CONCURRENCY

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Motivation

Operating systems need to be able to handle multiple
things at once

processes, interrupts, background system maintenance

Servers need to handle MTAO

Multiple connections handled simultaneously

Parallel programs need to handle MTAO

To achieve better performance

Programs with user interfaces often need to handle MTAO
To achieve user responsiveness while doing computation

Network and disk bound programs need to handle MTAO

To hide network/disk latency

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions

A thread is a single execution sequence that represents a
separately schedulable task

Protection is an orthogonal concept

Can have one or many threads per protection domain
Single threaded user program: one thread, one protection domain

Multi-threaded user program: multiple threads, sharing same data
structures, isolated from other user programs

Multi-threaded kernel: multiple threads, sharing kernel data structures,
capable of using privileged instructions

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Abstraction

Infinite number of processors

Threads execute with variable speed
Programs must be designed to work with any schedule

Programmer Abstraction Physical Reality
re T T T S
Threade,S,S,S,S. |S|SIS 5 9
S L L T S-S LG (R N R SR R
| | | | | | | | |
Processors')”ﬁ:)”ﬁ:)”ﬁ:)”ﬁ:)mi' I)mn‘:)mn'l
112,34, 5, | 11,2,
Running Ready
Threads Threads

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Programmer vs. Processor View

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X=X+1; X=X+ 1; X=X+1 X=X+1
y=y+Xx; V=Y+X y=y+X

z=Xx+5y; z=x+5y; threadissuspended ...
other thread(s) run thread is suspended
thread is resumed other thread(s) run
............... thread is resumed

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Possible Executions

Thread 1] Thread 1 | I
Thread 2 [1] Thread 2 | |
Thread 3 1 Thread 3 | |
a) One execution b) Another execution
Thread 1
Thread2 [O 0O0C]
Thread 3 O OC 1

c) Another execution

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread API

thread create(func, args)
Create a new thread to run func(args)

thread_yield()

Relinquish processor voluntarily

thread_join(thread)

In parent, wait for forked thread to exit, then return

thread_exit()

Quit thread and clean up, wake up joiner if any

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Main: Fork 10 threads
call join on them, then exit

bash-3.2$./threadHello

What Other Hello from thread 0

Hello from thread 1

|nter|eaV|ngS are Thread 0 returned 100

Hello from thread 3

pOSS|b|e? Hello from thread 4

Thread 1 returned 101

What |S maX|mum # Of Hello from thread 5

Hello from thread

threadS runn|ng at Hello from thread

Hello from thread

same tlme? Hello from thread

Hello from thread 9

N oo N

I Thread 2 returned 102

IVI I n I m u m ? Thread returned 103
Thread returned 104
Thread returned 105
Thread returned 106
Thread returned 107
Thread returned 108
Thread 9 returned 109
Main thread done.

oYU bW

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Lifecycle

Scheduler
Resumes Thread

Thread Exit

Thread Creation

e.g.,
sthread exit ()

e.g.,
sthread create()

v
Thread Yields/

Scheduler

Suspends Thread
e.g., sthread yield()

Thread Waits for Event
e.g.,
sthread join()

Event Occurs

e.g., other thread
calls

sthread join()

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Control Block

Stack

What if a thread puts too many procedures on its stack?
What should happen?
What happens in Java?
What happens in Linux?

Copy of processor registers

Metadata

|d
Priority
Status

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shared vs. Per-Thread State

Shared
State

Heap

Global
Variables

Code

Per—Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Per—Thread
State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread Implementation

Threads can be implemented in any of several ways
Multiple user-level threads, inside a UNIX process (early Java)

Multiple single-threaded processes (early UNIX)

Mixture of single and multi-threaded processes and kernel threads
(Linux, MacOS, Windows)

To the kernel, a kernel thread and a single threaded user process look
quite similar

Scheduler activations (Windows)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multi-threaded kernel and
multi-threaded processes

