
Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

VIRTUAL MACHINES

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

It’s 1964 …
•  IBM wants a multiuser time-sharing system

•  CMS
•  single-user time-sharing system for IBM 360

•  CP67
•  virtual machine monitor (VMM)
•  supports multiple virtual IBM 360s

•  Put the two together …
•  a (working) multiuser time-sharing system

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Virtual Machines

Hardware

Virtual Machine Monitor

Virtual
Machine

OSa

Applications

Virtual
Machine

OSb

Applications

Virtual
Machine

OSc

Applications

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Why?

• Structuring technique for a multi-user system
• OS debugging and testing
• Multiple OSes on one machine
• Adapt to hardware changes in software
• Server consolidation and service isolation

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Issues
• Multiplex the processor among virtual machines

•  Instructions are executed directly on the processor

• Make each virtual machine behave just like a “real one”
•  Handle interrupts generated both by real and virtual devices
•  Should the guest OS run in privileged or user mode?

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

How?

Privileged

User Privileged

User

Real machine

Virtual machine

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Sensitive and Privileged Instructions
• Popek and Goldberg 1974

• Sensitive instructions
•  Control-sensitive instructions

•  affect the allocation of resources available to the virtual machine
•  change processor mode without causing a trap

•  Behavior-sensitive instructions
•  effect of execution depends upon location in real memory or on

processor mode

• Privileged instructions
•  Cause a fault in user mode
•  Work fine in privileged mode

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Sensitive and Privileged Instructions
• Popek and Goldberg 1974

• Set of sensitive instructions is subset of set of privileged
instructions then then a virtual machine monitor can be
constructed for it.

•  If not, it is possible to build a virtualization infrastructure,
but it is more complex

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Intel x86
•  Four execution modes

•  rings 0 through 3
•  not all sensitive instructions are privileged instructions

• Memory is protectable: segment system + virtual memory

• Special register points to interrupt table

•  I/O done via memory-mapped registers

• Virtual memory is standard

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

3 apps

Rings

0

1

2

kernel

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

A Sensitive x86 Instruction
•  popf

•  pops word off stack, setting processor flags according to word’s
content
•  Ring 0: sets all - including interrupt-disable flag

•  Other rings: just some of them - ignores interrupt-disable flag

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Solution 1 – Binary Rewriting
• Rewrite kernel binaries of guest OSes

• Privilege-mode code run via binary translator
•  Replaces sensitive instructions with hypercalls
•  Done dynamically
•  Translated code is cached

•  usually translated just once

• VMWare Workstation (32 bit guests), IBM System/370,
VirtualBox, …

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Solution 2 – Hardware-assisted
Virtualization
•  Fix the hardware so it’s virtualizable

•  Intel Vanderpool technology: VT-x
•  Two modes of operation orthogonal to the four rings:

•  root mode (in which the VMM runs)
•  non-root mode

•  Certain events in non-root mode cause VM-exit to root mode
•  essentially a hypercall
•  code in root mode specifies which events cause VM-exits

•  Non-VMM OSes must not be written to use root mode!

• VMWare workstation (64-bit guests) , Xen 3.x, KVM, …

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

CPU Virtualization
• Scheduling problem
•  Issues:

•  Detect when the VMs processor is idle
•  Some OSs execute idle processes (to check for work)
à Time slicing

•  Double multiplexing
•  Virtualize timer à virtual time
•  What about time-outs?
•  Cannot provide both virtual and real time transparently

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

I/O Virtualization
•  Lots and lots and lots of device drivers

• Must VMM handle all of them?

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Real-Machine OS Structure

process

OS

Devices Processor(s)

process process process process

Device drivers

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

On a Virtual Machine …

VMM

Devices Processor(s)

Process

OS

Virtual
devices

Virtual
processor(s)

Process

Device
drivers

Process

OS

Virtual
devices

Virtual
processor(s)

Process

Device
drivers

Device drivers

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

VMware Workstation

Host OS

Devices Processor(s)

Process Process VMApp

Process

Guest OS

Virtual
devices

Virtual
processor(s)

Process Process

Guest OS

Virtual
devices

Virtual
processor(s)

Process

Device
drivers

VMDriver

Device
drivers

Device drivers

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Solution 3 - Paravirtualization
• Virtual machine differs from real machine

•  Provides more convenient interfaces for virtualization
•  Hypervisor interface between virtual and real machines
•  Guest OS source code is modified

• Sensitive instructions replaced with hypervisor calls
•  traps to VMM

• Virtual machine provides higher-level device interface
•  guest machine has no device drivers

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Xen
Domain 0

OS

Hardware

App App App

disk device
driver

net device
driver

block
back end

net
back end

Domain U1

OS

App

block
front end

net
front end

App

shared mem
event channel
shared mem
event channel

VMM
Ring 0

Ring 0

Ring 3 Ring 3 Ring 3 Ring 3 Ring 3

Ring 1

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Additional Applications
• Sandboxing

•  Isolate web servers
•  Isolate device drivers

• Migration
•  VM not tied to particular hardware
•  Easy to move from one (real) platform to another

Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming”

Xen with Isolated Driver

Domain 0

OS

Hardware

Proces
s

Proces
s

net device
driver

net
back end

Domain U1

OS

Process

block
front end

net
front end

Process

VMM

Domain U2

block
back end

OS

disk device
driver

