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Challenge: Protection 
• How do we execute code with restricted privileges? 

•  Either because the code is buggy or if it might be malicious 

• Some examples: 
•  A script running in a web browser 
•  A program you just downloaded off the Internet 
•  A program you just wrote that you haven’t tested yet 
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Main Points 
• Process concept 

•  A process is an OS abstraction for executing a program with limited 
privileges 

• Dual-mode operation: user vs. kernel 
•  Kernel-mode: execute with complete privileges 
•  User-mode: execute with fewer privileges 

• Safe control transfer 
•  How do we switch from one mode to the other? 
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Process Concept 
• Process: an instance of a program, running with limited 

rights 
•  Process control block: the data structure the OS uses to keep track 

of a process 
•  Two parts to a process: 

•  Thread: a sequence of instructions within a process 
•  Potentially many threads per process (for now 1:1) 
•  Thread aka lightweight process  

•  Address space: set of rights of a process 
•  Memory that the process can access 
•  Other permissions the process has (e.g., which procedure calls it can make, 

what files it can access) 
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Hardware Support:  
Dual-Mode Operation 

• Kernel mode 
•  Execution with the full privileges of the hardware 
•  Read/write to any memory, access any I/O device, read/write any 

disk sector, send/read any packet 

• User mode 
•  Limited privileges 
•  Only those granted by the operating system kernel 

• On the x86, mode stored in EFLAGS register 
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A Model of a CPU 
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A CPU with Dual-Mode Operation 

Program
Counter

CPU
Instructions

Fetch
Exec

Select
PC

New PC

opcode

+4

Branch Address

Handler
PC

Select 
Mode Mode

New 
Mode

AISO 2014/2015 8 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Hardware Support: 
Dual-Mode Operation 
• Privileged instructions 

•  Available to kernel 
•  Not available to user code 

•  Limits on memory accesses 
•  To prevent user code from overwriting the kernel 

•  Timer 
•  To regain control from a user program in a loop 

• Safe way to switch from user mode to kernel mode, and 
vice versa 
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Privileged instructions 
• Examples? 

•  Change the execution mode  
•  Access memory positions it has no permission to 
•  Input/Output operations 
•  Jump into kernel code 
•  Enable/disable interrupts 
•  … 

 
• What should happen if a user program attempts to 

execute a privileged instruction? 
•  Processor exception  
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Memory Protection 
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Towards Virtual Addresses 
• Problems with base and bounds? 

•  Expandable heap?   
•  Expandable stack? 
•  Memory sharing between processes? 
•  Non-relative addresses – hard to move memory around 
•  Memory fragmentation 
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Virtual Addresses 
•  Translation done in hardware, using a table 
•  Table set up by operating system kernel 
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Virtual Address Layout 
• Plus shared code segments, dynamically linked libraries, 

memory mapped files, … 
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Process Memory Map (Linux) 
taken from http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/ 
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Example: What Does this Do? 
 
int	
  staticVar	
  =	
  0;	
  	
  	
  	
  	
  	
  //	
  a	
  static	
  variable	
  
int	
  main()	
  {	
  
	
  	
  	
  	
  int	
  localVar	
  =	
  0;	
  	
  	
  //	
  a	
  procedure	
  local	
  variable	
  
	
  
	
  	
  	
  	
  staticVar	
  +=	
  1;	
  localVar	
  +=	
  1;	
  
	
  
	
  	
  	
  	
  sleep(10);	
  	
  //	
  sleep	
  causes	
  the	
  program	
  to	
  wait	
  for	
  x	
  seconds	
  
	
  	
  	
  	
  printf	
  ("static	
  address:	
  %x,	
  value:	
  %d\n",	
  &staticVar,	
  staticVar);	
  
	
  	
  	
  	
  printf	
  ("procedure	
  local	
  address:	
  %x,	
  value:	
  %d\n",	
  &localVar,	
  
localVar);	
  

}	
  
 
Produces: 
  static address: 5328, value: 1 
  procedure local address: ffffffe2, value: 1 
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Hardware Timer 
• Hardware device that periodically interrupts the processor 

•  Returns control to the kernel timer interrupt handler 

•  Interrupt frequency set by the kernel 
•  Not by user code! 

