
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

CONCURRENCY

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Motivation
• Operating systems need to be able to handle multiple

things at once
•  processes, interrupts, background system maintenance

• Servers need to handle MTAO
•  Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
•  To achieve better performance

• Programs with user interfaces often need to handle MTAO
•  To achieve user responsiveness while doing computation

• Network and disk bound programs need to handle MTAO
•  To hide network/disk latency

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions
• A thread is a single execution sequence that represents a

separately schedulable task

• Protection is an orthogonal concept
•  Can have one or many threads per protection domain

•  Single threaded user program: one thread, one protection domain
•  Multi-threaded user program: multiple threads, sharing same data

structures, isolated from other user programs
•  Multi-threaded kernel: multiple threads, sharing kernel data structures,

capable of using privileged instructions

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Abstraction
•  Infinite number of processors
•  Threads execute with variable speed

•  Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality

Threads

Processors
1 2 3 4 5 1 2

Running
Threads

Ready
Threads

1 2 3 4 5 1 2 3 4 5

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Programmer vs. Processor View
Programmer’s

View

.

.

.
x = x + 1;
y = y + x;
z = x +5y;

.

.

.

Possible
Execution

#1
.
.
.

x = x + 1;
y = y + x;

z = x + 5y;
.
.
.

Possible
Execution

#2
.
.
.

x = x + 1
..............

thread is suspended
other thread(s) run
thread is resumed

...............
y = y + x

z = x + 5y

Possible
Execution

#3
.
.
.

x = x + 1
y = y + x
...............

thread is suspended
other thread(s) run
thread is resumed

................
z = x + 5y

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Possible Executions

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

Thread 1
Thread 2
Thread 3

a) One execution b) Another execution

c) Another execution

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread API
•  thread_create(func, args)

•  Create a new thread to run func(args)

•  thread_yield()
•  Relinquish processor voluntarily

•  thread_join(thread)
•  In parent, wait for forked thread to exit, then return

•  thread_exit()
•  Quit thread and clean up, wake up joiner if any

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Main: Fork 10 threads
call join on them, then exit
• What other
interleavings are
possible?

• What is maximum # of
threads running at
same time?

• Minimum?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Lifecycle

Waiting

Running FinishedReadyInit
Thread Creation

Scheduler
Resumes Thread Thread Exit

Thread Yields/
Scheduler

Suspends Thread
Thread Waits for EventEvent Occurs

e.g.,
sthread_create()

e.g., sthread_yield()
e.g.,

sthread_join()

e.g.,
sthread_exit()

e.g., other thread
calls

sthread_join()

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Control Block
• Stack

•  What if a thread puts too many procedures on its stack?
•  What should happen?
•  What happens in Java?
•  What happens in Linux?

• Copy of processor registers

• Metadata
•  Id
•  Priority
•  Status
•  …

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shared vs. Per-Thread State

State

Global
Variables

Heap

Code

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Per−Thread
State

Stack

Saved
Registers

Thread Control
Block (TCB)

Thread
Metadata

Stack
Information

Shared

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Implementation
•  Threads can be implemented in any of several ways

•  Multiple user-level threads, inside a UNIX process (early Java)

•  Multiple single-threaded processes (early UNIX)

•  Mixture of single and multi-threaded processes and kernel threads
(Linux, MacOS, Windows)
•  To the kernel, a kernel thread and a single threaded user process look

quite similar

•  Scheduler activations (Windows)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multi-threaded kernel and
multi-threaded processes

KERNEL

Code

Global
vars

Heap

Kernel
thread 1

TCB 1

Stack

Kernel
Thread 2

TCB 2

Stack

Kernel
Thread 3

TCB 3

Stack

PCB 1

TCB
1.A

Stack

Process 1

TCB
1.B

Stack

PCB 2

TCB
2.A

Stack

Process 2

TCB
2.B

Stack

Code

Global vars

Heap

Thread A Thread B

Stack

Process 1

Stack

Code

Global vars

Heap

Thread A Thread B

Stack

Process 2

Stack

USER-LEVEL PROCESSES

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Creating a thread
•  thread_create(func, arg)

•  Allocate thread control block (TCB)
•  Allocate stack
•  Build stack frame for base of stack
•  Put func, arg on stack
•  Set PC to stub
•  Put thread on ready list
•  Will run sometime later (maybe right away!)

