
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

INTRODUCTION

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

What is an operating system?
• Software to

manage a
computer’s
resources for its
users and
applications

AISO 2014/2015 2

A
P
P

Hardware

Users

User-
mode

Kernel-
mode

Hardware-Specific Software
and Device Drivers

A
P
P

A
P
P System

Library

Kernel-user
Interface
(Abstract
virtual machine)

Hardware
Abstraction
Layer

File
System TCP

 IP
networking

Virtual
Memory

CPU
scheduling

OS

CPU

Graphics
Processor

Address
Translation

Network

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Operating System Roles
• Referee:

•  Resource allocation among users, applications
•  Choose how many resources must be awarded to each task

•  CPU, memory, …

•  Isolation of different users, applications from each other
•  Restrict the behavior of applications to less than the full power of the

underlying hardware.

•  Communication between users, applications

AISO 2014/2015 3

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Operating System Roles
•  Illusionist

•  Each application appears to have the entire machine to itself
•  Infinite number of processors, (near) infinite amount of memory,

reliable storage, reliable network transport

AISO 2014/2015 4

11 CHAPTER 1. INTRODUCTION

A
P
P

Operating System

Hardware

Guest
Operating
System

Guest
Operating
System

A
P
P

A
P
P

Figure 1.4: An operating system virtual machine

of physical memory, network bandwidth, and disk. Further, since the operating
system must decide how to split the fixed set of resources among the various
applications running at each moment, a particular application will have di↵er-
ent amounts of resources from time to time, even when running on the same
hardware. While a few applications might be designed to take advantage of a
computer’s specific hardware configuration and their specific resource assign-
ment, most programmers want to use a higher level of abstraction.

We have just discussed one example of this: a uniprocessor can run only one
program at a time, yet most operating systems allow multiple applications to
appear to the user to be running at the same time. The operating system does so
through a concept called virtualization. Virtualization provides an application Definition: virtualization

with the illusion of resources that are not physically present. For example, the
operating system can present to each application the abstraction that it has an
entire processor dedicated to it, even though at a physical level there may be only
a single processor shared among all the applications running on the computer.
With the right hardware and operating system support, most physical resources
can be virtualized: examples include the processor, memory, screen space, disk,
and the network. Even the type of processor can be virtualized, to allow the
same, unmodified application to be run on a smartphone, tablet, and laptop
computer.

Pushing this a step further, some operating systems virtualize the entire
computer, to run the operating system as an application running on top of
another operating system (see Figure 1.4). This is called creating a virtual
machine. The operating system running in the virtual machine, called the guest Definition: virtual

machineoperating system, thinks it is running on a real, physical machine, but this is
Definition: guest
operating system

•  Concept of virtualization
•  Virtualization of CPU,

memory, devices
•  Virtualization of the entire

computer à Virtual
Machines

•  Mask other limitations of
the hardware

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Operating System Roles
• Glue

•  Most of the OS code is glue code

•  Common services between applications
•  Libraries, user interface widgets, …

AISO 2014/2015 5

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: web service
•  How does the server

manage many
simultaneous client
requests?

•  How do we keep the
client safe from
spyware embedded
in scripts on a web
site?

•  How do we keep
updates to the web
site consistent?

Client Server index.html

1. GET index.html

4. Data

2. Read

3. Data

AISO 2014/2015 6

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS Challenges
• Reliability

•  Does the system do what it was designed to do?
•  Availability

•  What portion of the time is the system working?
•  Mean Time To Failure (MTTF), Mean Time to Repair (MTTR)

• Security
•  Can the system be compromised by an attacker?
•  Privacy

•  Data is accessible only to authorized users

• Both require very careful design and code

AISO 2014/2015 7

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS Challenges
• Portability

•  For programs:
•  Application programming interface

(API)
•  Abstract machine interface

•  For the operating system
•  Hardware abstraction layer
•  Pintos provides hardware-specific

OS kernel routines

AISO 2014/2015 8

system call
 interface

portable operating
 system kernel

 portable
OS library

 databases

web browsers

web serverscompilers source code control

email

word processing

x86 ARM PowerPC

10Mbps/100Mbps/1Gbps Ethernet

802.11 a/b/g/n SCSI IDE

graphics accelerators LCD screens

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS Challenges
• Performance

•  Latency/response time
•  How long does an operation take to complete?

