
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

THE KERNEL
ABSTRACTION

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Challenge: Protection
• How do we execute code with restricted privileges?

•  Either because the code is buggy or if it might be malicious

• Some examples:
•  A script running in a web browser
•  A program you just downloaded off the Internet
•  A program you just wrote that you haven’t tested yet

AISO 2014/2015 2

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Main Points
• Process concept

•  A process is an OS abstraction for executing a program with limited
privileges

• Dual-mode operation: user vs. kernel
•  Kernel-mode: execute with complete privileges
•  User-mode: execute with fewer privileges

• Safe control transfer
•  How do we switch from one mode to the other?

AISO 2014/2015 3

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Process Concept

edits compiler
source
code

executable
image

instructions
and
data

machine
instructions

Data Heap Stack machine
instructions

Data Heap Stack

 Operating System
 Copy

Physical Memory

Process Operating System Kernel

AISO 2014/2015 4

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Process Concept
• Process: an instance of a program, running with limited

rights
•  Process control block: the data structure the OS uses to keep track

of a process
•  Two parts to a process:

•  Thread: a sequence of instructions within a process
•  Potentially many threads per process (for now 1:1)
•  Thread aka lightweight process

•  Address space: set of rights of a process
•  Memory that the process can access
•  Other permissions the process has (e.g., which procedure calls it can make,

what files it can access)

AISO 2014/2015 5

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hardware Support:
Dual-Mode Operation

• Kernel mode
•  Execution with the full privileges of the hardware
•  Read/write to any memory, access any I/O device, read/write any

disk sector, send/read any packet

• User mode
•  Limited privileges
•  Only those granted by the operating system kernel

• On the x86, mode stored in EFLAGS register

AISO 2014/2015 6

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

A Model of a CPU

Program
Counter

CPU
Instructions

Fetch
Exec

Select
PC

New PC

opcode

+4

Branch Address

AISO 2014/2015 7

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

A CPU with Dual-Mode Operation

Program
Counter

CPU
Instructions

Fetch
Exec

Select
PC

New PC

opcode

+4

Branch Address

Handler
PC

Select
Mode Mode

New
Mode

AISO 2014/2015 8

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hardware Support:
Dual-Mode Operation
• Privileged instructions

•  Available to kernel
•  Not available to user code

•  Limits on memory accesses
•  To prevent user code from overwriting the kernel

•  Timer
•  To regain control from a user program in a loop

• Safe way to switch from user mode to kernel mode, and
vice versa

AISO 2014/2015 9

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Privileged instructions
• Examples?

•  Change the execution mode
•  Access memory positions it has no permission to
•  Input/Output operations
•  Jump into kernel code
•  Enable/disable interrupts
•  …

• What should happen if a user program attempts to

execute a privileged instruction?
•  Processor exception

AISO 2014/2015 10

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Memory Protection

INSTR DATA HEAP STACK

Physical Memory

Base Bounds

OK?
Yes

ContinueMemory
Reference

CPU

No

Exception

AISO 2014/2015 11

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Towards Virtual Addresses
• Problems with base and bounds?

•  Expandable heap?
•  Expandable stack?
•  Memory sharing between processes?
•  Non-relative addresses – hard to move memory around
•  Memory fragmentation

AISO 2014/2015 12

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Virtual Addresses
•  Translation done in hardware, using a table
•  Table set up by operating system kernel

Processor
Physical
Memory

Virtual Address
Physical Address

Translation Box

ok?
yes

no

raise exception

Instruction fetch or data read/write (untranslated)

AISO 2014/2015 13

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Virtual Address Layout
• Plus shared code segments, dynamically linked libraries,

memory mapped files, …

CODE DATA HEAP STACK

CODE DATA HEAP STACK

Virtual Addresses
(Process Layout)

Physical Memory

AISO 2014/2015 14

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Process Memory Map (Linux)
taken from http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

AISO 2014/2015 15

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example: What Does this Do?

int	
 staticVar	
 =	
 0;	
 	
 	
 	
 	
 	
 //	
 a	
 static	
 variable	

int	
 main()	
 {	

	
 	
 	
 	
 int	
 localVar	
 =	
 0;	
 	
 	
 //	
 a	
 procedure	
 local	
 variable	

	