•  stub
•  Run function func with argument arg
•  thread_exit(0)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Switch (in C)
void	
 thread_switch(oldThreadTCB,	
 newThreadTCB	
)	
 {	

	
 	
 save_state(oldThreadTCB);	

	
 	
 oldThreadTCB-­‐>sp	
 =	
 %ESP	

	

	
 	
 %ESP	
 =	
 newThreadTCB-­‐>	
 sp	

	
 	
 load_state(newThreadTCB);	

}	

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing (voluntary) thread context
switch
• Disable interrupts

• Get next thread
•  If null? Go back to the original thread

• Switch contexts
•  Change the state of the threads
•  Put current thread in ready queue
•  Call thread_switch

• Enable interrupts

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Two threads call yield

4.4 Implementation details 167

Logical View
Thread 1 Thread 2
while(1){ while(1){

thread_yield() thread_yield()
} }

Physical Reality
Thread 1’s instructions Thread 2’s instructions Processor’s instructions
call thread_yield call thread_yield
save state to stack save state to stack
save state to TCB save state to TCB
choose another thread choose another thread
load other thread state load other thread state

call thread_yield call thread_yield
save state to stack save state to stack
save state to TCB save state to TCB
choose another thread choose another thread
load other thread state load other thread state

return thread_yield return thread_yield
call thread_yield call thread_yield
save state to stack save state to stack
save state to TCB save state to TCB
choose another thread choose another thread
load other thread state load other thread state

return thread_yield return thread_yield
call thread_yield call thread_yield
save state to stack save state to stack
save state to TCB save state to TCB
choose another thread choose another thread
load other thread state load other thread state

return thread_yield return thread_yield
...

Figure 4.13: Interleaving of instructions when two threads loop and call thread_yield().

• Then, we will describe a few small additions needed to support multi-
threaded processes.

Multi-threaded kernel with single-threaded processes

Figure 4.14 illustrates two single-threaded user-level processes running on
a multi-threaded kernel with three kernel threads. Notice that each user-
level process includes the process’s thread. But, each process is more than
just a thread because each process has its own address space — process 1
has its own view of memory, its own code, its own heap, and its own global
variables that differ from those of process 2 (and differ from those of the
kernel).

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread switch on an interrupt
•  Thread switch can occur due to timer or I/O interrupt

•  Tells OS some other thread should run

• Simple version
•  End of interrupt handler calls thread_switch()
•  When resumed, return from handler resumes kernel or user thread

•  Faster version
•  Interrupt handler returns to saved state in TCB
•  Could be kernel or user thread

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiple Processors
•  Thread switch is no longer sufficient

• Usual approach
•  run on each processor an idle thread

void	
 idle_thread()	
 {	

	
 	
 while(1)	

	
 	
 	
 	
 if	
 (need_resched())	

	
 	
 	
 sched();	

}	

• Why?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Threads in a Process
• User-level library, within a single-threaded process

à  Model many-to-one

• Use kernel threads
à  Model one-to-one

• Use scheduler activations
à  Model many-to-many

• Use event-driven programming

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Many-to-One (N:1)
• Many user-level threads
mapped to single kernel
thread
•  Library does thread context

switch
•  Kernel time slices between

processes, e.g., on system
call I/O

• Examples:
•  Solaris Green Threads
•  GNU Portable Threads
•  Early Java

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

One-to-One (1:1)
• Each user-level thread

maps to kernel thread
•  System calls for thread fork,

join, exit (and lock, unlock,…)
•  Kernel does context switching

• Simple, but a lot of
transitions between user
and kernel mode

• Examples
•  Win32
•  Linux (NPTL)
•  Solaris 9 and later
•  OS X
•  FreeBSD
•  …

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Many-to-Many (M:N)
• Allows many user level
threads to be mapped to
many kernel threads
•  Kernel allocates

processors to user-level
library

•  Thread library implements
context switch

•  System call I/O that blocks
triggers upcall

• Examples
•  Solaris prior to version 9
•  Windows NT/2000 with the

ThreadFiber package

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hybrid
• Similar to M:M, except
that it allows a user
thread to be bound to
kernel thread

• Examples
• HP-UX
• Marcel – PM2 project
• Windows 7

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Scheduler Activations

Kernel
User

Kernel scheduler

User scheduler User scheduler

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Event-Driven Programming

4.5. Asynchronous I/O and event-driven programming 172

to examine the addresses of variables allocated to di↵erent threads’ staks.
Finally, you may want to be able to determine how much memory has
been allocated to your process; most operating systems have a command
or utility that an show resource consumption by currently running pro-
cesses (e.g., top in Linux, Activity Monitor in OSX, or Task Manager in
Windows.)

4.5 Asynchronous I/O and event-driven program-
ming

Although threads are a common way to express concurrency, they are not the
only way. Asynchronous I/O and event-driven programming are one popular
alternative. This approach allows a single-threaded program to cope with high-
latency I/O devices by overlapping I/O with processing and other I/O.

The basic idea is to allow a process to make a system call to issue and I/O
request but not wait for the result. At a later time the operating system provides
the result to the process by calling a signal handler, by making a callback to
code in the process, by placing the result in a queue in the process’s memory, or
by storing the result in kernel memory until the process makes another system
call to retrieve it.

Example: Asynchronous disk read. Reading from disk can take tens of
milliseconds, so in Linux, rather than issuing a read() system call that blocks
until the requested blocks have been read from disk, a process can issue an
aio read() (asynchronous I/O read) system call, which tells the operating sys-
tem to initiate the read from disk but which then immediately returns. Later, the
process can call aio error() to determine if the disk read has finished and
aio return() to retrieve the read’s results. E.g.,

Process

OS

Disk

aio_read() other processing aio_return()

read

handler handlerhandler

One common design pattern allows a single thread to interleave several dif-
ferent I/O-bound tasks by waiting for several di↵erent I/O events.

