
Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

SCHEDULING

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Main Points
• Scheduling policy: what to do next, when there are

multiple threads ready to run
•  Or multiple packets to send, or web requests to serve, or …

• Definitions
•  response time, throughput, predictability

• Uniprocessor policies
•  FIFO, round robin, optimal
•  multilevel feedback as approximation of optimal

• Multiprocessor policies
•  Affinity scheduling, gang scheduling

• Queueing theory
•  Can you predict a system’s response time?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions
•  Task/Job

•  User request: e.g., mouse click, web request, shell command, …

•  Latency/response time
•  How long does a task take to complete?

•  Throughput
•  How many tasks can be done per unit of time?

• Overhead
•  How much extra work is done by the scheduler?

•  Fairness
•  How equal is the performance received by different users?

• Predictability
•  How consistent is the performance over time?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

More Definitions
• Workload

•  Set of tasks for system to perform
• Preemptive scheduler

•  If we can take resources away from a running task
• Work-conserving

•  Resource is used whenever there is a task to run
•  For non-preemptive schedulers, work-conserving is not always

better
• Scheduling algorithm

•  takes a workload as input
•  decides which tasks to do first
•  Performance metric (throughput, latency) as output
•  Only preemptive, work-conserving schedulers to be considered

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

First In First Out (FIFO)
• Schedule tasks in the order they arrive

•  Continue running them until they complete or give up the processor

• Example: memcached
•  Facebook cache of friend lists, …

• On what workloads is FIFO particularly bad?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shortest Job First (SJF)
• Always do the task that has the shortest remaining

amount of work to do
•  Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others
•  Which completes first in FIFO? Next?
•  Which completes first in SJF? Next?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

FIFO vs. SJF

Time

Tasks

(1)

(2)

(3)

(4)

(5)

FIFO

SJF

(1)

(2)

(3)

(4)

(5)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Shortest Job First
• Claim: SJF is optimal for average response time

•  Why?

• Pessimal?

• Does SJF have any downsides?
•  starvation
•  variance in response time.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Determining Length of Next CPU Burst
• Can only estimate the length

• Can be done by using the length of previous CPU bursts,
using exponential averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

€

τn=1 = α tn + 1−α()∗τn

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Prediction of the Length of the Next CPU
Burst

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Examples of Exponential Averaging
• α =0

•  τn+1 = τn
•  Recent history does not count

• α =1
•  τn+1 = α tn
•  Only the actual last CPU burst counts

•  If we expand the formula, we get:
 τn+1 = α tn+ (1 - α)α tn -1 + … + (1 - α)j α tn -j +
 … + (1 - α)n +1 τ0

• Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Round Robin
• Each task gets resource for a fixed period of time (time

quantum)
•  If task doesn’t complete, it goes back in line

• Need to pick a time quantum
•  What if time quantum is too long?

•  Infinite?
•  What if time quantum is too short?

•  One instruction?

• Usually it is set between 10 and 100ms
•  A common approach is have 80% of the tasks complete in a single

execution

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Round Robin

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

Round Robin (100 ms time slice)

(1)

(2)

(3)

(4)

(5)

rest of task 1

rest of task 1

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Round Robin vs. FIFO
• Assuming zero-cost time slice, is Round Robin always

better than FIFO?

Time

Tasks

(1)

(2)

(3)

(4)

(5)

Round Robin (1 ms time slice)

FIFO and SJF

(1)

(2)

(3)

(4)

(5)
No

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Round Robin vs. Fairness
•  Is Round Robin always fair?

Mixed workload

Time

Tasks

I/O bound

CPU bound

CPU bound

issues
 I/O
request

 I/O
completes

gets
CPU

 I/O
completes

No

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Max-Min Fairness
• How do we balance a mixture of repeating tasks:

•  Some I/O bound, need only a little CPU
•  Some compute bound, can use as much CPU as they are assigned

• One approach: maximize the minimum allocation given to
a task
•  Schedule the smallest task first, then split the remaining time using

max-min

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multi-level Feedback Queue (MFQ)
• Goals:

•  Responsiveness
•  Low overhead
•  Starvation freedom
•  Some tasks are high/low priority
•  Fairness (among equal priority tasks)

• Not perfect at any of them!
•  Used in Linux (and probably Windows, MacOS)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

MFQ
• Set of Round Robin queues

•  Each queue has a separate priority

• High priority queues have short time slices
•  Low priority queues have long time slices

• Scheduler picks first thread in highest priority queue

•  Tasks start in highest priority queue
•  If time slice expires, task drops one level

• Preemption
•  Tasks with more priority preempt tasks with less priority

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

MFQ

Priority

1

Time Slice (ms)

time slice
expiration

new or I/O
bound task

2

4

3

80

40

20

10

Round Robin Queues

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Fairness
• Give priority to tasks that have quantum left
• Example the O(1) scheduler previously implemented in

Linux

208 CHAPTER 5 Processor Management

In addition, there is no explicit support for multiprocessors. On such a system, the one run
queue serves all processors; a thread is equally likely to run on any processor from one execution
to the next. Furthermore, with a single run queue there is contention for the mutex protecting it.

The new scheduler, known as the O(1) scheduler for reasons explained below, has a roughly
similar effect to the old one in determining which thread runs when, but does so more effi ciently
and takes cache footprints into account when scheduling for multiprocessors.

Each processor has a separate run queue — actually a separate pair of run queues labeled
active and expired (see Figure 5.29). Each run queue is itself an array of queues, one for each pri-
ority level, of which there are 140. Attached to each run queue is a bit vector indicating which of
the queues are non-empty. Finding the highest-priority runnable thread involves searching the bit
vector for the fi rst non-empty queue, then taking the fi rst thread from that queue. Thus scheduling
decisions are made in constant time, as opposed to the linear time required by the old scheduler
— thus explaining the name of the scheduler.

A processor’s active queue provides it with threads to run. When one is needed, the thread
from the front of the highest-priority non-empty queue is chosen and runs with a time slice that
depends on its priority. When a thread’s time slice is over, what happens next also depends on its
priority. Real-time threads (necessarily SCHED_RR since SCHED_FIFO threads aren’t time-sliced)
go back to the active queue at their priority. A time-sharing thread’s priority is reduced; if it’s
still above an interactive-priority threshold, it goes back to the active queue at its new priority.
Otherwise it goes to the expired queue. However, if threads have been waiting in the expired
queue for too long (how long depends on how many there are), then all time-sharing threads go
to the expired queue when their time slice is over.

If there are no threads in the active queue, which means there are no runnable real-time
threads, then the active and expired queues are switched. The threads that were on the expired
queue now compete for the processor.

When a thread that has been sleeping wakes up, it’s assigned a priority that depends both on how
long it was sleeping and what it was waiting for. The longer the sleep, the better its priority becomes.
If it was waiting on a hardware event such as a keystroke or a mouse click, its priority becomes even
better. The assumption is that long-term sleepers or those who had been waiting for such events are the
most likely to be interactive threads. Newly awoken threads go on the active queue.

The effect of all this is that real-time threads run to the exclusion of all other threads.
Threads determined to be interactive get favored treatment over non-interactive threads.

As we’ve mentioned, each processor has its own set of queues. Threads typically run on the
same processor all the time, thus taking advantage of their cache footprints. Of course, we also
need a means for sharing the workload among all processors — the benefi ts of using the cache
footprint do not outweigh those of using multiple processors.

Processor
0 struct runqueue

Processor
1 struct runqueue

active expired

bitmap bitmap

active expired

bitmap bitmap

FIGURE 5 .29 The run queues of the O(1) Linux scheduler.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Uniprocessor Summary
•  FIFO is simple and minimizes overhead.

•  If tasks are variable in size, then FIFO can have very poor
average response time.

•  If tasks are equal in size, FIFO is optimal in terms of
average response time.

• Considering only the processor, SJF is optimal in terms of
average response time.

• SJF is pessimal in terms of variance in response time.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Uniprocessor Summary
•  If tasks are variable in size, Round Robin approximates

SJF.
•  If tasks are equal in size, Round Robin will have very poor

average response time.
•  Tasks that intermix processor and I/O benefit from SJF

and can do poorly under Round Robin.
• Max-min fairness can improve response time for I/O-

bound tasks.
• Round Robin and Max-min fairness both avoid starvation.
• By manipulating the assignment of tasks to priority

queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiprocessor Scheduling
• What would happen if we used MFQ on a multiprocessor?

•  Contention for scheduler spinlock

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Multiprocessor Scheduling
• On modern processors, the CPU is 100x slower on a

cache miss
• Cache effects of a single ready list:

•  Cache coherence overhead
•  MFQ data structure would ping between caches
•  Fetching data from other caches can be even slower than re-fetching

from DRAM
•  Cache reuse

•  Thread’s data from last time it ran is often still in its old cache

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Amdahl’s Law
• Speedup on a multiprocessor limited by whatever runs

sequentially
• Runtime >= Sequential portion + parallel portion/#CPUs

• Example:
•  Suppose scheduler lock used 0.1% of the time
•  Suppose scheduler lock is 50x slower because of cache effects
•  Runtime >= 5% + 95%/# CPUs

•  System is only 2.5x faster with 100 processors than 10

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Per-Processor Multi-level Feedback:
Affinity Scheduling

CPU 1 CPU 2 CPU 3

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Scheduling Parallel Programs
• Oblivious: each processor time-slices its ready list

independently of the other processors

Time

p1.4

CPU1 CPU2 CPU3

p2.3

p3.1

p2.1

p3.4

p2.4

p1.2

p1.3

p2.2

px.y = thread y in process x

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Scheduling Parallel Programs
• What happens if one thread gets time-sliced while other

threads from the same program are still running?
•  Assuming program uses locks and condition variables, it will still be

correct
•  What about performance?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Bulk Synchronous Parallel Program
CPU 1 CPU 2 CPU 4CPU 3

time
barrier

local computation

communication

local computation

barrier

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Co-Scheduling

Time

p1.1

CPU1 CPU2 CPU3

p2.1

p3.1

p1.2

p2.2

p3.2

p1.3

p2.3

p3.3

px.y = thread y in process x

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Amdahl’s Law, Revisited

Number of Processors

 P
er

fo
rm

an
ce

(in
ve

rs
e

re
sp

on
se

 ti
m

e)
perfectly parallel

diminishing returns

limited parallelism

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Space Sharing

Time

CPU1 CPU2 CPU3

process 1

CPU4 CPU5 CPU6

process 2

Scheduler activations: kernel informs user-level library as
to # of processors assigned to that application, with upcalls
every time the assignment changes

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing Theory
• Can we predict what will happen to user performance:

•  If a service becomes more popular?
•  If we buy more hardware?
•  If we change the implementation to provide more features?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing Model

Queue

Arrivals

Server

 Departures
(Throughput)

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Definitions
• Queueing delay: wait time
• Service time: time to service the request
• Response time = queueing delay + service time
• Utilization: fraction of time the server is busy

•  Service time * arrival rate

•  Throughput: rate of task completions
•  If no overload, throughput = arrival rate

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing
• What is the best case scenario for minimizing queueing

delay?
•  Keeping arrival rate, service time constant

• What is the worst case scenario?

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing: Best Case

Arrivals During Interval

Th
ro

ug
hp

ut

Arrivals During Interval

Re
sp

on
se

 Ti
m

e

Service Time
Full utilization

Full utilization
Max throughput

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing: Worst Case

Arrivals During Interval

Th
ro

ug
hp

ut

Arrivals During Interval

Re
sp

on
se

 Ti
m

e Service Time Full utilization
Max throughput

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Queueing: Average Case?
• Gaussian: Arrivals are
spread out, around a
mean value

• Exponential: arrivals
are memoryless

• Heavy-tailed: arrivals
are bursty

Event = x

 P
ro

ba
bi

lit
y

of
 E

ve
nt

exponential distribution

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Exponential Distribution

0

λ

μ

1 2 3

λλλ

μμμ

λ

μ

4 ...

Permits closed form solution to state probabilities,
as function of arrival rate and service rate

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Response Time vs. Utilization
• R = S/(1-U)

•  Better if gaussian
•  Worse if heavy-tailed

• Variance in R = S/(1-U)^2

Utilization

Re
sp

on
se

 T
im

e

0 1

Service Time

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

What if Multiple Resources?
• Response time =

•  Sum over all i
•  Service time for resource i /
•  (1 – Utilization of resource i)

•  Implication
•  If you fix one bottleneck, the next highest utilized resource will limit

performance

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Overload Management
• What if arrivals occur faster than service can handle them

•  If do nothing, response time will become infinite

•  Turn users away?
•  Which ones? Average response time is best if turn away users that

have the highest service demand

• Degrade service?
•  Compute result with fewer resources
•  Example: CNN static front page on 9/11
•  Counterexample: highway congestion

Slides adapted from Tom Anderson’s “Operating Systems: Principles and Practice”

Why Do Metro Buses Cluster?
• Suppose two Metro buses start 15 minutes apart

•  Why might they arrive at the same time?