	
 	
 	
 	
 staticVar	
 +=	
 1;	
 localVar	
 +=	
 1;	

	

	
 	
 	
 	
 sleep(10);	
 	
 //	
 sleep	
 causes	
 the	
 program	
 to	
 wait	
 for	
 x	
 seconds	

	
 	
 	
 	
 printf	
 ("static	
 address:	
 %x,	
 value:	
 %d\n",	
 &staticVar,	
 staticVar);	

	
 	
 	
 	
 printf	
 ("procedure	
 local	
 address:	
 %x,	
 value:	
 %d\n",	
 &localVar,	

localVar);	

}	

Produces:
 static address: 5328, value: 1
 procedure local address: ffffffe2, value: 1

AISO 2014/2015 16

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hardware Timer
• Hardware device that periodically interrupts the processor

•  Returns control to the kernel timer interrupt handler

•  Interrupt frequency set by the kernel
•  Not by user code!

•  Interrupts can be temporarily deferred
•  Not by user code!
•  Crucial for implementing mutual exclusion

AISO 2014/2015 17

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mode Switch
•  From user-mode to kernel

•  Interrupts
•  Triggered by timer and I/O devices

•  Exceptions
•  Triggered by unexpected program behavior
•  Or malicious behavior!

•  System calls (aka protected procedure call)
•  Request by program for kernel to do some operation on its behalf
•  Only limited # of very carefully coded entry points

AISO 2014/2015 18

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mode Switch
•  From kernel-mode to user

•  New process/new thread start
•  Jump to first instruction in program/thread

•  Return from interrupt, exception, system call
•  Resume suspended execution

•  Process/thread context switch
•  Resume some other process

•  User-level upcall
•  Asynchronous notification to user program

AISO 2014/2015 19

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

How do we take interrupts safely?
•  Limited number of entry

points into kernel
•  Interrupt vector

• Handler works regardless of
state of user code
•  Kernel interrupt stack

• Handler is non-blocking
•  Interrupt masking

• Atomic transfer of control
•  Single instruction to change:

•  Program counter
•  Stack pointer
•  Memory protection
•  Kernel/user mode

• User program does not
know interrupt occurred
•  Transparent restartable

execution

AISO 2014/2015 20

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interrupt Vector
•  Table set up by OS kernel; pointers to code to run on

different events

Processor
 Register Interrupt

 Vector

...

...

handleTimerInterrupt() {
 ...
}

handleDivideByZero() {
 ...
}

handleSystemCall() {
 ...
}

AISO 2014/2015 21

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interrupt Stack
• Per-processor, located in kernel (not user) memory

•  Usually a thread has both: kernel and user stack

• Why can’t interrupt handler run on the stack of the
interrupted user process?
•  Process’ stack pointer may be corrupted
•  Prevent other threads to access/modify kernel internal

information

AISO 2014/2015 22

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interrupt Stack

Kernel Stack

running

main

User Stack proc1
proc2

...

ready to run

main
proc1
proc2

...

user CPU
 state

waiting for I/O

main
proc1
proc2
syscall

user CPU
 state
 syscall
handler

I/O driver
top half

AISO 2014/2015 23

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interrupt Masking
•  Interrupt handler runs with interrupts off

•  Reenabled when interrupt completes

• OS kernel can also turn interrupts off
•  Eg., when determining the next process/thread to run
•  If defer interrupts too long, can drop I/O events
•  On x86

•  CLI: disable interrrupts
•  STI: enable interrupts
•  Only applies to the current CPU

• Cf. implementing synchronization, chapter 5

AISO 2014/2015 24

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interrupt Handlers
• Non-blocking, run to completion

•  Minimum necessary to allow device to take next interrupt
•  Any waiting must be limited duration
•  Wake up other threads to do any real work

• Rest of device driver runs as a kernel thread
•  Queues work for interrupt handler
•  (Sometimes) wait for interrupt to occur

AISO 2014/2015 25

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Atomic Mode Transfer
• On interrupt (x86)

•  Save current stack pointer
•  Save current program counter
•  Save current processor status word (condition codes)
•  Switch to kernel stack; put SP, PC, PSW on stack
•  Switch to kernel mode
•  Vector through interrupt table
•  Interrupt handler saves registers it might clobber

