
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

PROGRAMMING
INTERFACE

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Functions of the Operating System
•  Creating and managing processes

•  fork, exec, wait
•  Performing I/O

•  open, read, write, close
•  Communicating between processes

•  pipe, dup, select, connect
•  Thread management
•  Memory management

•  brk
•  Networking

•  socket
•  Authentication and security
• …

AISO 2014/2015 2

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shell
• A shell is a job control system

•  Allows programmer to create and manage a set of programs to do
some task

•  Windows, MacOS, Linux all have shells

• Example: to compile a C program
•  cc –c sourcefile1.c
•  cc –c sourcefile2.c
•  ln –o program sourcefile1.o sourcefile2.o

AISO 2014/2015 3

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Question
•  If the shell runs at user-level, what system calls does it

make to run each of the programs?
•  Ex: cc, ln

AISO 2014/2015 4

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Windows CreateProcess
• System call to create a new process to run a program

•  Create and initialize the process control block (PCB) in the kernel
•  Create and initialize a new address space
•  Load the program into the address space
•  Copy arguments into memory in the address space
•  Initialize the hardware context to start execution at ``start'’
•  Inform the scheduler that the new process is ready to run

AISO 2014/2015 5

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Windows CreateProcess API
(simplified)
if	
 (!CreateProcess(

	
 	
 	
 	
 NULL,	
 	
 	
 //	
 No	
 module	
 name	
 (use	
 command	
 line)	

	
 	
 	
 	
 argv[1],	
 //	
 Command	
 line	

	
 	
 	
 	
 NULL,	
 	
 	
 //	
 Process	
 handle	
 not	
 inheritable	

	
 	
 	
 	
 NULL,	
 	
 	
 //	
 Thread	
 handle	
 not	
 inheritable	

	
 	
 	
 	
 FALSE,	
 	
 //	
 Set	
 handle	
 inheritance	
 to	
 FALSE	

	
 	
 	
 	
 0,	
 	
 	
 	
 	
 	
 //	
 No	
 creation	
 flags	

	
 	
 	
 	
 NULL,	
 	
 	
 //	
 Use	
 parent's	
 environment	
 block	

	
 	
 	
 	
 NULL,	
 	
 	
 //	
 Use	
 parent's	
 starting	
 directory	

	
 	
 	
 	
 &si,	
 	
 	
 	
 //	
 Pointer	
 to	
 STARTUPINFO	
 structure	

	
 	
 	
 	
 &pi	
)	
 	
 	
 //	
 Pointer	
 to	
 PROCESS_INFORMATION	
 structure	

)	

AISO 2014/2015 6

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX Process Management
• UNIX fork – system call to create a copy of the current

process, and start it running
•  No arguments!

• UNIX exec – system call to change the program being run
by the current process

• UNIX wait – system call to wait for a process to finish

• UNIX signal – system call to send a notification to
another process

AISO 2014/2015 7

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX Process Management

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(...);
else
 wait(pid);

main () {
 ...

}

exec

wait

fork

AISO 2014/2015 8

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Question: What does this code print?
int	
 child_pid	
 =	
 fork();	

	

if	
 (child_pid	
 ==	
 0)	
 {	
 	
 	
 //	
 I'm	
 the	
 child	
 process	

	
 	
 	
 	
 printf("I	
 am	
 process	
 #%d\n",	
 getpid());	

	
 	
 	
 	
 return	
 0;	

}	
 	

else	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 I'm	
 the	
 parent	
 process	

	
 	
 	
 	
 printf("I	
 am	
 parent	
 of	
 process	
 #%d\n",	
 child_pid);	

	
 	
 	
 	
 return	
 0;	

}	

AISO 2014/2015 9

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Questions
• Can UNIX fork() return an error? Why?

• Can UNIX exec() return an error? Why?

• Can UNIX wait() ever return immediately? Why?

