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It’s 1964 … 
•  IBM wants a multiuser time-sharing system 

•  CMS 
•  single-user time-sharing system for IBM 360 

•  CP67 
•  virtual machine monitor (VMM) 
•  supports multiple virtual IBM 360s 

•  Put the two together … 
•  a (working) multiuser time-sharing system 



Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming” 

Virtual Machines 

Hardware 

Virtual Machine Monitor 

Virtual 
Machine 

OSa 

Applications 

Virtual 
Machine 

OSb 

Applications 

Virtual 
Machine 

OSc 

Applications 



Slides adapted from Thomas Doeppner “Operating Systems In Depth: Design and Programming” 

Why? 

• Structuring technique for a multi-user system 
• OS debugging and testing 
• Multiple OSes on one machine 
• Adapt to hardware changes in software 
• Server consolidation and service isolation 
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Issues 
• Multiplex the processor among virtual machines 

•  Instructions are executed directly on the processor 

• Make each virtual machine behave just like a “real one” 
•  Handle interrupts generated both by real and virtual devices 
•  Should the guest OS run in privileged or user mode? 
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Sensitive and Privileged Instructions 
• Popek and Goldberg 1974  

• Sensitive instructions 
•  Control-sensitive instructions 

•  affect the allocation of resources available to the virtual machine 
•  change processor mode without causing a trap 

•  Behavior-sensitive instructions 
•  effect of execution depends upon location in real memory or on 

processor mode 

• Privileged instructions 
•  Cause a fault in user mode   
•  Work fine in privileged mode 
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Sensitive and Privileged Instructions 
• Popek and Goldberg 1974  

• Set of sensitive instructions is subset of set of privileged 
instructions then then a virtual machine monitor can be 
constructed for it.  

•  If not, it is possible to build a virtualization infrastructure, 
but it is more complex 
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Intel x86 
•  Four execution modes 

•  rings 0 through 3 
•  not all sensitive instructions are privileged instructions 

• Memory is protectable: segment system + virtual memory 

• Special register points to interrupt table 
 

•  I/O done via memory-mapped registers 
 

• Virtual memory is standard 
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A Sensitive x86 Instruction 
•  popf 

•  pops word off stack, setting processor flags according to word’s 
content 
•  Ring 0: sets all - including interrupt-disable flag 

•  Other rings: just some of them - ignores interrupt-disable flag 
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Solution 1 – Binary Rewriting 
• Rewrite kernel binaries of guest OSes 

• Privilege-mode code run via binary translator 
•  Replaces sensitive instructions with hypercalls 
•  Done dynamically 
•  Translated code is cached 

•  usually translated just once 

• VMWare Workstation (32 bit guests), IBM System/370, 
VirtualBox, … 
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Solution 2 – Hardware-assisted 
Virtualization 
•  Fix the hardware so it’s virtualizable 

•  Intel Vanderpool technology: VT-x 
•  Two modes of operation orthogonal to the four rings: 

•  root mode (in which the VMM runs) 
•  non-root mode 

•  Certain events in non-root mode cause VM-exit to root mode 
•  essentially a hypercall 
•  code in root mode specifies which events cause VM-exits 

•  Non-VMM OSes must not be written to use root mode! 

• VMWare workstation (64-bit guests) , Xen 3.x, KVM, … 
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CPU Virtualization 
• Scheduling problem 
•  Issues: 

•  Detect when the VMs processor is idle 
•  Some OSs execute idle processes (to check for work)  
à Time slicing 

•  Double multiplexing 
•  Virtualize timer à virtual time 
•  What about time-outs? 
•  Cannot provide both virtual and real time transparently 
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I/O Virtualization 
•  Lots and lots and lots of device drivers 

• Must VMM handle all of them? 
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On a Virtual Machine … 
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Solution 3 - Paravirtualization 
• Virtual machine differs from real machine 

•  Provides more convenient interfaces for virtualization 
•  Hypervisor interface between virtual and real machines 
•  Guest OS source code is modified 

• Sensitive instructions replaced with hypervisor calls 
•  traps to VMM 

• Virtual machine provides higher-level device interface 
•  guest machine has no device drivers 
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Additional Applications 
• Sandboxing 

•  Isolate web servers 
•  Isolate device drivers 

• Migration 
•  VM not tied to particular hardware 
•  Easy to move from one (real) platform to another 
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