AISO 2014/2015 26

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

The x86 Example
Before Interrupt

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

AISO 2014/2015 27

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

The x86 Example
Upon Interrupt Reception

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

SS
ESP

 EFLAGS
CS
EIP

error

AISO 2014/2015 28

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

The x86 Example
During the Handler’s Execution

code:

foo () {
 while(...) {
 x = x+1;
 y = y-2;
 }
}

SS: ESP

User-level
 Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
 pusha
 ...
}

 stack:
Exception
 Stack

SS
ESP

 EFLAGS
CS
EIP

error
(all
registers)
 SS
 ESP
 CS
 EIP
 EAX
 EBX
 ...

AISO 2014/2015 29

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

At end of handler
• Handler restores saved registers

• Atomically return to interrupted process/thread
•  Restore program counter
•  Restore program stack
•  Restore processor status word/condition codes
•  Switch to user mode

AISO 2014/2015 30

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

System Calls

main () {
 ...
 syscall(arg1, arg2);
 ...
}

User Program Kernel

syscall(arg1, arg2) {

 do operation

}

User Stub

syscall (arg1, arg2) {
 trap
 return
}

handler() {
 copy arguments
 from user memory
 check arguments
 syscall(arg1, arg2);
 copy return value
 into user memory
 return
}

Kernel Stub

Hardware Trap

Trap Return

(1)

(2)

(3) (4)

(5)

(6)

AISO 2014/2015 31

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Kernel System Call Handler
•  Locate arguments

•  In registers or on user(!) stack

• Copy arguments
•  From user memory into kernel memory
•  Protect kernel from malicious code evading checks

• Validate arguments
•  Protect kernel from errors in user code

• Copy results back
•  into user memory

AISO 2014/2015 32

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Web Server Example

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
buffer

4. parse request

5. file
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
buffer9. format reply

6. disk
request

10. network
socket
write

11. kernel copy
from user buffer
into network buffer

12. format outgoing
packet and DMA

AISO 2014/2015 33

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Web Server Example

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
buffer

4. parse request

5. file
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
buffer9. format reply

6. disk
request

10. network
socket
write

11. kernel copy
from user buffer
into network buffer

12. format outgoing
packet and DMA

AISO 2014/2015 34

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Web Server Example

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
buffer

4. parse request

5. file
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
buffer9. format reply

6. disk
request

10. network
socket
write

11. kernel copy
from user buffer
into network buffer

12. format outgoing
packet and DMA

AISO 2014/2015 35

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

New Process
• Create process

1.  Allocate and initialize the process control block (PCB)
2.  Allocate memory for the process
3.  Copy the program from disk into the newly allocated memory
4.  Allocate a user-level stack
5.  Allocate a kernel-level stack

• Run process
1.  Copy arguments into user memory
2.  Transfer control to user mode

AISO 2014/2015 36

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Upcall: User-level interrupt
• AKA UNIX signal

•  Notify user process of event that needs to be handled right away

• Use-cases:
•  Preemptive user-level threads
•  Asynchronous I/O notification
•  Interprocess communication
•  User-level exception handling
•  User-level resource allocation

AISO 2014/2015 37

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Upcall: User-level interrupt
• Direct analogue of kernel interrupts

•  Signal handlers – fixed entry points

•  Separate signal stack

•  Automatic save/restore registers – transparent resume

•  Signal masking: signals disabled while in signal handler

AISO 2014/2015 38

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Upcall Example
Before a Unix signal

...
x = y + z;
...

signal_handler() {
 ...
}

 stack:
Signal Stack

program counter

stack pointer

AISO 2014/2015 39

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Upcall Example
During a Unix signal handling

...
x = y + z;
...

signal_handler() {
 ...
}

 stack:
Signal Stack

program counter

stack pointer

PC
SP

 saved
registers

AISO 2014/2015 40

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Booting

BIOS

Disk

bootloader

(1) BIOS copies
bootloader

OS kernel
login app

bootloader
instructions
and data

OS kernel
instructions
and data

Physical Memory

login app
instructions
and data

(2) bootloader
copies OS
kernel

(3) OS kernel
copies login
application

AISO 2014/2015 41