AISO 2014/2015 10

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing UNIX fork
• Steps to implement UNIX fork

•  Create and initialize the process control block (PCB) in the kernel
•  Create a new address space
•  Initialize the address space with a copy of the entire contents of the

address space of the parent
•  Inherit the execution context of the parent (e.g., any open files)
•  Inform the scheduler that the new process is ready to run

AISO 2014/2015 11

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing UNIX exec
• Steps to implement UNIX exec

•  Load the program into the current address space
•  Copy arguments into memory in the address space
•  Initialize the hardware context to start execution at “start''

AISO 2014/2015 12

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX I/O
• Uniformity

•  All operations on all files, devices use the same set of system calls:
open, close, read, write

• Open before use
•  Open returns a handle (file descriptor) for use in later calls on the

file

• Byte-oriented
• Kernel-buffered read/write
• Explicit close

•  To garbage collect the open file descriptor

AISO 2014/2015 13

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX File System Interface
• UNIX file open is a Swiss Army knife:

•  Open the file, return file descriptor
•  Options:

•  if file doesn’t exist, return an error
•  If file doesn’t exist, create file and open it
•  If file does exist, return an error
•  If file does exist, open file
•  If file exists but isn’t empty, nix it then open
•  If file exists but isn’t empty, return an error
• …

AISO 2014/2015 14

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interface Design Question
• Why not separate syscalls for open/create/exists?

if	
 (!exists(name))	

	
 	
 	
 	
 	
 create(name);	
 	
 //	
 can	
 create	
 fail?	

fd	
 =	
 open(name);	
 	
 	
 	
 //	
 does	
 the	
 file	
 exist?	

AISO 2014/2015 15

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing a Shell
char	
 *prog,	
 **args;	

int	
 child_pid;	

	

//	
 Read	
 and	
 parse	
 the	
 input	
 a	
 line	
 at	
 a	
 time	

while	
 (readAndParseCmdLine(&prog,	
 &args))	
 {	
 	
 	
 	

	
 	
 	
 child_pid	
 =	
 fork();	
 	
 	
 	
 	
 	
 //	
 Create	
 a	
 child	
 process	

	
 	
 	
 	
 if	
 (child_pid	
 ==	
 0)	
 {	

	
 	
 	
 	
 	
 	
 	
 exec(prog,	
 args);	
 //	
 I'm	
 the	
 child	
 process.	
 Run	
 program	
 	

	
 	
 	
 	
 	
 	
 //	
 NOT	
 REACHED	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 else	
 {	

	
 	
 	
 	
 	
 	
 	
 wait(child_pid);	
 //	
 I'm	
 the	
 parent,	
 wait	
 for	
 child	

	
 	
 	
 	
 	
 	
 	
 return	
 0;	

	
 	
 	
 	
 }	

}	

AISO 2014/2015 16

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OPERATING SYSTEM
STRUCTURE

Monolithic kernels vs microkernels

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Monolithic Kernel
127 CHAPTER 3. THE PROGRAMMING INTERFACE

processor scheduling/synchronization

Hardware Abstraction Layer

buffer allocation

device drivers

networkingwindow managerfile system

system calls
exceptions
interrupts

virtual memory

OS Kernel Structure

Figure 3.13: Interprocess communication between a client process and a server
process.

Hardware abstraction layer

A key goal of operating systems is to be portable across a wide variety of hard-
ware platforms. To accomplish this, especially within a monolithic system,
requires careful design of the hardware abstraction layer . The hardware abstrac- Definition: hardware

abstraction layertion layer (HAL) is a portable interface to machine-specific operations within
the kernel. For example, almost all general-purpose operating systems perform
process and thread context switches, but the specific implementation of those
routines will vary depending on the processor architecture. The exception, in-
terrupt, and system call trap handling is also machine-specific; all systems have
those functions, but the specific implementation will vary. As we will see in
a later chapter, machines di↵er quite a bit in their architecture for managing
virtual address spaces; most kernels provide portable abstractions on top of the
machine-dependent routines, such as to translate virtual addresses to physical
addresses or to copy memory from applications to kernel memory and vice versa.