•  Interrupts can be temporarily deferred  
•  Not by user code! 
•  Crucial for implementing mutual exclusion 
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Mode Switch 
•  From user-mode to kernel 

•  Interrupts 
•  Triggered by timer and I/O devices 

•  Exceptions 
•  Triggered by unexpected program behavior 
•  Or malicious behavior! 

•  System calls (aka protected procedure call) 
•  Request by program for kernel to do some operation on its behalf 
•  Only limited # of very carefully coded entry points 
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Mode Switch 
•  From kernel-mode to user 

•  New process/new thread start 
•  Jump to first instruction in program/thread 

•  Return from interrupt, exception, system call 
•  Resume suspended execution 

•  Process/thread context switch 
•  Resume some other process 

•  User-level upcall 
•  Asynchronous notification to user program 
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How do we take interrupts safely? 
•  Limited number of entry 

points into kernel 
•  Interrupt vector 

• Handler works regardless of 
state of user code 
•  Kernel interrupt stack 

• Handler is non-blocking 
•  Interrupt masking 

• Atomic transfer of control 
•  Single instruction to change:  

•  Program counter 
•  Stack pointer 
•  Memory protection 
•  Kernel/user mode 

• User program does not 
know interrupt occurred 
•  Transparent restartable 

execution 
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Interrupt Vector 
•  Table set up by OS kernel; pointers to code to run on 

different events 

Processor
 Register Interrupt

  Vector

...

...

handleTimerInterrupt() {
 ...
}

handleDivideByZero() {
 ...
}

handleSystemCall() {
 ...
}
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Interrupt Stack 
• Per-processor, located in kernel (not user) memory 

•  Usually a thread has both: kernel and user stack 

• Why can’t interrupt handler run on the stack of the 
interrupted user process? 
•  Process’ stack pointer may be corrupted  
•  Prevent other threads to access/modify kernel internal 

information 
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Interrupt Stack 
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Interrupt Masking 
•  Interrupt handler runs with interrupts off 

•  Reenabled when interrupt completes 

• OS kernel can also turn interrupts off 
•  Eg., when determining the next process/thread to run 
•  If defer interrupts too long, can drop I/O events 
•  On x86 

•  CLI: disable interrrupts 
•  STI: enable interrupts 
•  Only applies to the current CPU 

• Cf. implementing synchronization, chapter 5 
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Interrupt Handlers 
• Non-blocking, run to completion 

•  Minimum necessary to allow device to take next interrupt 
•  Any waiting must be limited duration 
•  Wake up other threads to do any real work 

• Rest of device driver runs as a kernel thread 
•  Queues work for interrupt handler 
•  (Sometimes) wait for interrupt to occur 
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Atomic Mode Transfer 
• On interrupt (x86) 

•  Save current stack pointer 
•  Save current program counter 
•  Save current processor status word (condition codes) 
•  Switch to kernel stack; put SP, PC, PSW on stack 
•  Switch to kernel mode 
•  Vector through interrupt table 
•  Interrupt handler saves registers it might clobber 
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The x86 Example  
Before Interrupt 

code:

foo () {
   while(...) {
     x = x+1;
     y = y-2;
   }
} 

SS: ESP

User-level
  Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
    pusha
    ...
} 

   stack:
Exception
    Stack
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The x86 Example 
Upon Interrupt Reception 

code:

foo () {
   while(...) {
     x = x+1;
     y = y-2;
   }
} 

SS: ESP

User-level
  Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
    pusha
    ...
} 

   stack:
Exception
    Stack

SS
ESP

 EFLAGS
CS
EIP

error
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The x86 Example 
During the Handler’s Execution 

code:

foo () {
   while(...) {
     x = x+1;
     y = y-2;
   }
} 

SS: ESP

User-level
  Process

CS: EIP
EFLAGS

other
registers:
EAX, EBX,
...

