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File System Implementation 
• File-System Structure 
• File-System Implementation  
• Directory Implementation 
• Allocation Methods 
• Free-Space Management  
• Efficiency and Performance 
• Recovery 
• NFS 
• Example: WAFL File System 
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Objectives 
• To describe the details of implementing local file systems 

and directory structures 

• To describe the implementation of remote file systems 

• To discuss block allocation and free-block algorithms and 
trade-offs 
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File-System Structure 
• File structure 

•  Logical storage unit 
•  Collection of related information 

• File system resides on secondary storage (disks) 
•  Provided user interface to storage, mapping logical to physical 
•  Provides efficient and convenient access to disk by allowing data to 

be stored, located retrieved easily 
• Disk provides in-place rewrite and random access 

•  I/O transfers performed in blocks of sectors (usually 512 bytes) 
• File control block – storage structure consisting of 

information about a file 
• Device driver controls the physical device  
• File system organized into layers 
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Layered File System 
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File System Layers 
• Device drivers manage I/O devices at the I/O control layer 

•  Given commands like �read drive1, cylinder 72, track 2, sector 10, 
into memory location 1060� outputs low-level hardware specific 
commands to hardware controller 

• Basic file system given command like �retrieve block 123� 
translates to device driver 
•  Also manages memory buffers and caches (allocation, freeing, 

replacement)  
•  Buffers hold data in transit 
•  Caches hold frequently used data 

• File organization module understands files, logical 
address, and physical blocks 
•  Translates logical block # to physical block # 
•  Manages free space, disk allocation 
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File System Layers (Cont.) 
• Logical file system manages metadata information 

•  Translates file name into file number, file handle, location by 
maintaining file control blocks (inodes in UNIX) 

•  Directory management 
•  Protection 

•  Layering useful for reducing complexity and redundancy, 
but adds overhead and can decrease performance 
•  Logical layers can be implemented by any coding method 

according to OS designer 
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File System Layers (Cont.) 
• Many file systems, sometimes many within an operating 

system 
•  Each with its own format (CD-ROM is ISO 9660; Unix has UFS, 

FFS;  Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD 
Blu-ray, Linux has more than 40 types, with extended file system 
ext2 and ext3 leading; plus distributed file systems, etc.) 

•  New ones still arriving – ZFS, GoogleFS, Oracle ASM, FUSE 
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File-System Implementation 
• We have system calls at the API level, but how do we 

implement their functions? 
•  On-disk and in-memory structures 

• Boot control block contains info needed by system to 
boot OS from that volume 
•  Needed if volume contains OS, usually first block of volume 

• Volume control block (superblock, master file table) 
contains volume details 
•  Total # of blocks, # of free blocks, block size, free block pointers or 

array 

• Directory structure organizes the files 
•  Names and inode numbers, master file table 
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File-System Implementation (Cont.) 
• Per-file File Control Block (FCB) contains many details 

about the file 
•  inode number, permissions, size, dates 
•  NFTS stores into in master file table  using relational DB structures 
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In-Memory File System Structures 
• Mount table storing file system mounts 

•  mount points 
•  file system types 

• The following figure illustrates the necessary file system 
structures provided by the operating systems 
•  Figure 12-3(a) refers to opening a file 
•  Figure 12-3(b) refers to reading a file 

• Plus buffers hold data blocks from secondary storage 
• Open returns a file handle for subsequent use 
• Data from read eventually copied to specified user 

process memory address 
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In-Memory File System Structures 
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Partitions and Mounting 
•  Partition can be a volume containing a file system (�cooked�) 

or raw  
•  Boot block can point to boot volume or boot loader set of blocks 

that contain enough code to know how to load the kernel from 
the file system 
•  Or a boot management program for multi-os booting 

•  Root partition contains the OS, other partitions can hold other 
OSes, other file systems, or be raw 
•  Mounted at boot time 
•  Other partitions can mount automatically or manually 

•  At mount time, file system consistency checked 
•  Is all metadata correct? 

•  If not, fix it, try again 
•  If yes, add to mount table, allow access 
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Virtual File Systems 
• Virtual File Systems (VFS) on Unix provide an object-

oriented way of implementing file systems 
• VFS allows the same system call interface (the API) to be 

used for different types of file systems 
•  Separates file-system generic operations from implementation 

details 
•  Implementation can be one of many file systems types, or network 

file system 
•  Implements vnodes which hold inodes or network file details 

•  Then dispatches operation to appropriate file system 
implementation routines 
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Virtual File Systems (Cont.) 