•  Throughput
•  How many operations can be done per unit of time?

•  Overhead
•  How much extra work is done by the OS?

•  Fairness
•  How equal is the performance received by different users?

•  Predictability
•  How consistent is the performance over time?

AISO 2014/2015 9

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS History
MVS (60’s) Multics (60’s)

MS/DOS (70’s) VMS (70’s) UNIX (70’s)

Windows (80’s) BSD UNIX (80’s) Mach (80’s)

Windows Windows Free Linux NEXT MacOS
Mobile NT (90’s) BSD (90’s - pres)

Windows 8 (2012) iOS

Android MacOS X

VMware

Descendant

Influence

AISO 2014/2015 10

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Computer Performance Over Time 1.3. A brief history of operating systems 28

1981 1996 2011 factor

MIPS 1 300 10000 10K

MIPS/$ $100K $30 $0.50 200K

DRAM 128KB 128MB 10GB 100K

Disk 10MB 4GB 1TB 100K

Home Inter-
net

9.6 Kbps
256
Kbps

5 Mbps 500

LAN network
3 Mbps
(shared)

10 Mbps 1 Gbps 300

Users per
machine

100 1 << 1 100+

Figure 1.10: Computer performance over time

related technologies such as memory and disk storage. Moore’s Law states
that transistor density increases exponentially over time; similar exponential
improvements have occurred in many other component technologies. Figure 1.10
provides an overview of the past thirty years of technology improvements in
computer hardware. The cost of processing has decreased by over five orders of
magnitude over the past thirty years; the cost of memory and disk capacity has
followed a similar trajectory. Of course, not all technologies have improved at
the same rate; disk latency has improved over time, but at a much slower rate
than disk capacity. These relative changes have radically altered both the use of
computers and the tradeo↵s faced by the operating system designer.

It is hard to imagine how things used to be. Today, we are able to carry
smartphones with incredibly powerful computers around in our pockets. Thou-
sands of server computers wait patiently for a user to type in a search query;
when the query arrives, the servers can synthesize a response in a fraction of
a second. In the early years of computing, however, the computers were more
expensive than the salaries of the people who used them. Users would queue
up, often for days, for their turn to run a program. A similar progression from
expensive to cheap devices occurred with telephones over the past hundred years.
Initially, telephone lines were very expensive, so that a single line was shared
among everyone in a neighborhood. Over time, of course, both computers and
telephones have become cheap enough to sit idle until we need them.

Despite these changes, operating systems still face the same conceptual chal-
lenges as they did fifty years ago. To manage computer resources for applications
and users, operating systems must allocate resources among applications, provide
fault isolation and communication services, abstract hardware limitations, and so
forth. Tremendous progress has been made towards improving the reliability, se-
curity, e�ciency, and portability of operating systems, but much further progress

AISO 2014/2015 11

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Early Operating Systems:
Computers Very Expensive

• One application at a time
•  Had complete control of hardware
•  OS was runtime library
•  Users would stand in line to use the computer

• Batch systems
•  Keep CPU busy by having a queue of jobs
•  OS would load next job while current one runs
•  Users would submit jobs, and wait, and wait, and

AISO 2014/2015 12

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Time-Sharing Operating Systems:
Computers and People Expensive

• Multiple users on computer at same time
•  Multiprogramming: run multiple programs at same time
•  Interactive performance: try to complete everyone’s tasks quickly
•  As computers became cheaper, more important to optimize for user

time, not computer time

AISO 2014/2015 13

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Today’s Operating Systems:
Computers Cheap

• Smartphones
• Embedded systems
• Web servers
•  Laptops
•  Tablets
• Virtual machines
• …

AISO 2014/2015 14

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Tomorrow’s Operating Systems
• Giant-scale data centers
•  Increasing numbers of processors per computer
•  Increasing numbers of computers per user
• Very large scale storage

AISO 2014/2015 15

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Question
• How should an operating system allocate processing time

between competing uses?
•  Give the CPU to the first to arrive?
•  To the one that needs the least resources to complete?
•  To the one that needs the most resources?

• What if you need to allocate memory?
• Disk?

AISO 2014/2015 16

