PROGRAMMING
INTERFACE

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Functions of the Operating System

Creating and managing processes
fork, exec, wait

Performing I/O

open, read, write, close

Communicating between processes
pipe, dup, select, connect

Thread management

Memory management
brk

Networking
socket

Authentication and security

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shell

A shell is a job control system

Allows programmer to create and manage a set of programs to do
some task

Windows, MacOS, Linux all have shells

Example: to compile a C program
cc —c sourcefile1.c
cc —c sourcefile2.c
In —o program sourcefile1.0 sourcefile2.0

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Question

If the shell runs at user-level, what system calls does it
make to run each of the programs?

Ex: cc, In

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Windows CreateProcess

System call to create a new process to run a program
Create and initialize the process control block (PCB) in the kernel
Create and initialize a new address space
Load the program into the address space
Copy arguments into memory in the address space
Initialize the hardware context to start execution at “start”

Inform the scheduler that the new process is ready to run

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Windows CreateProcess API

(simplified)

if (!CreateProcess(
NULL, // No module name (use command line)
argv[1l], // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi) // Pointer to PROCESS INFORMATION structure

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX Process Management

UNIX fork — system call to create a copy of the current
process, and start it running

No arguments!

UNIX exec — system call to change the program being run
by the current process

UNIX wait — system call to wait for a process to finish

UNIX signal — system call to send a notification to
another process

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX Process Management

. oid = fork(): evec main () {
if (pid == 0) N
exec(...); 4
else }
wait(pid);
pid = fork();
if (pid == 0)
exec(...);
else
wait(pid); \ pid = fork();
if (pid == 0) wait
exec(...); >
else
wait(pid);

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Question: What does this code print?

int child pid = fork();

if (child pid @) { // I'm the child process
printf ("I am process #%d\n", getpid());
return 9;

}

else { // I'm the parent process
printf("I am parent of process #%d\n", child pid);
return 9;

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Questions

Can UNIX fork() return an error? Why?
Can UNIX exec() return an error? Why?

Can UNIX wait() ever return immediately? Why?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing UNIX fork

Steps to implement UNIX fork
Create and initialize the process control block (PCB) in the kernel
Create a new address space

Initialize the address space with a copy of the entire contents of the
address space of the parent

Inherit the execution context of the parent (e.g., any open files)
Inform the scheduler that the new process is ready to run

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing UNIX exec

Steps to implement UNIX exec
Load the program into the current address space
Copy arguments into memory in the address space
Initialize the hardware context to start execution at “start”

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX 1/O

Uniformity

All operations on all files, devices use the same set of system calls:
open, close, read, write

Open before use

Open returns a handle (file descriptor) for use in later calls on the
file

Byte-oriented
Kernel-buffered read/write

Explicit close
To garbage collect the open file descriptor

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

UNIX File System Interface

UNIX file open is a Swiss Army knife:

Open the file, return file descriptor

Options:
if file doesn’t exist, return an error
If file doesn'’t exist, create file and open it
If file does exist, return an error
If file does exist, open file
If file exists but isn’t empty, nix it then open
If file exists but isn't empty, return an error

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Interface Design Question

Why not separate syscalls for open/create/exists?
if (!exists(name))

create(name); // can create fail?
fd = open(name); // does the file exist?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing a Shell

char *prog, **args;
int child pid;

// Read and parse the input a line at a time
while (readAndParseCmdLine(&prog, &args)) {
child pid = fork(); // Create a child process
if (child pid == 0) {
exec(prog, args); // I'm the child process. Run program
// NOT REACHED

}

else {
wait(child pid); // I'm the parent, wait for child
return 0;

}

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OPERATING SYSTEM
STRUCTURE

Monolithic kernels vs microkernels

Monolithic Kernel

OS Kernel Structure
file system window manager networking

virtual memory —9 \ X/ \Z

device drivers

system calls % \Z

exceptions \/ buffer allocatlon
interrupts

\|/ processor scheduling/synchronization <

Hardware Abstraction Layer

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

HAL and Device Drivers

HAL.: portable interface to machine-specific operations within the
kernel.

Huge number of different types of physical I/O devices, manufactured
by a large number of companies.

70% of the code in the Linux kernel was in device specific software.

Dynamically loadable device driver:
software to manage a specific device or interface or chipset
added to the operating system kernel after the kernel starts running

At boot, the operating system starts with a small number of device

drivers
Queries the I/0O buses for devices, and loads the drivers
90% of the errors in an OS are due to bugs in the device drivers

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Monolithic Kernel - System Call

Process P running in User level Process P running in Kernel level
Call function

read (fd, buffer, nbytes) Execution of system call read
push nbytes

push buffer

push fd

call read

mov eax, 5 # sys read entry Software

- interrupt gyscall table[eax]
int Ox80 # system call >

- € iret

ret —

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

OS Services as User Apps

Version
control
File system File system Line TCP/IP
A B discipline

user
mode
privileged
mode

Microkernel

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Why"?

It's cool ...

Assume that OS coders are incompetent, malicious, or
both ...

OS components run as protected user-level applications

Extensibility

easier to add, modify, and extend user-level components than
kernel components

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementation Issues

How are modules linked together?

How is data moved around efficiently?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach

Developed at CMU, then Utah

Early versions shared kernel with Unix
basis of NeXT OS

Later versions still shared kernel with Unix
basis of OSF/1
basis of Macintosh OS X
Even later versions actually functioned as working
microkernel

basis of GNU/HURD project

HURD: HIRD of Unix-replacing daemons
HIRD: HURD of interfaces representing depth

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (1)

Linkage construct

Send rights Port
Eeceve rights

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (2)

Communication construct

—

I\I}equest . Request
essage Port

\

Response
Port

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Mach Ports (3)

Communication construct

Request
Port

Request
Response Message

Port

Response

— | Message

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

RPC

Ports used to implement remote procedure calls
Communication across process boundaries

if procedures are on same machine ...
local RPC

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Example

File system
A

user
mode

\ \ l jyi\\\ v privileged
Response | Request Response Request mode

Port Port Port Port

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

AISO 2014/2015 30

Successful Microkernel Systems

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempts

Windows NT 3.1

graphics subsystem ran as user-level process
moved to kernel in 4.0 for performance reasons

Macintosh OS X

based on Mach
all services in kernel for performance reasons

HURD

based on Mach
services implemented as user processes
no one uses it, for performance reasons ...

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