Registers Kernel

code:

handler() {
    pusha
    ...
} 

   stack:
Exception
    Stack

SS
ESP

 EFLAGS
CS
EIP

error
(all
registers)
     SS
     ESP
     CS
     EIP
     EAX
     EBX
       ...
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At end of handler 
• Handler restores saved registers 

• Atomically return to interrupted process/thread 
•  Restore program counter 
•  Restore program stack 
•  Restore processor status word/condition codes 
•  Switch to user mode 
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System Calls 

main () {
   ...
   syscall(arg1, arg2);
   ...
} 

User Program Kernel

syscall(arg1, arg2) {

     do operation

} 

User Stub

syscall (arg1, arg2) {
   trap
   return
} 

handler() {
   copy arguments
      from user memory
   check arguments
   syscall(arg1, arg2);
   copy return value
      into user memory
   return
}

Kernel Stub

Hardware Trap

Trap Return

(1)

(2)

(3) (4)

(5)

(6)
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Kernel System Call Handler 
•  Locate arguments 

•  In registers or on user(!) stack 

• Copy arguments 
•  From user memory into kernel memory 
•  Protect kernel from malicious code evading checks 

• Validate arguments 
•  Protect kernel from errors in user code 

• Copy results back  
•  into user memory 
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Web Server Example 

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
buffer

4. parse request

5. file
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
buffer9. format reply

6. disk
request

10. network
socket
write

11. kernel copy 
from user buffer
into network buffer

12. format outgoing
packet and DMA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

AISO 2014/2015 33 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

Web Server Example 
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Web Server Example 

1. network
socket
read

Hardware

Server

Kernel

Network Interface

2. copy arriving
packet (DMA)

3. kernel
copy

request
buffer

4. parse request

5. file
read

Disk Interface

7. disk
data (DMA)

8. kernel
copy

reply
buffer9. format reply

6. disk
request

10. network
socket
write

11. kernel copy 
from user buffer
into network buffer

12. format outgoing
packet and DMA

AISO 2014/2015 35 



Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice” 

New Process 
• Create process 

1.  Allocate and initialize the process control block (PCB) 
2.  Allocate memory for the process 
3.  Copy the program from disk into the newly allocated memory 
4.  Allocate a user-level stack  
5.  Allocate a kernel-level stack 

• Run process 
1.  Copy arguments into user memory 
2.  Transfer control to user mode 
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Upcall: User-level interrupt 
• AKA UNIX signal 

•  Notify user process of event that needs to be handled right away 

• Use-cases: 
•  Preemptive user-level threads 
•  Asynchronous I/O notification 
•  Interprocess communication 
•  User-level exception handling 
•  User-level resource allocation 
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Upcall: User-level interrupt 
• Direct analogue of kernel interrupts 

•  Signal handlers – fixed entry points 

•  Separate signal stack 

•  Automatic save/restore registers – transparent resume 

•  Signal masking: signals disabled while in signal handler 
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Upcall Example 
Before a Unix signal 

...
x = y + z;
...

signal_handler() {
    ...
} 

   stack:
Signal Stack

program counter

stack pointer
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Upcall Example 
During a Unix signal handling 

...
x = y + z;
...

signal_handler() {
    ...
} 

   stack:
Signal Stack

program counter

stack pointer

PC
SP

 saved
registers
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Booting 

BIOS

Disk

bootloader

(1) BIOS copies
bootloader

OS kernel
login app

bootloader
instructions
and data

OS kernel
instructions
and data

Physical Memory

login app
instructions
and data

(2) bootloader
copies OS
kernel

(3) OS kernel
copies login
application
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