Example: Web server. Consider a web server with 10 active clients. Rather
than create one thread per client and have each thread do a blocking read()
on the network connection, an alternative is for the server to have one thread
that does a select() call that blocks until any of the 10 network connections
has data available to read; when the select() call returns, it provides the

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

4.5. Asynchronous I/O and event-driven programming 174

// Event -driven
Hashtable <Buffer*> *hash;
while (1){

connection = use select () to find a
readable connection ID

buffer = hash.remove(connection);
got = read(connection , tmpBuf , TMP_SIZE);
buffer ->append(tmpBuf , got);
buffer = hash.put(connection , buffer);

}

// Thread -per -client
Buffer *b;
while (1){

got = read(connection , tmpBuf , TMP_SIZE);
buffer ->append(tmpBuf , got);

}

When these programs execute, the system does essentially the same things.
However, in the first case, it explicitly saves and restores each connection’s
state, while in the second case, the thread system saves and restores this
state transparently.

The state in both cases is also essentially the same. In both cases, the ap-
plication needs to keep one buffer per client connection. In the event-driven
case, the application maintains a data structure (e.g., hash in the pseudocode)
to keep track of the different clients’ data structures. In the thread-per-client
case, each thread has just one buffer to keep track of, and the operating sys-
tem keeps track of the different threads’ states.

select()
waiting

list
TCB1

thread 1’s
stack

Hash Table

buf1

buf3

buf2

conn 1
waiting

list
TCB1

thread 1’s
stack

buf1

conn 2
waiting

list
TCB2

thread 2’s
stack

buf2

conn 3
waiting

list
TCB3

thread 3’s
stack

buf3

To compare the event-driven and threads approaches, consider the three
goals for threads discussed at the start of this chapter.

• Performance: Coping with high-latency I/O devices. Either approach—
event-driven or threads—can be used to overlap I/O and processing. Which
provides better performance?

In the past, the common wisdom has been that the event-driven approach
could often be significantly faster for two reasons. First, the space and
context switch overheads of the approach can be lower because a thread
system must use generic code that allocates a stack for each thread’s state
and that saves and restores all registers on each context switch, but the
event-driven approach allows programmers to allocate and save/restore
just the state needed for each thread. Second, some past operating sys-
tems had ine�cient or unscalable implementations of their thread systems,
making it important not to create too many threads for each process.

Today, the comparison is less clear cut. Many systems now have large
memories, so the cost of allocating a thread stack for each task is less

Event-Driven vs Threads

4.5. Asynchronous I/O and event-driven programming 174

// Event -driven
Hashtable <Buffer*> *hash;
while (1){

connection = use select () to find a
readable connection ID

buffer = hash.remove(connection);
got = read(connection , tmpBuf , TMP_SIZE);
buffer ->append(tmpBuf , got);
buffer = hash.put(connection , buffer);

}

// Thread -per -client
Buffer *b;
while (1){

got = read(connection , tmpBuf , TMP_SIZE);
buffer ->append(tmpBuf , got);

}

When these programs execute, the system does essentially the same things.
However, in the first case, it explicitly saves and restores each connection’s
state, while in the second case, the thread system saves and restores this
state transparently.

The state in both cases is also essentially the same. In both cases, the ap-
plication needs to keep one buffer per client connection. In the event-driven
case, the application maintains a data structure (e.g., hash in the pseudocode)
to keep track of the different clients’ data structures. In the thread-per-client
case, each thread has just one buffer to keep track of, and the operating sys-
tem keeps track of the different threads’ states.

select()
waiting

list
TCB1

thread 1’s
stack

Hash Table

buf1

buf3

buf2

conn 1
waiting

list
TCB1

thread 1’s
stack

buf1

conn 2
waiting

list
TCB2

thread 2’s
stack

buf2

conn 3
waiting

list
TCB3

thread 3’s
stack

buf3

To compare the event-driven and threads approaches, consider the three
goals for threads discussed at the start of this chapter.

• Performance: Coping with high-latency I/O devices. Either approach—
event-driven or threads—can be used to overlap I/O and processing. Which
provides better performance?

In the past, the common wisdom has been that the event-driven approach
could often be significantly faster for two reasons. First, the space and
context switch overheads of the approach can be lower because a thread
system must use generic code that allocates a stack for each thread’s state
and that saves and restores all registers on each context switch, but the
event-driven approach allows programmers to allocate and save/restore
just the state needed for each thread. Second, some past operating sys-
tems had ine�cient or unscalable implementations of their thread systems,
making it important not to create too many threads for each process.

Today, the comparison is less clear cut. Many systems now have large
memories, so the cost of allocating a thread stack for each task is less

Event-Driven

Threads