With a well-defined hardware abstraction layer in place, most of the oper-
ating system is machine-independent. Thus, porting an operating system to a
new processor architecture is just a matter of creating new implementations of
these low level HAL routines, and recompiling.

Dynamically installed device drivers

A similar consideration leads to operating systems that can easily accommodate
a wide variety of physical I/O devices. Although there are only a handful of

AISO 2014/2015 18

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

HAL and Device Drivers
•  HAL: portable interface to machine-specific operations within the

kernel.

•  Huge number of different types of physical I/O devices, manufactured
by a large number of companies.
à  70% of the code in the Linux kernel was in device specific software.

•  Dynamically loadable device driver:
•  software to manage a specific device or interface or chipset
•  added to the operating system kernel after the kernel starts running

•  At boot, the operating system starts with a small number of device
drivers
à  Queries the I/O buses for devices, and loads the drivers
à  90% of the errors in an OS are due to bugs in the device drivers

AISO 2014/2015 19

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Monolithic Kernel - System Call

Process P running in User level Process P running in Kernel level

AISO 2014/2015 20

Call	
 function	

read	
 (fd,	
 buffer,	
 nbytes)	

push	
 nbytes	

push	
 buffer	

push	
 fd	

call	
 read	

…	

mov	
 eax,	
 5	
 #	
 sys_read	
 entry	

…	

int	
 0x80	
 #	
 system	
 call	

…	

ret	
 	
 	

syscall_table[eax]	

…	

iret	

	

	

	

	

Software	
 	

interrupt	

Execution	
 of	
 system	
 call	
 read	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS Services as User Apps

Microkernel

privileged
mode

user
 mode

File system
A

File system
B

Line
discipline TCP/IP

Version
control

Application
program

Application
program

AISO 2014/2015 21

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Why?
•  It’s cool …

• Assume that OS coders are incompetent, malicious, or
both …
•  OS components run as protected user-level applications

• Extensibility
•  easier to add, modify, and extend user-level components than

kernel components

AISO 2014/2015 22

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementation Issues
• How are modules linked together?

• How is data moved around efficiently?

AISO 2014/2015 23

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach
• Developed at CMU, then Utah
• Early versions shared kernel with Unix

•  basis of NeXT OS

•  Later versions still shared kernel with Unix
•  basis of OSF/1

•  basis of Macintosh OS X

• Even later versions actually functioned as working
microkernel
•  basis of GNU/HURD project

•  HURD: HIRD of Unix-replacing daemons
•  HIRD: HURD of interfaces representing depth

AISO 2014/2015 24

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (1)
•  Linkage construct

Port

Server

Client

Client

Send rights

Receive rights

AISO 2014/2015 25

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (2)
• Communication construct

Request
Port

Server

Client

Request
Message

Response
Port

AISO 2014/2015 26

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (3)
• Communication construct

Request
Port

Server

Client

Request
Message Response

Port
Response
Message

AISO 2014/2015 27

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

RPC
• Ports used to implement remote procedure calls

•  Communication across process boundaries

•  if procedures are on same machine …
•  local RPC

AISO 2014/2015 28

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example

Disk driver

privileged
mode

user
 mode

File system
A

Application
program

Request
Port

Response
Port

Request
Port

Response
Port

AISO 2014/2015 29

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Successful Microkernel Systems
• 
• 
• …

AISO 2014/2015 30

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempts
• Windows NT 3.1

•  graphics subsystem ran as user-level process
•  moved to kernel in 4.0 for performance reasons

• Macintosh OS X
•  based on Mach
•  all services in kernel for performance reasons

• HURD
•  based on Mach
•  services implemented as user processes
•  no one uses it, for performance reasons …

AISO 2014/2015 31

