas de um processo cabe completamente dentro da MMU. Para esta situação, faça um esquema se mostre a transformação dos endereços virtuais em reais.
	al.] Admita que a tabela de páginas de um processo está armazenada na RAM, explique a necessidade de ser usada um <i>TLB</i> slation Lookaside Buffer).
c) [1.0 v TLB.	al.] Apresente uma nova versão do esquema da alínea a) para a situação em que a tabela de páginas está em RAM e existe
páginas to a <i>pedido</i> . Quando u envia um	5 val.] Considere uma unidade de transformação de endereços (MMU) baseada em páginas, em que cada entrada da tabela de em um bit de validade V. Este bit é usado para suportar um sistema de memória virtual que funciona pelo técnica da <i>paginação</i> um endereço E gerado pelo CPU referencia uma página P em que o bit de validade está a 0, a MMU guarda o endereço E e a interrupção ao CPU. As linhas seguintes contêm uma descrição das acções efectuadas pelo sistema operativo (SO) quando na <i>interrupção por falta de página</i> . Essa descrição não está completa; preencha o que falta:
	P não pertence ao espaço de endereçamento do processo, o processo é terminado.
	P pertence ao ao espaço de endereçamento do processo, é preciso carregar a página P na memória física. O processo corrente uspenso enquanto isso acontece.
• O S	SO descobre que a página virtual P está no bloco B do disco
• 05	SO

 O SO programa o controlador de disco para transferir o bloco B para a página física F.
 O SO recebe a indicação de que a página virtual P já está na página física F.
• O SO actualiza a tabela de páginas do processo P da seguinte forma:
• A instrução que provocou a falta de página é retomada.
Q-12 [1.0 val.] Nos trabalhos práticos sobre entradas e saídas foi usado o sistema QEMU. O QEMU simula um PC completo com CPU, RAM, controlador interrupções, controlador de periféricos e alguns periféricos. Quando sobre esta máquina virtual se executa o sistema operativo FreeDOS, o CPU emulado funciona em modo de 16 bits e não tem instruções privilegiadas. Explique porque é que estes exercícios foram efectuados neste ambiente. Seria possível tê-los realizado o sistema LINUX directamente? Justifique a resposta.
Q-13 [1.0 val.] Quando os controladores dos periféricos são programados usando espera activa, existe um grande desperdício das capacidades do CPU. Porquê?
Prática
Q-14 Considere que tem um programa, guardado no ficheiro executável <i>prog</i> , cujo código fonte em C está distribuído por três ficheiros:
f1.c, f2.c e f3.c. a) [0.5 val.] Que comando usaria para gerar os ficheiros objecto correspondentes, nomeadamente f1.o, f2.o e f3.o?
1. cc -c prog f1.c f2.c f3.c
2. cc -o prog f1.o f2.o f3.o
3. cc -c f1.c f2.c f3.c
4. cc -o f1.o f1.c -o f2.o f2.c -o f3.o f3.c
5. cc -o f1.c f2.c f3.c
Opção correcta

b)	[0.5 val.] Uma vez obtidos os ficheiros $f1.o, f2.o$ e $f3.o$, que comando usaria para gerar o executável de nome $prog$ a partir destes?
	1. cc -o prog f1.o f1.c f2.o f2.c f3.o f3.c
	2. cc -c prog f1.c f2.c f3.c
	3. cc -o prog f1.c f2.c f3.c
	4. cc -o prog f1.o f2.o f3.o
	5. cc -g prog f1.c f2.c f3.c
	Opção correcta
c)	[0.5 val.] Assuma que que tinha passado pelo processo das duas alíneas anteriores, mas observou um erro de execução no seu programa. Esse erro estava no ficheiro f3.c, que editou e corrigiu. Quer agora voltar a produzir o executável prog. Que comando usaria?
	1. cc -c f3.c
	2. cc -o prog f3.o
	3. cc -c prog f1.c f2.c f3.c
	4. cc -o prog f1.o f2.o f3.c
	5. cc -o prog f1.o f2.o f3.o
	Opção correcta
()-	15 [2.5 val.] Considere os seguintes registos e respectivos hits, relevantes na utilização da porta série para a recepção de dados

Q-15 [2.5 val.] Considere os seguintes registos e respectivos bits, relevantes na utilização da porta série para a recepção de dados usando espera activa

Endereço	Registo	Bits	Significado
3F8h	RBR	07	Registo de recepção de dados
3FDh	LSR	0	Quando existe um carácter disponível no registo RBR, este bit fica a 1

Complete o seguinte código de uma função em C que deverá retornar um byte lido da porta série, utilizando espera activa. Assuma o acesso às funções

unsigned char inByte(unsigned short ad)	retorna o conteúdo do registo de E/S com o endereço ad
void outByte(unsigned short ad, unsigned char v)	escreve o valor v no registo com o endereço ad

```
unsigned char receiveSerial() {
    _____ byte;

// Esperar que exista um carácter disponível na porta série
do {
        byte = inByte(_____);

} while ( ______); // Ler e retornar o carácter disponível na porta série
    return byte;
}
```

Q-16 [2.5 val.] Assuma que já dispõe da função **unsigned char** receiveSerial(**void**) que permite receber um byte por uma porta série de um computador. Complete o código de receberFicheiro que é uma função que permita guardar num ficheiro tudo o que receber pela porta série. O último caracter a receber e que indica que o ficheiro chegou ao fim é o carácter ASCII EOT que tem o valor 0x04.

(a pergunta continua na página seguinte)

Q-17 Considere os seguintes registos e respectivos bits, relevantes na utilização da porta série para a recepção de dados usando interrupções.

Endereço	Registo	Bits	Siginificado
3F8h	RBR	07	Registo de recepção de dados
3F9h	IER	0	Deverá ser gerada uma interrupção quando chega um carácter
3FCh	MCR	3	A UART deverá gerar interrupções
3FDh	LSR	0	Existe um carácter disponível no registo RBR

a) [2.0 val.] Complete o seguinte código de uma função de tratamento de interrupções em C, que deverá ler um carácter da porta série e colocá-lo num *buffer* circular como o utilizado nas aulas práticas. Assuma, que além das funções inByte() e outByte() definidas na pergunta 15, tem também acesso às seguintes funções:

void putBuf(unsigned char) Coloca o byte passado como argumento no buffer circular; assume que não es	
unsigned char getBuf(void) Retorna o byte que está há mais tempo no buffer circular; assume que não está	
int bufEmpty(void) Retorna verdade se o buffer circular está vazio	
int bufFull (void) Retorna verdade se o buffer circular está completamente cheio	

```
static void interrupt handlingRoutine() {
    _____ byte;

if( _____ ) { // ler o carácter da porta série e colocar no buffer circular

    byte = inByte( _____ );

    ____ ;
} outByte(0x20, 0x20); // Enviar EndOfInterrupt para o PIC
}
```

b) [1.5 val.] Complete o seguinte código de uma função que programa a UART para gerar interrupções sempre que há um carácter disponível no registo RBR: