Álgebra Linear e Geometria Analítica

Exame de Época de Recurso – 10 de Janeiro de 2014

Duração: 2 horas e 30 minutos (+30 minutos de tolerância)

PREENCHA DE FORMA BEM LEGÍVEL

Nome (completo):		
Número de aluno:		
Transfer de diamer		

Atenção

O exame é constituído por 10 grupos:

- Grupos 1 a 6 Para indicar a resposta, no espaço respectivo do enunciado, não apresentando quaisquer cálculos ou justificações.
- Grupos 7 a 10 Para responder no caderno de exame e justificando todas as afirmações.

O enunciado da prova é composto por 2 folhas. Quando terminar a prova tem de entregar a folha do enunciado correspondente aos Grupos 1 a 6 e as folhas do caderno com as respostas aos Grupos 7 a 10.

[Cotação]

1. Considere as bases $\mathcal{B}_1 = ((1,1,1),(0,1,1),(0,0,1))$ e $\mathcal{B}_2 = ((1,0,0),(0,1,0),(0,0,1))$ do espaço vectorial \mathbb{R}^3 . Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ a aplicação linear tal que

$$A = \mathcal{M}(f; \mathcal{B}_1, \mathcal{B}_1) = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 1 & 0 \end{bmatrix}.$$

Tem-se:

[0,5] (a)
$$\mathcal{M}(f; \mathcal{B}_2, \mathcal{B}_2) = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix} A \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{1} \end{bmatrix}.$$

[0,5] (b)
$$f(1,2,3) = (2, 7, 8)$$
.

[0,5] (c)
$$\mathcal{M}(f; \mathcal{B}_1, \mathcal{B}_2) = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{3} & \mathbf{1} & \mathbf{3} \\ \mathbf{3} & \mathbf{2} & \mathbf{3} \end{bmatrix}$$
.

2. Considere a matriz
$$B = \begin{bmatrix} 1 & 0 & 1 \\ k & 1 & 2k \\ 0 & k+1 & 0 \end{bmatrix}$$
, com $k \in \mathbb{R}$.

[0,5] (a) A matriz B é invertível se, e só se, $k \in \mathbb{R} \setminus \{-1,0\}$

[0,5] (b) Para
$$k = 1$$
 a matriz B é invertível e $B^{-1} = \begin{bmatrix} 2 & -1 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \\ -1 & 1 & -\frac{1}{2} \end{bmatrix}$.

[0,5] (c) Para k = 0 a característica da matriz B é igual a _____ .

3. Seja $Q \in \mathcal{M}_{2\times 2}(\mathbb{R})$ e considere as matrizes $Q_1, Q_2, Q_3 \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tais que

$$Q \xrightarrow{-2l_1} Q_1 \xrightarrow{l_1 \leftrightarrow l_2} Q_2 \xrightarrow{l_1 + 5l_2} Q_3.$$

Tem-se:

[0,5] (a)
$$Q_1 = \begin{bmatrix} -2 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} Q.$$

- [0,5] (b) Se $\det Q = 5$ então $\det Q_3 = \underline{10}$.
- [0,5] (c) Preencha com matrizes elementares de forma a que se tenha $Q_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} -\mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} Q$.
- [0,5] (d) Se $Q_3 = I_2$ então Q é invertível e Q^{-1} escreve-se como produto de matrizes elementares da seguinte forma $Q^{-1} = \begin{bmatrix} \mathbf{1} & \mathbf{5} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} -\mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$.
 - **4.** Em \mathbb{R}^3 , considere os subespaços

$$F = \{(a, b, c) \in \mathbb{R}^3 : a + 2b + c = 0\}$$
 e $G = \{(a, b, c) \in \mathbb{R}^3 : 2a + 5b + 3c = 0\}$.

Tem-se:

- [0,5] (a) Uma base de $F \in ((-2,1,0),(-1,0,1))$
- [0,5] (b) Uma base de $F \cap G$ é ((1,-1,1)).
- [0,5] (c) $\dim(F+G) = 3$.
 - **5.** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $A^2 + A = -I_n$. Tem-se:
- [0,5] (a) A matriz A é invertível e $A^{-1} = \underline{-(A + I_n)}$.
- [0,5] (b) A matriz $A+I_n$ é invertível e $(A+I_n)^{-1}=$ _______.
- [0,5] (c) Se n é par e det A=2 então det $(A+I_n)=\underline{1/2}$.
 - 6. Considere um sistema de equações lineares, sobre \mathbb{R} , cuja representação matricial AX = B tem matriz ampliada equivalente por linhas à matriz

$$\begin{bmatrix} 1 & 0 & -1 & \beta \\ 0 & \beta & 0 & -\beta \\ 0 & 0 & \alpha^2 - 1 & \alpha + 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \cos \alpha, \beta \in \mathbb{R}.$$

