SYNCHRONIZATION

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

How can threads communicate?

Message passing
Communication is explicit
Easier to reason about
Copy overhead

Shared memory

Communication is implicit on data access

No copy overhead

Correctness often requires explicit thread synchronization

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multi versus single threaded programs

Execution may depend on the possible interleavings of
the thread’s access to shared data

Execution may be non-deterministic

More sensible to hardware and compiler instruction
reordering optimizations

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Synchronization Motivation

Thread 1 Thread 2
p = Soman(); while (! isInitialized)
isInitialized = true; >
q = aFn(p);

if g !'= aFn(someFn())
panic

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions

Race condition:

Output of a concurrent program depends on the order of operations
between threads

Data race:

Two threads are accessing shared data and at least one of them is
performing a write operation

Critical section:
Piece of code that only one thread can execute at once

Mutual exclusion:
Only one thread does a particular thing at a time

Lock:

Prevent someone from doing something
Lock before entering critical section, before accessing shared data
unlock when leaving, after done accessing shared data
wait if locked (all synch involves waiting!)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk Example

12:30
12:35
12:40
12:45
12:50
12:55

1:00

Person A Person B
Look in fridge. Out of milk.
Leave for store.
Arrive at store. Look in fridge. Out of milk.
Buy milk. Leave for store.
Arrive home, put milk away. Arrive at store.
Buy milk.

Arrive home, put milk away.
Oh no!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #1

Correctness property
Someone buys if needed (liveness)
At most one person buys (safety)

Try #1: leave a note

if !note
if Imilk { Safety sensible
leave note to context switch
buy milk

remove note

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (!note B) { if (!noteA) {
if (!'milk) if (!'milk)
buy milk buy milk
} }
remove note A remove note B

Liveness sensible to context switch

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, Try #3

Thread A Thread B
leave note A leave note B
while (note B) // X if (!'noteA) { // Y
do nothing; if (!'milk)
if (!milk) buy milk
buy milk; }
remove note A remove note B

Can guarantee at X and Y that either:
1. Safe for me to buy
2. Other will buy, ok to quit

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lessons

Solution is complicated
“obvious” code often has bugs

Modern compilers/architectures reorder instructions
Making reasoning even more difficult
Memory barriers are needed

Generalizing to many threads/processors
Peterson’s algorithm: even more complex

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Locks

lock _acquire
wait until lock is free, then take it

lock_release
release lock, waking up anyone waiting for it

At most one lock holder at a time (safety)
If no one holding, acquire gets lock (progress)

If all lock holders finish and no higher priority waiters,
waiter eventually gets lock (progress)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Too Much Milk, #4

Locks allow concurrent code to be much simpler:
lock acquire()

if (!milk) buy milk
lock release()

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Rules for Using Locks

Lock is initially free

Always acquire before accessing shared data structure
Beginning of procedure!

Always release after finishing with shared data

End of procedure!
DO NOT throw lock for someone else to release

Never access shared data without lock
Danger!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables

Called only when holding a lock

Wait: atomically release lock and relinquish processor
until signaled

Signal: wake up a waiter, if any
Broadcast: wake up all waiters, if any

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables

ALWAYS hold lock when calling wait, signal, broadcast
Condition variable is sync FOR shared state
ALWAYS hold lock when accessing shared state

Condition variable is memoryless
If signal when no one is waiting, no op
If wait before signal, waiter wakes up

Wait atomically releases lock

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables

When a thread is woken up from wait, it may not run immediately

Mesa semantics
Signal puts waiter on ready list
Signaler keeps lock and processor
Hoare semantics
Signal gives processor and lock to waiter
When waiter finishes, processor/lock given back to signaler
Nested signals possible!

