

Análise Matemática I-B, C, D, E

1º Teste

24 de Abril de 2010

Duração: 2h

- 1. Considere os conjuntos $A = \{x \in \mathbb{R} : \frac{x^2 3}{1 |x|} \ge 0\}$ e $B = \{3^{n/2} : n \in \mathbb{N}\}.$
 - (a) Mostre que $A = [-\sqrt{3}, -1[\cup]1, \sqrt{3}].$
 - (b) Calcule $\operatorname{int}(A \cup B)$ e $\operatorname{fr}(A \cup B)$. Será $A \cup B$ um conjunto aberto? Justifique.
 - (c) Determine, ou justifique que não existe, o supremo, o ínfimo, o máximo e o mínimo de B.

 $(4,5 \ valores)$

- 2. Calcule os limites das seguintes sucessões, apresentando todos os cálculos efectuados:
 - (a) $\sqrt[n]{3^n + n}$;

(b)
$$\sum_{k=0}^{n} \frac{n+1}{\sqrt{3n^4+k}}$$
.

(3 valores)

3. Considere

$$f(x) = \frac{1}{x+2}, \quad x \in \mathbb{R} \setminus \{-2\}.$$

Mostre, usando o Princípio de Indução Matemática, que

$$f^{(n)}(x) = (-1)^n \frac{n!}{(x+2)^{n+1}}, \ \forall n \in \mathbb{N}.$$

(2 valores)

4. Calcule, justificando

$$\lim_{x\to 0} \left(\left(x^2 + 1 \right)^{1/\arctan x} \right).$$

 $(1,5 \ valores)$

(v.s.f.f)

5. Considere a função

$$f(x) = \begin{cases} |x|e^x & \text{se } x < 1\\ \frac{x^2}{x+1} & \text{se } x \ge 1 \end{cases}$$

- (a) Determine o domínio de f.
- (b) Estude f quanto à continuidade em x = 1.
- (c) Determine a função derivada f'.
- (d) Calcule, justificando, $\lim_{x \to -\infty} f(x)$.

(6 valores)

6. (a) Seja $f \colon \mathbb{R} \to \mathbb{R}$ uma função diferenciável em todos os pontos de \mathbb{R} . Suponha que

$$\lim_{x \to +\infty} f'(x) = 0.$$

Use o teorema de Lagrange para provar que

$$\lim_{x \to +\infty} \left(f(x+1) - f(x) \right) = 0.$$

(b) Use a alínea anterior para justificar que

$$\lim_{x \to +\infty} \left((x+1)^a - x^a \right) = 0,$$

onde $a \in]0,1[$.

(3 valores)

RESOLUÇÃO

(com notas explicativas)

1. (a) Dado que

$$x^2 - 3 = 0 \Leftrightarrow x = \sqrt{3}$$
 ou $x = -\sqrt{3}$,
e $1 - |x| = 0 \Leftrightarrow 1 - x = 0$ ou $1 - (-x) = 0 \Leftrightarrow x = 1$ ou $x = -1$,

podemos construir o quadro de sinais seguinte:

	$-\infty$	$-\sqrt{3}$		-1		1		$\sqrt{3}$		$+\infty$
$x^2 - 3$	+	0	_	_	_	_	_	0	+	
1- x	_	_	_	0	+	0	_	_	_	
$\frac{x^2 - 3}{1 - x }$	_	0	+	ss	_	ss	+	0	_	

Podemos então concluir que os elementos que verificam a condição $\frac{x^2-3}{1-|x|} \ge 0$ são os que pertencem a $\left[-\sqrt{3}, -1\right[\ \cup\]1, \sqrt{3}\right]$. Logo,

$$A = \left\lceil -\sqrt{3}, -1 \right\lceil \cup \left\rceil 1, \sqrt{3} \right\rceil.$$

(b) Temos que $B = \left\{ \sqrt{3}, 3, \sqrt{3^3}, 3^2, \dots \right\}$. Assim, $\operatorname{int}(A \cup B) = \left] -\sqrt{3}, -1 \right[\cup \left] 1, \sqrt{3} \right[\operatorname{e} \operatorname{fr}(A \cup B) = \left\{ -\sqrt{3}, -1, 1 \right\} \cup B$.

 $A \cup B$ não é um conjunto aberto pois há elementos de $A \cup B$ que não pertencem a int $(A \cup B)$ como, por exemplo, 3.

(c) Como $3^{n/2}$ é uma sucessão crescente e $\lim_{n\to +\infty} 3^{n/2}=+\infty$, o conjunto B não é majorado não tendo, por isso, nem supremo nem máximo.

Uma vez que $3^{n/2}$ é uma sucessão crescente o primeiro elemento desta sucessão, $\sqrt{3}$, é um infímo de B e, dado que pertence ao conjunto, é também o mínimo de B.

2. (a) Dada uma sucessão $\{u_n\}_{n\in\mathbb{N}}$ em que $u_n>0, \forall_{n\in\mathbb{N}}$, sabemos que, se $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=b$ então $\lim_{n\to+\infty}\sqrt[n]{u_n}=b$.

Uma vez que $3^n + n > 0, \forall_{n \in \mathbb{N}}$, calculemos $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{3^{n+1} + n + 1}{3^n + n}$.

Dividindo ambos os termos da fracção por 3^{n+1} , obtemos

$$\lim_{n \to +\infty} \frac{3^{n+1} + n + 1}{3^n + n} = \lim_{n \to +\infty} \frac{\frac{3^{n+1}}{3^{n+1}} + \frac{n}{3^{n+1}} + \frac{1}{3^{n+1}}}{\frac{3^n}{3^{n+1}} + \frac{n}{3^{n+1}}},$$

uma vez que, como sabemos, $\lim_{n\to +\infty}\frac{n^p}{a^n}=0, \forall p\in\mathbb{N}, \forall a>1,$ podemos concluir que

$$\lim_{n \to +\infty} \frac{\frac{3^{n+1}}{3^{n+1}} + \frac{n}{3^{n+1}} + \frac{1}{3^{n+1}} + \frac{1}{3^{n+1}}}{\frac{1}{3}} = \frac{1+0+0}{\frac{1}{3}+0} = 3.$$

3

Logo,
$$\lim_{n \to +\infty} \sqrt[n]{3^n + n} = 3.$$

(b) Temos,

$$\sum_{k=0}^{n} \frac{n+1}{\sqrt{3n^4+k}} = \frac{n+1}{\sqrt{3n^4}} + \frac{n+1}{\sqrt{3n^4+1}} + \dots + \frac{n+1}{\sqrt{3n^4+n}}.$$

Uma vez que temos n+1 parcelas, que $\frac{n+1}{\sqrt{3n^4}}$ é a parcela maior enquanto $\frac{n+1}{\sqrt{3n^4+n}}$ é a parcela mais pequena, podemos concluir que:

$$\frac{(n+1)^2}{\sqrt{3n^4+n}} \le \sum_{k=0}^n \frac{n+1}{\sqrt{3n^4+k}} \le \frac{(n+1)^2}{\sqrt{3n^4}}.$$

Por outro lado.

$$\lim_{n \to +\infty} \frac{(n+1)^2}{\sqrt{3n^4 + n}} = \lim_{n \to +\infty} \frac{\frac{(n+1)^2}{n^2}}{\frac{\sqrt{3n^4 + n}}{n^2}} = \lim_{n \to +\infty} \frac{\frac{n^2}{n^2} + \frac{2n^2}{n^2} + \frac{1}{n^2}}{\sqrt{\frac{3n^4}{n^4} + \frac{n^2}{n^4}}} = \frac{1 + 0 + 0}{\sqrt{3 + 0}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

Analogamente,

$$\lim_{n \to +\infty} \frac{(n+1)^2}{\sqrt{3n^4}} = \lim_{n \to +\infty} \frac{\frac{(n+1)^2}{n^2}}{\frac{\sqrt{3n^4}}{n^2}} = \lim_{n \to +\infty} \frac{\frac{n^2}{n^2} + \frac{2n^2}{n^2} + \frac{1}{n^2}}{\sqrt{\frac{3n^2}{n^4}}}^3 = \frac{1+0+0}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}.$$

Assim, pelo Teorema das Sucessões Enquadradas, podemos garantir que

$$\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{n+1}{\sqrt{3n^4 + k}} = \frac{\sqrt{3}}{3}.$$

3. A propriedade que queremos provar é $P(n): f^{(n)}(x) = (-1)^n \frac{n!}{(x+2)^{n+1}}, \forall n \in \mathbb{N}$. Comecemos por provar que P(1) é válida. Temos:

$$f'(x) = \left(\frac{1}{x+2}\right)' = \frac{0-1}{(x+2)^2} = (-1)^1 \frac{1!}{(x+2)^{1+1}},$$

logo P(1) é válida.

<u>Hipótese de Indução</u>: P(k) é válida, isto é, $f^{(k)}(x) = (-1)^k \frac{k!}{(x+2)^{k+1}}$.

<u>Hipótese de Indução</u>: P(k+1) é válida, isto é, $f^{(k+1)}(x) = (-1)^k \frac{(k+1)!}{(x+2)^{(k+1)+1}}$.

(Dito de outra forma: vamos mostrar que $P(k) \Rightarrow P(k+1)$)

Sabemos que

$$f^{(k+1)}(x) = (f^{(k)}(x))'.$$

Por hipótese de indução,

$$(f^{k}(x))' = \left((-1)^{k} \frac{k!}{(x+2)^{k+1}} \right)' = (-1)^{k} \frac{0 - k!(k+1)(x+2)^{k}}{((x+2)^{(k+1)})^{2}} =$$

$$= (-1)^{k+1} \frac{(k+1)!(x+2)^{k}}{(x+2)^{2k+2}} = (-1)^{k+1} \frac{(k+1)}{(x+2)^{(k+1)+1}}.$$

Temos, então, que $P(k) \Rightarrow P(k+1)$ e, pelo Princípio de Indução Matemática, podemos concluir que

$$f^{(n)}(x) = (-1)^n \frac{n!}{(x+2)^{n+1}}, \forall n \in \mathbb{N}.$$

4. Ao calcular $\lim_{x\to 0} \left((x^2+1)^{1/\arctan x} \right)$ obtém-se uma indeterminação do tipo 1^{∞} .

Uma vez que $x^2+1>0, \forall x\in\mathbb{R},$ podemos efectuar a seguinte manipulação algébrica,

$$\lim_{x \to 0} \left(\left(x^2 + 1 \right)^{1/\arctan x} \right) = \lim_{x \to 0} e^{\log \left(\left(x^2 + 1 \right)^{1/\arctan x} \right)} = \lim_{x \to 0} e^{\frac{1}{\arctan x} \log \left(x^2 + 1 \right)}.$$

$$= e^{\lim_{x \to 0} \frac{\log\left(x^2 + 1\right)}{\arctan x}}$$

Ao calcular $\lim_{x\to 0} \frac{\log(x^2+1)}{\arctan x}$ obtém-se uma indeterminação do tipo $\frac{0}{0}$. Vamos aplicar a regra de Cauchy ao cálculo deste limite considerando $f(x) = \log(x^2+1)$ e $g(x) = \arctan x$.

$$f'(x) = \frac{2x}{x^2 + 1} e g'(x) = \frac{1}{1 + x^2}.$$

Estamos em condições de aplicar a regra de Cauchy porque,

- f e g são diferenciáveis num intervalo do tipo] -a, a[, a > 0 porque as derivadas tomam valores finitos neste intervalo.
- $g'(x) = \frac{1}{1+x^2} \neq 0 \text{ em }]-a, a[, a > 0.$
- $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$

Como, $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \frac{\frac{2x}{x^2+1}}{\frac{1}{x^2+1}} = \lim_{x\to 0} 2x = 0$ existe, concluímos que também existe $\lim_{x\to 0} \frac{f(x)}{g(x)}$ e tem igual valor. Assim

$$\lim_{x \to 0} \left(\left(x^2 + 1 \right)^{1/\arctan x} \right) = e^{\lim_{x \to 0} \frac{\log \left(x^2 + 1 \right)}{\arctan x}} = e^0 = 1.$$

5. (a) O domínio da função f é dado pelo seguinte conjunto:

$$D_f = \{x \in \mathbb{R} : x < 1 \lor (x \ge 1 \land x \ne -1)\} = \mathbb{R}$$

(b) Sabendo que

$$f(1^+) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2}{x+1} = \frac{1}{2} = f(1)$$

e que

$$f(1^{-}) = \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} |x|e^{x} = e,$$

podemos concluir que f não é contínua em x=1 porque $f(1^+) \neq f(1^-)$.

(c) Podemos reescrever a função f do seguinte modo:

$$f(x) = \begin{cases} -xe^x & \text{se} & x < 0 \\ xe^x & \text{se} & 0 \le x < 1 \\ \frac{x^2}{x+1} & \text{se} & x \ge 1. \end{cases}$$

Pela alínea anterior podemos imediatamente concluir que f não é diferenciável em x=1, uma vez que não é contínua neste ponto.

Temos ainda que estudar a diferenciabilidade no ponto x = 0. Assim, calculamos

$$f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{xe^x}{x} = 1$$

e

$$f'(0^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-xe^{x}}{x} = -1.$$

Donde concluímos que f não é diferenciável em x = 0.

A função derivada só está definida onde f é diferenciável, logo

$$f'(x) = \begin{cases} -(1+x)e^x & \text{se} \quad x < 0\\ (1+x)e^x & \text{se} \quad 0 < x < 1\\ \frac{x^2+2x}{(x+1)^2} & \text{se} \quad x > 1. \end{cases}$$

(d)

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} |x| e^x = \lim_{x\to -\infty} -x e^x = \lim_{x\to -\infty} \frac{-x}{e^{-x}}.$$

Podemos fazer a mudança de variável, y = -x, obtendo

$$\lim_{y \to +\infty} \frac{y}{e^y} = 0.$$

Nota: Este limite poder-se-ia ter calculado aplicando a Regra de Cauchy.

6. (a) Consideremos o intervalo genérico da forma [x,x+1], com $x\in\mathbb{R}^+$. Como f é diferenciável em \mathbb{R}^+ podemos concluir que f é contínua em [x,x+1] e diferenciável em]x,x+1[. Assim, pelo Teorema de Lagrange sabemos que existe $c\in]x,x+1[$ tal que

$$f'(c) = \frac{f(x+1) - f(x)}{x+1 - x}.$$

Ou seja, existe $c \in]x, x + 1[$ tal que

$$f'(c) = f(x+1) - f(x).$$

Como c > x, se $x \to +\infty$ então $c \to +\infty$. É agora fácil de concluir que

$$\lim_{x \to +\infty} f(x+1) - f(x) = \lim_{x \to +\infty} f'(c) = \lim_{c \to +\infty} f'(c) = 0.$$

(b) Considerando $f(x) = x^a$, sabemos que se trata duma função diferenciável em \mathbb{R}^+ e, calculando a sua derivada obtemos, $f'(x) = ax^{a-1}$. Basta agora calcular o limite de f'(x) quando x tende para $+\infty$,

$$\lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} ax^{a-1} = \lim_{x \to +\infty} \frac{a}{x^{1-a}} = 0,$$

uma vez que 1 - a > 0.

Assim, dado que a função considerada está nas condições do resultado enunciado na alínea anterior, podemos imediatamente concluir que

$$\lim_{x \to +\infty} f(x+1) - f(x) = \lim_{x \to +\infty} (x+1)^a - x^a = 0.$$