- (a) Preencha com Impossível, Possível determinado ou Possível indeterminado (indicando, neste caso, o grau de indeterminação) de forma a obter afirmações verdadeiras.
- [0,5] i. Se $\alpha = 2$ e $\beta \neq 0$, o sistema é Possível Determinado
- [0,5] ii. Se $\alpha = 1$ e $\beta \in \mathbb{R}$, o sistema é IMPOSSÍVEL
- [0,5] iii. Se $\alpha = -1$ e $\beta = 0$, o sistema é Possível Indeterminado com grau de indeterm. 2.
- [0,5] (b) Se $\alpha = -1$ e $\beta = 1$, o conjunto das soluções do sistema é $\{ (1+c,-1,c): c \in \mathbb{R} \}$

Continua na próxima folha

Nos Grupos 7, 8, 9 e 10 só serão consideradas as respostas devidamente justificadas. Na sua resolução mude de folha sempre que mudar de grupo.

[Cotação]

7. Considere a aplicação linear $f: \mathbb{R}^3 \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que

$$f(a,b,c) = \begin{bmatrix} 2a & a+b+c \\ 0 & -a \end{bmatrix},$$

para qualquer $(a, b, c) \in \mathbb{R}^3$. Determine:

- [1,0] (a) Uma base do núcleo de f.
- [1,0] (b) A dimensão da imagem de f.
- [0,5] (c) Se f é injectiva.
- [1,0] (d) A matriz de f em relação às bases

$$\mathcal{B} = \left((1,0,0), (0,-1,1), (0,0,-1) \right) \quad \text{e} \quad \mathcal{B}' = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right),$$

isto é, a matriz $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$.

Mude de Folha

- 8. Considere a matriz $A = \begin{bmatrix} -2 & -6 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$
- [1,0] (a) Calcule os valores próprios de A e indique as respectivas multiplicidades algébricas.
- [1,5] (b) Determine uma base de cada um dos subespaços próprios de A.
- [1,0] (c) Justifique que A é diagonalizável e indique uma matriz invertível $P \in \mathcal{M}_{3\times 3}(\mathbb{R})$ e uma matriz diagonal $D \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tais que $P^{-1}AP = D$.

Mude de Folha

[1,5] 9. Seja $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que adj $A = 2I_3$. Demonstre que $\det A = -\sqrt{8}$ ou $\det A = \sqrt{8}$.

Mude de Folha

[1,5] **10.** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz diagonalizável tal que todo o valor próprio de A pertence ao conjunto $\{0,1\}$. Demonstre que $A^2 = A$.

Fim

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA Departamento de Matemática

Álgebra Linear e Geometria Analítica

Exame de Época de Recurso - 10 de Janeiro de 2014

Uma resolução com notas explicativas

7. (a) Tem-se

Nuc
$$f = \left\{ (a, b, c) \in \mathbb{R}^3 : f(a, b, c) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

$$= \left\{ (a, b, c) \in \mathbb{R}^3 : \begin{bmatrix} 2a & a + b + c \\ 0 & -a \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$$

$$= \left\{ (a, b, c) \in \mathbb{R}^3 : 2a = 0 \land a + b + c = 0 \land -a = 0 \right\}$$

$$= \left\{ (a, b, c) \in \mathbb{R}^3 : a = 0 \land b = -c \right\}$$

$$= \left\{ (0, -c, c) : c \in \mathbb{R} \right\}$$

$$= \left\{ c(0, -1, 1) : c \in \mathbb{R} \right\}$$

$$= \left\langle (0, -1, 1) \right\rangle.$$

Mostrámos que a sequência (0, -1, 1) gera Nuc f e, pelo Critério de Independência Linear, também é linearmente independente pois

$$\alpha(0, -1, 1) = (0, 0, 0) \Rightarrow \alpha = 0.$$

Logo ((0, -1, 1)) é uma base de Nuc f.

(b) Dado que $f: \mathbb{R}^3 \longrightarrow \mathcal{M}_{2\times 2}(\mathbb{R})$, pelo Teorema da Dimensão sabemos que

$$\dim \mathbb{R}^3 = \dim \operatorname{Nuc} f + \dim \operatorname{Im} f.$$

Como dim $\mathbb{R}^3=3$ e, pela alínea anterior, dim Nuc f=1 concluímos que dim Im f=2.

- (c) Uma aplicação linear é injectiva se, e só se, o subespaço Nuc f consiste no subespaço nulo do espaço de partida. Dado que, pela alínea anterior, Nuc $f = \langle (0, -1, 1) \rangle \neq \{ (0, 0, 0) \}$ concluímos que f não é injectiva.
- (d) Como

$$f(1,0,0) = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$f(0,-1,1) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

$$f(0,0,-1) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} = 0 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 1 \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix},$$

de acordo com a definição de $\mathcal{M}(f; \mathcal{B}, \mathcal{B}')$, temos $\mathcal{M}(f; \mathcal{B}, \mathcal{B}') = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

8. (a) O polinómio característico de A é

$$|A - xI_3| = \begin{vmatrix} -2 - x & -6 & -2 \\ 1 & 3 - x & 1 \\ 0 & 0 & -x \end{vmatrix} \stackrel{\text{Lapl.}}{=} (-x)(-1)^{3+3} \begin{vmatrix} -2 - x & -6 \\ 1 & 3 - x \end{vmatrix}$$
$$= -x \left((-2 - x)(3 - x) - (-6) \right) = -x \left(-x + x^2 \right) = -x^2(-1 + x).$$

Os valores próprios de A, sendo os zeros reais do polinómio característico, são: 0 e 1, com ma(0) = 2 e ma(1) = 1.

(b) Se α é um valor próprio de A sabemos que o subespaço próprio de A associado ao valor α , M_{α} , é:

$$M_{\alpha} = \{X \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : AX = \alpha X\} = \{X \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : (A - \alpha I_3)X = 0\}.$$

• Seja M_0 o subespaço próprio de A associado ao valor próprio 0. Tem-se:

$$M_0 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : (A - 0I_3) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}.$$

Cálculo auxiliar:

$$(A - 0I_3|0) = \begin{bmatrix} -2 & -6 & -2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\overline{l_1} \leftrightarrow \overline{l_2}} \begin{bmatrix} 1 & 3 & 1 & 0 \\ -2 & -6 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\overline{l_2} + 2\overline{l_1}} \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (f.e.r.)

Logo,

$$M_{0} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : a = -3b - c \right\} = \left\{ \begin{bmatrix} -3b - c \\ b \\ c \end{bmatrix} : b, c \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} -3b \\ b \\ 0 \end{bmatrix} + \begin{bmatrix} -c \\ 0 \\ c \end{bmatrix} : b, c \in \mathbb{R} \right\} = \left\{ b \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} : b, c \in \mathbb{R} \right\} = \left\langle \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\rangle.$$

Concluímos então que a sequência $\begin{pmatrix} \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix}$ é uma base de M_0 porque gera M_0 e é linearmente independente (pois $\alpha \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \alpha = \beta = 0$).

• Seja M_1 o subespaço próprio de A associado ao valor próprio 1. Tem-se:

$$M_1 = \left\{ \left[\begin{array}{c} a \\ b \\ c \end{array} \right] \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : (A - 1I_3) \left[\begin{array}{c} a \\ b \\ c \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] \right\}.$$

Cálculo auxiliar:

$$(A - 1I_3|0) = \begin{bmatrix} -3 & -6 & -2 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{l_1 \leftrightarrow l_2} \begin{bmatrix} 1 & 2 & 1 & 0 \\ -3 & -6 & -2 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{l_2 + 3l_1} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \rightarrow$$

$$\xrightarrow{l_3 + l_2} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{l_1 + (-1)l_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{0}$$
 (f.e.r.)

Logo,

$$M_{1} = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathcal{M}_{3 \times 1}(\mathbb{R}) : a = -2b \wedge c = 0 \right\} = \left\{ \begin{bmatrix} -2b \\ b \\ 0 \end{bmatrix} : b \in \mathbb{R} \right\}$$
$$= \left\{ b \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} : b \in \mathbb{R} \right\} = \left\langle \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \right\rangle.$$

Concluímos então que a sequência $\begin{pmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}$ é uma base de M_1 pois gera M_1 e é linearmente independente (basta notar que $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$).