• The API is to the VFS 
interface, rather than 
any specific type of file 
system 
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Virtual File System Implementation 
• For example, Linux has four object types: 

•  inode, file, superblock, dentry 

• VFS defines set of operations on the objects that must be 
implemented 
•  Every object has a pointer to a function table 

•  Function table has addresses of routines to implement that function on 
that object 

•  For example: 
int open(. . .)  — Open a file 
int close(. . .)  — Close an already-open file 
ssize t read(. . .)  — Read from a file 
ssize t write(. . .)  — Write to a file 
int mmap(. . .)  — Memory-map a file 
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Directory Implementation 
•  Linear list of file names with pointer to the data blocks 

•  Simple to program 
•  Time-consuming to execute 

•  Linear search time 
•  Could keep ordered alphabetically via linked list or use B+ tree 

• Hash Table – linear list with hash data structure 
•  Decreases directory search time 
•  Collisions – situations where two file names hash to the same 

location 
•  Only good if entries are fixed size, or use chained-overflow method 
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Allocation Methods - Contiguous 
• An allocation method refers to how disk blocks are 

allocated for files: 
• Contiguous allocation – each file occupies set of 

contiguous blocks 
•  Best performance in most cases 
•  Simple – only starting location (block #) and length (number of 

blocks) are required 
•  Problems include finding space for file, knowing file size, external 

fragmentation, need for compaction off-line (downtime) or on-line 
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Contiguous Allocation 
• Mapping from logical to 
physical 

LA/512

Q

R

Block to be accessed = 
         Q + starting address
Displacement into block = R
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Extent-Based Systems 
• Many newer file systems (i.e., Veritas File System) use a 

modified contiguous allocation scheme 

• Extent-based file systems allocate disk blocks in extents 

• An extent is a contiguous block of disks 
•  Extents are allocated for file allocation 
•  A file consists of one or more extents 
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Allocation Methods - Linked 
•  Linked allocation – each file a linked list of blocks 

•  File ends at nil pointer 
•  No external fragmentation 
•  Each block contains pointer to next block 
•  No compaction, external fragmentation 
•  Free space management system called when new block needed 
•  Improve efficiency by clustering blocks into groups but increases 

internal fragmentation 
•  Reliability can be a problem 
•  Locating a block can take many I/Os and disk seeks 
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Allocation Methods – Linked (Cont.) 
• FAT (File Allocation Table) variation 

•  Beginning of volume has table, indexed by block number 
•  Much like a linked list, but faster on disk and cacheable  
•  New block allocation simple 
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Linked Allocation 
• Each file is a linked list of disk blocks: blocks may be 

scattered anywhere on the disk 
pointerblock      =

 

Mapping 
    Assuming that pointer takes 4 bytes

 
 

Block to be accessed is the Qth block in the linked chain of blocks 
representing the file.
Displacement into block = R + 4

LA/508
Q

R
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Linked Allocation 
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File-Allocation Table (FAT) 
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Allocation Methods - Indexed 
•  Indexed allocation 

•  Each file has its own index block(s) of pointers to its data blocks 

•  Logical view 

index&table
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Example of Indexed Allocation 



Slides adapted from Silberschatz at al. “Operating Systems Concepts”  

Indexed Allocation (Cont.) 
• Need index table 
• Random access 
• Dynamic access without external fragmentation, but have 

overhead of index block 
• Mapping from logical to physical in a file of maximum size 

of 64K bytes and block size of 512 bytes.  We need only 1 
block for index table (with 4 byte pointers): 

LA/128
Q

R

Q = displacement into index table
R = displacement into block

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
512
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Indexed Allocation – Mapping (Cont.) 
• Mapping from logical to physical in a file of unbounded 

length (block size of 512 words) 
• Linked scheme – Link blocks of index table (no limit on 

size) 
LA / (512 x 127)

Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:
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Indexed Allocation – Mapping (Cont.) 
• Two-level index (4K blocks could store 1,024 four-byte 

pointers in outer index ! 1,048,567 data blocks and file 
size of up to 4GB).  