KERNEL

Code

Global
vars

Heap

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread A Thread B

5

5

Stack

Stack

Kernel Kernel Kernel Process 1 Process 2
thread 1 Thread 2 Thread 3
é ‘5 ‘5 PCB 1 PCB 2
TCB TCB TCB TCB
TCB 1 TCB 2 TCB 3 1.A 1.B 2.A 2.B
Stack Stack Stack Stack Stack Stack Stack
USER-LEVEL PROCESSES Process 1 Process 2

Thread A Thread B

é

é

Code

Global vars

Heap

Creating a thread

thread_create(func, arg)
Allocate thread control block (TCB)
Allocate stack
Build stack frame for base of stack
Put func, arg on stack
Set PC to stub
Put thread on ready list

Will run sometime later (maybe right away!)

stub

Run function func with argument arg
thread_exit(0)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Thread Switch (in C)

void thread switch(oldThreadTCB, newThreadTCB) {
save_state(oldThreadTCB);
0ldThreadTCB->sp = %ESP

%ESP = newThreadTCB-> sp
load state(newThreadTCB);

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing (voluntary) thread context

switch
Disable interrupts

Get next thread
If null? Go back to the original thread

Switch contexts

Change the state of the threads
Put current thread in ready queue
Call thread_switch

Enable interrupts

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Two threads call yield

Thread 1’s instructions

Thread 2’s instructions Processor’s instructions

call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield

call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield
call thread_yield

save state to stack
save state to TCB
choose another thread
load other thread state
return thread_yield

Thread switch on an interrupt

Thread switch can occur due to timer or I/O interrupt
Tells OS some other thread should run

Simple version
End of interrupt handler calls thread switch()
When resumed, return from handler resumes kernel or user thread

Faster version
Interrupt handler returns to saved state in TCB
Could be kernel or user thread

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiple Processors

Thread switch is no longer sufficient

Usual approach
run on each processor an idle thread

void idle thread() {
while(1)

if (need_resched())
sched();

Why?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Threads in a Process

User-level library, within a single-threaded process
Model many-to-one

Use kernel threads
Model one-to-one

Use scheduler activations
Model many-to-many

Use event-driven programming

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Many-to-One (N:1)

Many user-level threads
mapped to single kernel
thread ; §<— user thread

Library does thread context
switch

Kernel time slices between
processes, €.g., on system
call I/0

Examples:
Solaris Green Threads
GNU Portable Threads

Early Java
<«— kernel thread

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

One-to-One (1:1)

Each user-level thread
maps to kernel thread

System calls for thread fork,
join, exit (and lock, unlock,...)

Kernel does context switching

Simple, but a lot of
transitions between user
and kernel mode ;

<«—— user thread
Examples

Win32 3 ; ;

Linux (NPTL)

Solaris 9 and later

0OS X <«——Kernel thread

FreeBSD

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Many-to-Many (M:N)

Allows many user level
threads to be mapped to
many kernel threads ; ;

Kernel allocates ; ;
<«—— user thread

processors to user-level
library

Thread library implements
context switch

System call I/O that blocks
triggers upcall

Examples
Solaris prior to version 9

Windows NT/2000 with the
ThreadFiber package

<«—— kernel thread

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Hybrid

Similar to M:M, except

that it allows a user

thread to be bound to ; é
kernel thread ;

; ; <«—— user thread

Examples
HP-UX
Marcel — PM2 project
Windows 7

@ <«—— Kkernel thread

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Scheduler Activations

P20 R

\ I /7
User scheduler User scheduler
User
Kernel

Kernel scheduler

SOV

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Event-Driven Programming

Process
0OS
Disk

aio_read()

other processing

aio_return()

\

handler

\

handler

handler

read

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Prac

tice”

Event-Driven vs Threads

. Hash Table
Event-Driven thread s | i
stack buf2
buf3
select() j
waiting —>| TCB1
list
Threads thread 1's thread 2's thread 3's
stack stack stack
»| buf1 » buf2 »| buf3
conn 1 j conn 2 j conn 3 j
waiting —>| TCB waiting —>1 TCB2 waiting —>| TCB3
list list list

Slides adapted from Tom Anderson’s “Operating Systems:

Principles and Practice”