Under Mesa semantics wait MUST be in a loop
while (needToWait())
condition.Wait(lock);

Mesa semantics simplifies implementation
Of condition variables and locks
Of code that uses condition variables and locks

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Java Manual

When waiting upon a Condition, a “spurious wakeup” is
permitted to occur, in general, as a concession to the
underlying platform semantics. This has little practical
impact on most application programs as a Condition
should always be waited upon in a loop, testing the state
predicate that is being waited for.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Structured Synchronization

|dentify objects or data structures that can be accessed
by multiple threads concurrently

Add locks to object/module
Grab lock on start to every method/procedure
Release lock on finish

If need to wait

while(needToWait()) condition.wait(lock);

Do not assume when you wake up, signaler just ran

If do something that might wake someone up

Signal or Broadcast

Always leave shared state variables in a consistent state
When lock is released, or when waiting

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Implementing Synchronization

Concurrent Applications

Semaphores Locks Condition Variables
Interrupt Disable Atomic Read/Modify/Write Instructions
Multiple Processors Hardware Interrupts

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Uniprocessor

LockAcquire(){
disableInterrupts ();
if (value == BUSY) {

waiting.add(
current TCB);
scheduler.suspend();
}
else
value = BUSY;
enableInterrupts ();

¥

LockRelease() {

disableInterrupts ();
if (lwaiting.Empty()) {
thread =
waiting.remove();
readylList.
append(thread);
}
else
value = FREE;
enableInterrupts ();

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiprocessor

Read-modify-write instructions

Atomically read a value from memory, operate on it, and then write
it back to memory

Intervening instructions prevented in hardware

Examples
Test and set
Intel: xchgb, lock prefix
Compare and swap

Does it matter which type of RMW instruction we use?
Not for implementing locks and condition variables!

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Spinlocks

Lock where the processor waits in a loop for the lock to
become free

Assumes lock will be held for a short time
Used to protect ready list to implement locks

SpinlockAcquire() {
while (testAndSet(&lockValue) == BUSY)

J

SpinlockRelease() {
lockValue = FREE;

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor

LockAcquire(){
spinLock.acquire();
if (value == BUSY){

waiting.
add(current TCB);
scheduler.
suspend(&spinLock);
}
else {
value = BUSY,
spinLock.release();

LockRelease() {

¥

TCB *next;

spinLock.acquire();

if ('waiting.Empty()){
next = waiting.remove();
scheduler.makeReady(next);

¥

else {
value = FREE;

¥

spinLock.release();

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor

Scheduler:
Queue readylList;
SpinLock schedSpinLock;

makeReady (TCB *thread){
disableInterrupts();
schedSpinLock.acquire();
readlList.add(thread);
thread->state = READY;
schedSpinLock.release();
enableInterrupts();

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Multiprocessor

suspend(SpinLock *lock){
TCB *chosenTCB;

disableInterrupts();
schedSpinLock.acquire();
lock->release();

runningThread->state = WAITING;
chosenTCB = readlList.getNext();
thread_switch(runningThread, chosenTCB);
chosenTCB ->state = RUNNING;
schedSpinLock.release();
enableInterrupts();

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Lock Implementation, Linux

Fast path

If lock is FREE, and no one is waiting, test&set

Slow path

If lock is BUSY or someone is waiting, see previous slide

User-level locks
Fast path: acquire lock using test&set
Slow path: system call to kernel, to use kernel lock

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Futexes

Safe, efficient kernel conditional queueing in Linux

All operations performed atomically

futex wait(futex_ t *futex, int val)
if futex->val is equal to val, then sleep
otherwise return

futex_wake(futex_ t *futex)

wake up one thread from futex’s wait queue, if there are any waiting
threads

For more information:
http://people.redhat.com/drepper/futex.pdf

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Ancillary Functions

int atomic_inc(int *val)
add 1 to *val, return its original value

int atomic_dec(int *val)
subtract 1 from *val, return its original value

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempt 1

void lock(futex t *futex) {
int c;
while ((c = atomic_inc(&futex->val)) != 0)
futex wait(futex, c+l1);

void unlock(futex t *futex) {
futex->val = 0;
futex _wake(futex);

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Attempt 2

State: void lock(futex t *futex) {
0 — unlocked int c;
1—-No if ((c = CAS(&futex-»>val, 0, 1) != 0)
waiting do {
threads if (c == 2 || (CAS(&futex->val, 1, 2) != 1))
2 — Waiting futex _wait(futex, 2);
threads }

while ((c = CAS(&futex-»>val, 0, 2)) != 09))
}

void unlock(futex t *futex) {
if (atomic _dec(&futex-»>val) != 1) {
futex->val = 0;
futex _wake(futex);
}
}

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Condition Variables and Semaphores

The implementation follows the same reasoning for lock
Implementation

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