• For 512K blocks we have: 

LA / (128 x 128)
Q1

R1
Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
512

Ricardo Filipe Chaves Gaspar
1,048,576
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Indexed Allocation – Mapping (Cont.) 
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Combined Scheme:  UNIX UFS  
 

More index blocks than can be addressed with 32-bit file pointer 

4K bytes per block, 32-bit addresses 
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Performance 
• Best method depends on file access type 

•  Contiguous great for sequential and random 

•  Linked good for sequential, not random 
• Declare access type at creation ! select either 

contiguous or linked 
•  Indexed more complex 

•  Single block access could require 2 index block reads then data 
block read 

•  Clustering can help improve throughput, reduce CPU overhead 
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Performance (Cont.) 
• Adding instructions to the execution path to save one disk 

I/O is reasonable 
•  Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 

MIPS 
•  http://en.wikipedia.org/wiki/Instructions_per_second 

•  Typical disk drive at 250 I/Os per second 
•  159,000 MIPS / 250 = 630 million instructions during one disk I/O  

•  Fast SSD drives provide 60,000 IOPS 
•  159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/O 
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Free-Space Management 
• File system maintains free-space list to track available 

blocks/clusters 
•  (Using term �block� for simplicity) 

• Bit vector or bit map (n blocks) 
…

0 1 2 n-1

bit[i] =

!
"
# 1 ⇒ block[i] free

0  ⇒ block[i] occupied
Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first �1� bit
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Free-Space Management (Cont.) 
• Bit map requires extra space 

•  Example: 

  block size = 4KB =  212 bytes 
  disk size = 240 bytes (1 terabyte) 
  n = 240/212 = 228 bits (or 32MB) 
  if clusters of 4 blocks ! 8MB of memory 

• Easy to obtain contiguous space 

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar

Ricardo Filipe Chaves Gaspar
256 MB

Ricardo Filipe Chaves Gaspar
64 MB
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Linked Free Space List on Disk 
• Linked list (free list) 

• Cannot get contiguous 
space easily 

• No waste of space 
• No need to traverse the 

entire list (if # free blocks 
recorded) 
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Free-Space Management (Cont.) 
• Grouping  

•  Modify linked list to store address of next n-1 free blocks in first free 
block, plus a pointer to next block that contains free-block-pointers 
(like this one) 

• Counting 
•  Because space is frequently contiguously used and freed,  with 

contiguous-allocation allocation, extents, or clustering 
•  Keep address of first free block and count of following free blocks 
•  Free space list then has entries containing addresses and counts 
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Free-Space Management (Cont.) 
• Space Maps 

•  Used in ZFS 
•  Divides device space into metaslab units and manages metaslabs 

•  Given volume can contain hundreds of metaslabs 
•  Each metaslab has associated space map 

•  Uses counting algorithm 
•  But records to log file rather than file system 

•  Log of all block activity, in time order, in counting format 
•  Metaslab activity ! load space map into memory in balanced-tree 

structure, indexed by offset 
•  Replay log into that structure 
•  Combine contiguous free blocks into single entry 
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Efficiency and Performance 
• Efficiency dependent on: 

•  Disk allocation and directory algorithms 
•  Types of data kept in file�s directory entry 
•  Pre-allocation or as-needed allocation of metadata structures 
•  Fixed-size or varying-size data structures 
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Efficiency and Performance (Cont.) 
• Performance 

•  Keeping data and metadata close together 
•  Buffer cache – separate section of main memory for frequently 

used blocks 
•  Synchronous writes sometimes requested by apps or needed by 

OS 
•  No buffering / caching – writes must hit disk before acknowledgement 
•  Asynchronous writes more common, buffer-able, faster 

•  Free-behind and read-ahead – techniques to optimize sequential 
access 

•  Reads frequently slower than writes 
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Page Cache 
• A page cache caches pages rather than disk blocks using 

virtual memory techniques and addresses 

• Memory-mapped I/O uses a page cache 

• Routine I/O through the file system uses the buffer (disk) 
cache 

• This leads to the following figure 
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I/O Without a Unified Buffer Cache 
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Unified Buffer Cache 
• A unified buffer cache uses the same page cache to 

cache both memory-mapped pages and ordinary file 
system I/O to avoid double caching 

•  But which caches get priority, and what replacement algorithms to 
use? 
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I/O Using a Unified Buffer Cache 
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Recovery 
• Consistency checking – compares data in directory 

structure with data blocks on disk, and tries to fix 
inconsistencies 
•  Can be slow and sometimes fails 

 

• Use system programs to back up data from disk to 
another storage device (magnetic tape, other magnetic 
disk, optical) 
 

• Recover lost file or disk by restoring data from backup 
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Log Structured File Systems 
•  Log structured (or journaling) file systems record each 

metadata update to the file system as a transaction 
•  All transactions are written to a log 

•   A transaction is considered committed once it is written to the log 
(sequentially) 

•  Sometimes to a separate device or section of disk 
•  However, the file system may not yet be updated 

•  The transactions in the log are asynchronously written to the 
file system structures 
•   When the file system structures are modified, the transaction is 

removed from the log 
•  If the file system crashes, all remaining transactions in the log 

must still be performed 
•  Faster recovery from crash, removes chance of inconsistency 

of metadata 
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The Sun Network File System (NFS) 
• An implementation and a specification of a software 

system for accessing remote files across LANs (or WANs) 
 

• The implementation is part of the Solaris and SunOS 
operating systems running on Sun workstations using an 
unreliable datagram protocol (UDP/IP protocol and 
Ethernet 
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NFS (Cont.) 
•  Interconnected workstations viewed as a set of independent 

machines with independent file systems, which allows 
sharing among these file systems in a transparent manner 
•  A remote directory is mounted over a local file system directory 

•  The mounted directory looks like an integral subtree of the local file 
system, replacing the subtree descending from the local directory 

•  Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided 
•  Files in the remote directory can then be accessed in a transparent 

manner 
•  Subject to access-rights accreditation, potentially any file system (or 

directory within a file system), can be mounted remotely on top of any 
local directory 
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NFS (Cont.) 
• NFS is designed to operate in a heterogeneous 

environment of different machines, operating systems, 
and network architectures; the NFS specifications 
independent of these media 

• This independence is achieved through the use of RPC 
primitives built on top of an External Data Representation 
(XDR) protocol used between two implementation-
independent interfaces 
 

• The NFS specification distinguishes between the services 
provided by a mount mechanism and the actual remote-
file-access services  
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Three Independent File Systems 
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Mounting in NFS  

Mounts Cascading mounts
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NFS Mount Protocol 
•  Establishes initial logical connection between server and client 
•  Mount operation includes name of remote directory to be 

mounted and name of server machine storing it 
•  Mount request is mapped to corresponding RPC and forwarded to 

mount server running on server machine  
•  Export list – specifies local file systems that server exports for 

mounting, along with names of machines that are permitted to mount 
them  

•  Following a mount request that conforms to its export list, the 
server returns a file handle—a key for further accesses 

•  File handle – a file-system identifier, and an inode number to 
identify the mounted directory within the exported file system 

•  The mount operation changes only the user�s view and does 
not affect the server side  
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NFS Protocol 
•  Provides a set of remote procedure calls for remote file 

operations.  The procedures support the following operations: 
•  searching for a file within a directory  
•  reading a set of directory entries  
•  manipulating links and directories  
•  accessing file attributes 
•  reading and writing files 

•  NFS servers are stateless; each request has to provide a full 
set of arguments  (NFS V4 is just coming available – very 
different, stateful) 

•  Modified data must be committed to the server�s disk before 
results are returned to the client (lose advantages of caching) 

•  The NFS protocol does not provide concurrency-control 
mechanisms 
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Three Major Layers of NFS Architecture  
• UNIX file-system interface (based on the open, read, 

write, and close calls, and file descriptors) 
 

• Virtual File System (VFS) layer – distinguishes local files 
from remote ones, and local files are further distinguished 
according to their file-system types 
•  The VFS activates file-system-specific operations to handle local 

requests according to their file-system types  
•  Calls the NFS protocol procedures for remote requests 

 

• NFS service layer – bottom layer of the architecture 
•  Implements the NFS protocol 
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Schematic View of NFS Architecture  
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NFS Path-Name Translation 
• Performed by breaking the path into component names 

and performing a separate NFS lookup call for every pair 
of component name and directory vnode 
 

• To make lookup faster, a directory name lookup cache on 
the client�s side holds the vnodes for remote directory 
names 
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NFS Remote Operations 
•  Nearly one-to-one correspondence between regular UNIX  

system calls and the NFS protocol RPCs (except opening and 
closing files) 

•  NFS adheres to the remote-service paradigm, but employs 
buffering and caching techniques for the sake of performance  

•  File-blocks cache – when a file is opened, the kernel checks 
with the remote server whether to fetch or revalidate the 
cached attributes 
•  Cached file blocks are used only if the corresponding cached attributes 

are up to date 
•  File-attribute cache – the attribute cache is updated whenever 

new attributes arrive from the server 
•  Clients do not free delayed-write blocks until the server 

confirms that the data have been written to disk 
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Example: WAFL File System 
• Used on Network Appliance �Filers� – distributed file 

system appliances 
•  �Write-anywhere file layout� 
• Serves up NFS, CIFS, http, ftp 
• Random I/O optimized, write optimized 

•  NVRAM for write caching 

• Similar to Berkeley Fast File System, with extensive 
modifications 
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The WAFL File Layout 
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Snapshots in WAFL 