(c) Uma condição necessária e suficiente para que a matriz A seja diagonalizável, é que a soma das multiplicidades geométricas dos seus valores próprios iguale a ordem da matriz A. Como, pela alínea anterior, $mg(0) = \dim M_0 = 2$ e $mg(1) = \dim M_1 = 1$ tem-se

$$mg(2) + mg(3) = 3 = ordem de A$$

e, portanto, A é diagonalizável. Nestas condições, sabemos que A é semelhante a uma matriz diagonal $D \in \mathcal{M}_{3\times3}(\mathbb{R})$ com os elementos 0, 0 e 1 na diagonal. Se $D = \begin{bmatrix} \mathbf{0} & 0 & 0 \\ 0 & \mathbf{0} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ então considerando, por exemplo, a matriz $P = \begin{bmatrix} -3 & -1 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, onde a primeira e a segunda colunas são os vectores da base de M_0 e a terceira coluna é o vector da base de M_1 , a matriz P é invertível e, além disso,

9. [Para simplificar a exposição, consideramos a notação |A| para representar det A.]

Para qualquer matriz $B \in \mathcal{M}_{n \times n}(\mathbb{R})$, com $n \ge 2$, tem-se

$$B \operatorname{adj} B = |B|I_n.$$

Dado que $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ e adj $A = 2I_3$ podemos afirmar que $A(2I_3) = |A|I_3$, isto é, que $2A = |A|I_3$. Consequentemente

$$|2A| = |A|I_3| \Leftrightarrow 2^3|A| = |A|^3|I_3| \Leftrightarrow 8|A| = |A|^3 \Leftrightarrow |A|^3 - 8|A| = 0 \Leftrightarrow |A| (|A|^2 - 8) = 0$$

e, portanto,

$$|A| = 0$$
 ou $|A| = \sqrt{8}$ ou $|A| = -\sqrt{8}$.

Justifiquemos que, como adj $A = 2I_3$ é uma matriz invertível, se tem $|A| \neq 0$. De facto, se |A| = 0 tem-se A adj $A = |A|I_3 = 0$, isto é, A adj A = 0 e, como adj A é invertível, multiplicando ambos os membros da igualdade anterior, à direita, por $(adj A)^{-1}$ obtemos A = 0 o que é uma contradição pois a matriz adjunta da matriz nula é a matriz nula.

Logo
$$|A| = \sqrt{8}$$
 ou $|A| = -\sqrt{8}$.

tem-se $P^{-1}AP = D$.

 \blacksquare Uma resolução alternativa: Como A adj $A=|A|I_3$ e, por hipótese, adj $A=2I_3$ obtemos

$$A(2I_3) = |A|I_3 \Leftrightarrow 2A = |A|I_3 \Leftrightarrow A = \frac{1}{2}|A|I_3 = \begin{bmatrix} \frac{1}{2}|A| & 0 & 0\\ 0 & \frac{1}{2}|A| & 0\\ 0 & 0 & \frac{1}{2}|A| \end{bmatrix}.$$

Por definição adj $A = \widehat{A}^{\top}$. Dado que adj $A = 2I_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ tem-se, em particular, $\widehat{a}_{11} = 2$, isto é,

$$(-1)^{1+1}\begin{vmatrix} \frac{1}{2}|A| & 0\\ 0 & \frac{1}{2}|A| \end{vmatrix} = 2 \Leftrightarrow \frac{1}{4}|A|^2 = 2 \Leftrightarrow |A|^2 = 8,$$

o que permite concluir que $|A| = \sqrt{8}$ ou $|A| = -\sqrt{8}$.

10. Dado que $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ é diagonalizável existe $P \in \mathcal{M}_{n \times n}(\mathbb{R})$ invertível tal que

$$P^{-1}AP = D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

em que $\lambda_1, \ldots, \lambda_n$ são os valores próprios de A. Da igualdade anterior resulta

$$A = PDP^{-1}$$

o que permite obter

$$A^{2} = (PDP^{-1})(PDP^{-1}) = PD^{2}P^{-1}$$

$$A^2 = \left(PDP^{-1}\right)\left(PDP^{-1}\right) = PD^2P^{-1}.$$
 Como $D^2 = \begin{bmatrix} \lambda_1^2 & 0 & \cdots & 0 \\ 0 & \lambda_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^2 \end{bmatrix}$ e, por hipótese, todo o valor próprio de A pertence ao conjunto $\{0,1\}$ (isto é, $\lambda_i \in \{0,1\}, i=1,\ldots,n$) tem-se $D^2 = D$. Logo $A^2 = PDP^{-1} = A$.