
Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

FILE SYSTEM 
IMPLEMENTATION 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File System Implementation 
• File-System Structure 
• File-System Implementation  
• Directory Implementation 
• Allocation Methods 
• Free-Space Management  
• Efficiency and Performance 
• Recovery 
• NFS 
• Example: WAFL File System 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Objectives 
• To describe the details of implementing local file systems 

and directory structures 

• To describe the implementation of remote file systems 

• To discuss block allocation and free-block algorithms and 
trade-offs 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File-System Structure 
• File structure 

•  Logical storage unit 
•  Collection of related information 

• File system resides on secondary storage (disks) 
•  Provided user interface to storage, mapping logical to physical 
•  Provides efficient and convenient access to disk by allowing data to 

be stored, located retrieved easily 
• Disk provides in-place rewrite and random access 

•  I/O transfers performed in blocks of sectors (usually 512 bytes) 
• File control block – storage structure consisting of 

information about a file 
• Device driver controls the physical device  
• File system organized into layers 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Layered File System 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File System Layers 
• Device drivers manage I/O devices at the I/O control layer 

•  Given commands like �read drive1, cylinder 72, track 2, sector 10, 
into memory location 1060� outputs low-level hardware specific 
commands to hardware controller 

• Basic file system given command like �retrieve block 123� 
translates to device driver 
•  Also manages memory buffers and caches (allocation, freeing, 

replacement)  
•  Buffers hold data in transit 
•  Caches hold frequently used data 

• File organization module understands files, logical 
address, and physical blocks 
•  Translates logical block # to physical block # 
•  Manages free space, disk allocation 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File System Layers (Cont.) 
• Logical file system manages metadata information 

•  Translates file name into file number, file handle, location by 
maintaining file control blocks (inodes in UNIX) 

•  Directory management 
•  Protection 

•  Layering useful for reducing complexity and redundancy, 
but adds overhead and can decrease performance 
•  Logical layers can be implemented by any coding method 

according to OS designer 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File System Layers (Cont.) 
• Many file systems, sometimes many within an operating 

system 
•  Each with its own format (CD-ROM is ISO 9660; Unix has UFS, 

FFS;  Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD 
Blu-ray, Linux has more than 40 types, with extended file system 
ext2 and ext3 leading; plus distributed file systems, etc.) 

•  New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File-System Implementation 
• We have system calls at the API level, but how do we 

implement their functions? 
•  On-disk and in-memory structures 

• Boot control block contains info needed by system to 
boot OS from that volume 
•  Needed if volume contains OS, usually first block of volume 

• Volume control block (superblock, master file table) 
contains volume details 
•  Total # of blocks, # of free blocks, block size, free block pointers or 

array 

• Directory structure organizes the files 
•  Names and inode numbers, master file table 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File-System Implementation (Cont.) 
• Per-file File Control Block (FCB) contains many details 

about the file 
•  inode number, permissions, size, dates 
•  NFTS stores into in master file table  using relational DB structures 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

In-Memory File System Structures 
• Mount table storing file system mounts 

•  mount points 
•  file system types 

• The following figure illustrates the necessary file system 
structures provided by the operating systems 
•  Figure 12-3(a) refers to opening a file 
•  Figure 12-3(b) refers to reading a file 

• Plus buffers hold data blocks from secondary storage 
• Open returns a file handle for subsequent use 
• Data from read eventually copied to specified user 

process memory address 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

In-Memory File System Structures 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Partitions and Mounting 
•  Partition can be a volume containing a file system (�cooked�) 

or raw  
•  Boot block can point to boot volume or boot loader set of blocks 

that contain enough code to know how to load the kernel from 
the file system 
•  Or a boot management program for multi-os booting 

•  Root partition contains the OS, other partitions can hold other 
OSes, other file systems, or be raw 
•  Mounted at boot time 
•  Other partitions can mount automatically or manually 

•  At mount time, file system consistency checked 
•  Is all metadata correct? 

•  If not, fix it, try again 
•  If yes, add to mount table, allow access 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Virtual File Systems 
• Virtual File Systems (VFS) on Unix provide an object-

oriented way of implementing file systems 
• VFS allows the same system call interface (the API) to be 

used for different types of file systems 
•  Separates file-system generic operations from implementation 

details 
•  Implementation can be one of many file systems types, or network 

file system 
•  Implements vnodes which hold inodes or network file details 

•  Then dispatches operation to appropriate file system 
implementation routines 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Virtual File Systems (Cont.) 

• The API is to the VFS 
interface, rather than 
any specific type of file 
system 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Virtual File System Implementation 
• For example, Linux has four object types: 

•  inode, file, superblock, dentry 

• VFS defines set of operations on the objects that must be 
implemented 
•  Every object has a pointer to a function table 

•  Function table has addresses of routines to implement that function on 
that object 

•  For example: 
int open(. . .)  — Open a file 
int close(. . .)  — Close an already-open file 
ssize t read(. . .)  — Read from a file 
ssize t write(. . .)  — Write to a file 
int mmap(. . .)  — Memory-map a file 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Directory Implementation 
•  Linear list of file names with pointer to the data blocks 

•  Simple to program 
•  Time-consuming to execute 

•  Linear search time 
•  Could keep ordered alphabetically via linked list or use B+ tree 

• Hash Table – linear list with hash data structure 
•  Decreases directory search time 
•  Collisions – situations where two file names hash to the same 

location 
•  Only good if entries are fixed size, or use chained-overflow method 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Allocation Methods - Contiguous 
• An allocation method refers to how disk blocks are 

allocated for files: 
• Contiguous allocation – each file occupies set of 

contiguous blocks 
•  Best performance in most cases 
•  Simple – only starting location (block #) and length (number of 

blocks) are required 
•  Problems include finding space for file, knowing file size, external 

fragmentation, need for compaction off-line (downtime) or on-line 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Contiguous Allocation 
• Mapping from logical to 
physical 

LA/512

Q

R

Block to be accessed = 
         Q + starting address
Displacement into block = R



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Extent-Based Systems 
• Many newer file systems (i.e., Veritas File System) use a 

modified contiguous allocation scheme 

• Extent-based file systems allocate disk blocks in extents 

• An extent is a contiguous block of disks 
•  Extents are allocated for file allocation 
•  A file consists of one or more extents 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Allocation Methods - Linked 
•  Linked allocation – each file a linked list of blocks 

•  File ends at nil pointer 
•  No external fragmentation 
•  Each block contains pointer to next block 
•  No compaction, external fragmentation 
•  Free space management system called when new block needed 
•  Improve efficiency by clustering blocks into groups but increases 

internal fragmentation 
•  Reliability can be a problem 
•  Locating a block can take many I/Os and disk seeks 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Allocation Methods – Linked (Cont.) 
• FAT (File Allocation Table) variation 

•  Beginning of volume has table, indexed by block number 
•  Much like a linked list, but faster on disk and cacheable  
•  New block allocation simple 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Linked Allocation 
• Each file is a linked list of disk blocks: blocks may be 

scattered anywhere on the disk 
pointerblock      =

 

Mapping 
    Assuming that pointer takes 4 bytes

 
 

Block to be accessed is the Qth block in the linked chain of blocks 
representing the file.
Displacement into block = R + 4

LA/508
Q

R



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Linked Allocation 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

File-Allocation Table (FAT) 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Allocation Methods - Indexed 
•  Indexed allocation 

•  Each file has its own index block(s) of pointers to its data blocks 

•  Logical view 

index&table



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Example of Indexed Allocation 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Indexed Allocation (Cont.) 
• Need index table 
• Random access 
• Dynamic access without external fragmentation, but have 

overhead of index block 
• Mapping from logical to physical in a file of maximum size 

of 64K bytes and block size of 512 bytes.  We need only 1 
block for index table (with 4 byte pointers): 

LA/128
Q

R

Q = displacement into index table
R = displacement into block

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
512



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Indexed Allocation – Mapping (Cont.) 
• Mapping from logical to physical in a file of unbounded 

length (block size of 512 words) 
• Linked scheme – Link blocks of index table (no limit on 

size) 
LA / (512 x 127)

Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Indexed Allocation – Mapping (Cont.) 
• Two-level index (4K blocks could store 1,024 four-byte 

pointers in outer index ! 1,048,567 data blocks and file 
size of up to 4GB).  

• For 512K blocks we have: 

LA / (128 x 128)
Q1

R1
Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
512

Ricardo Filipe Chaves Gaspar
1,048,576



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Indexed Allocation – Mapping (Cont.) 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Combined Scheme:  UNIX UFS  
 

More index blocks than can be addressed with 32-bit file pointer 

4K bytes per block, 32-bit addresses 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Performance 
• Best method depends on file access type 

•  Contiguous great for sequential and random 

•  Linked good for sequential, not random 
• Declare access type at creation ! select either 

contiguous or linked 
•  Indexed more complex 

•  Single block access could require 2 index block reads then data 
block read 

•  Clustering can help improve throughput, reduce CPU overhead 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Performance (Cont.) 
• Adding instructions to the execution path to save one disk 

I/O is reasonable 
•  Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 

MIPS 
•  http://en.wikipedia.org/wiki/Instructions_per_second 

•  Typical disk drive at 250 I/Os per second 
•  159,000 MIPS / 250 = 630 million instructions during one disk I/O  

•  Fast SSD drives provide 60,000 IOPS 
•  159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Free-Space Management 
• File system maintains free-space list to track available 

blocks/clusters 
•  (Using term �block� for simplicity) 

• Bit vector or bit map (n blocks) 
…

0 1 2 n-1

bit[i] =

!
"
# 1 ⇒ block[i] free

0  ⇒ block[i] occupied
Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first �1� bit



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Free-Space Management (Cont.) 
• Bit map requires extra space 

•  Example: 

  block size = 4KB =  212 bytes 
  disk size = 240 bytes (1 terabyte) 
  n = 240/212 = 228 bits (or 32MB) 
  if clusters of 4 blocks ! 8MB of memory 

• Easy to obtain contiguous space 

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
256 MB

Ricardo Filipe Chaves Gaspar
64 MB



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Linked Free Space List on Disk 
• Linked list (free list) 

• Cannot get contiguous 
space easily 

• No waste of space 
• No need to traverse the 

entire list (if # free blocks 
recorded) 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Free-Space Management (Cont.) 
• Grouping  

•  Modify linked list to store address of next n-1 free blocks in first free 
block, plus a pointer to next block that contains free-block-pointers 
(like this one) 

• Counting 
•  Because space is frequently contiguously used and freed,  with 

contiguous-allocation allocation, extents, or clustering 
•  Keep address of first free block and count of following free blocks 
•  Free space list then has entries containing addresses and counts 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Free-Space Management (Cont.) 
• Space Maps 

•  Used in ZFS 
•  Divides device space into metaslab units and manages metaslabs 

•  Given volume can contain hundreds of metaslabs 
•  Each metaslab has associated space map 

•  Uses counting algorithm 
•  But records to log file rather than file system 

•  Log of all block activity, in time order, in counting format 
•  Metaslab activity ! load space map into memory in balanced-tree 

structure, indexed by offset 
•  Replay log into that structure 
•  Combine contiguous free blocks into single entry 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Efficiency and Performance 
• Efficiency dependent on: 

•  Disk allocation and directory algorithms 
•  Types of data kept in file�s directory entry 
•  Pre-allocation or as-needed allocation of metadata structures 
•  Fixed-size or varying-size data structures 

 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Efficiency and Performance (Cont.) 
• Performance 

•  Keeping data and metadata close together 
•  Buffer cache – separate section of main memory for frequently 

used blocks 
•  Synchronous writes sometimes requested by apps or needed by 

OS 
•  No buffering / caching – writes must hit disk before acknowledgement 
•  Asynchronous writes more common, buffer-able, faster 

•  Free-behind and read-ahead – techniques to optimize sequential 
access 

•  Reads frequently slower than writes 
 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Page Cache 
• A page cache caches pages rather than disk blocks using 

virtual memory techniques and addresses 

• Memory-mapped I/O uses a page cache 

• Routine I/O through the file system uses the buffer (disk) 
cache 

• This leads to the following figure 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

I/O Without a Unified Buffer Cache 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Unified Buffer Cache 
• A unified buffer cache uses the same page cache to 

cache both memory-mapped pages and ordinary file 
system I/O to avoid double caching 

•  But which caches get priority, and what replacement algorithms to 
use? 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

I/O Using a Unified Buffer Cache 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Recovery 
• Consistency checking – compares data in directory 

structure with data blocks on disk, and tries to fix 
inconsistencies 
•  Can be slow and sometimes fails 

 

• Use system programs to back up data from disk to 
another storage device (magnetic tape, other magnetic 
disk, optical) 
 

• Recover lost file or disk by restoring data from backup 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Log Structured File Systems 
•  Log structured (or journaling) file systems record each 

metadata update to the file system as a transaction 
•  All transactions are written to a log 

•   A transaction is considered committed once it is written to the log 
(sequentially) 

•  Sometimes to a separate device or section of disk 
•  However, the file system may not yet be updated 

•  The transactions in the log are asynchronously written to the 
file system structures 
•   When the file system structures are modified, the transaction is 

removed from the log 
•  If the file system crashes, all remaining transactions in the log 

must still be performed 
•  Faster recovery from crash, removes chance of inconsistency 

of metadata 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

The Sun Network File System (NFS) 
• An implementation and a specification of a software 

system for accessing remote files across LANs (or WANs) 
 

• The implementation is part of the Solaris and SunOS 
operating systems running on Sun workstations using an 
unreliable datagram protocol (UDP/IP protocol and 
Ethernet 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS (Cont.) 
•  Interconnected workstations viewed as a set of independent 

machines with independent file systems, which allows 
sharing among these file systems in a transparent manner 
•  A remote directory is mounted over a local file system directory 

•  The mounted directory looks like an integral subtree of the local file 
system, replacing the subtree descending from the local directory 

•  Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided 
•  Files in the remote directory can then be accessed in a transparent 

manner 
•  Subject to access-rights accreditation, potentially any file system (or 

directory within a file system), can be mounted remotely on top of any 
local directory 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS (Cont.) 
• NFS is designed to operate in a heterogeneous 

environment of different machines, operating systems, 
and network architectures; the NFS specifications 
independent of these media 

• This independence is achieved through the use of RPC 
primitives built on top of an External Data Representation 
(XDR) protocol used between two implementation-
independent interfaces 
 

• The NFS specification distinguishes between the services 
provided by a mount mechanism and the actual remote-
file-access services  



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Three Independent File Systems 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Mounting in NFS  

Mounts Cascading mounts



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS Mount Protocol 
•  Establishes initial logical connection between server and client 
•  Mount operation includes name of remote directory to be 

mounted and name of server machine storing it 
•  Mount request is mapped to corresponding RPC and forwarded to 

mount server running on server machine  
•  Export list – specifies local file systems that server exports for 

mounting, along with names of machines that are permitted to mount 
them  

•  Following a mount request that conforms to its export list, the 
server returns a file handle—a key for further accesses 

•  File handle – a file-system identifier, and an inode number to 
identify the mounted directory within the exported file system 

•  The mount operation changes only the user�s view and does 
not affect the server side  



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS Protocol 
•  Provides a set of remote procedure calls for remote file 

operations.  The procedures support the following operations: 
•  searching for a file within a directory  
•  reading a set of directory entries  
•  manipulating links and directories  
•  accessing file attributes 
•  reading and writing files 

•  NFS servers are stateless; each request has to provide a full 
set of arguments  (NFS V4 is just coming available – very 
different, stateful) 

•  Modified data must be committed to the server�s disk before 
results are returned to the client (lose advantages of caching) 

•  The NFS protocol does not provide concurrency-control 
mechanisms 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Three Major Layers of NFS Architecture  
• UNIX file-system interface (based on the open, read, 

write, and close calls, and file descriptors) 
 

• Virtual File System (VFS) layer – distinguishes local files 
from remote ones, and local files are further distinguished 
according to their file-system types 
•  The VFS activates file-system-specific operations to handle local 

requests according to their file-system types  
•  Calls the NFS protocol procedures for remote requests 

 

• NFS service layer – bottom layer of the architecture 
•  Implements the NFS protocol 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Schematic View of NFS Architecture  



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS Path-Name Translation 
• Performed by breaking the path into component names 

and performing a separate NFS lookup call for every pair 
of component name and directory vnode 
 

• To make lookup faster, a directory name lookup cache on 
the client�s side holds the vnodes for remote directory 
names 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

NFS Remote Operations 
•  Nearly one-to-one correspondence between regular UNIX  

system calls and the NFS protocol RPCs (except opening and 
closing files) 

•  NFS adheres to the remote-service paradigm, but employs 
buffering and caching techniques for the sake of performance  

•  File-blocks cache – when a file is opened, the kernel checks 
with the remote server whether to fetch or revalidate the 
cached attributes 
•  Cached file blocks are used only if the corresponding cached attributes 

are up to date 
•  File-attribute cache – the attribute cache is updated whenever 

new attributes arrive from the server 
•  Clients do not free delayed-write blocks until the server 

confirms that the data have been written to disk 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Example: WAFL File System 
• Used on Network Appliance �Filers� – distributed file 

system appliances 
•  �Write-anywhere file layout� 
• Serves up NFS, CIFS, http, ftp 
• Random I/O optimized, write optimized 

•  NVRAM for write caching 

• Similar to Berkeley Fast File System, with extensive 
modifications 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

The WAFL File Layout 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Snapshots in WAFL 


