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THREE-

DIMENSIONAL

SPACE; VECTORS

n this chapter we will discuss rectangular coordi-

nate systems in three dimensions, and we will study the

analytic geometry of lines, planes, and other basic sur-

faces. The second theme of this chapter is the study of

vectors. These are the mathematical objects that physi-

cists and engineers use to study forces, displacements,

and velocities of objects moving on curved paths. More

generally, vectors are used to represent all physical enti-

ties that involve both a magnitude and a direction for their

complete description. We will introduce various algebraic

operations on vectors, and we will apply these operations

to problems involving force, work, and rotational tenden-

cies in two and three dimensions. Finally, we will discuss

cylindrical and spherical coordinate systems, which are

appropriate in problems that involve various kinds of sym-

metries and also have specific applications in navigation

and celestial mechanics.
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12.1 RECTANGULAR COORDINATES IN 3-SPACE; SPHERES;
CYLINDRICAL SURFACES

In this section we will discuss coordinate systems in three-dimensional space and some

basic facts about surfaces in three dimensions.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RECTANGULAR COORDINATE
SYSTEMS

In the remainder of this text we will call three-dimensional space 3-space, two-dimensional

space (a plane) 2-space, and one-dimensional space (a line) 1-space. Just as points in 2-

space can be placed in one-to-one correspondence with pairs of real numbers using two

perpendicular coordinate lines, so points in 3-space can be placed in one-to-one correspon-

dence with triples of real numbers by using three mutually perpendicular coordinate lines,

called the x-axis, the y-axis, and the z-axis, positioned so that their origins coincide (Fig-

ure 12.1.1). The three coordinate axes form a three-dimensional rectangular coordinate

system (or Cartesian coordinate system). The point of intersection of the coordinate axes

is called the origin of the coordinate system.

Rectangular coordinate systems in 3-space fall into two categories: left-handed and

right-handed. A right-handed system has the property that when the fingers of the right

hand are cupped so that they curve from the positive x-axis toward the positive y-axis, the

thumb points (roughly) in the direction of the positive z-axis (Figure 12.1.2a). Similarly for

a left-handed coordinate system (Figure 12.1.2b). We will use only right-handed coordinate

systems in this text.
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The coordinate axes, taken in pairs, determine three coordinate planes: the xy-plane,

the xz-plane, and the yz-plane. To each point P in 3-space we can assign a triple of real

numbers by passing three planes through P parallel to the coordinate planes and letting a,

b, and c be the coordinates of the intersections of those planes with the x-axis, y-axis, and

z-axis, respectively (Figure 12.1.3). We call a, b, and c the x-coordinate, y-coordinate, and

z-coordinate of P , respectively, and we denote the point P by (a, b, c) or by P(a, b, c).

Figure 12.1.4 shows the points (4, 5, 6) and (−3, 2,−4).
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Just as the coordinate axes in a two-dimensional coordinate system divide 2-space into

four quadrants, so the coordinate planes of a three-dimensional coordinate system divide

3-space into eight parts, called octants. The set of points with three positive coordinates

forms the first octant; the remaining octants have no standard numbering.

You should be able to visualize the following facts about three-dimensional rectangular

coordinate systems:

region description

xy-plane

xz-plane

yz-plane

x-axis

y-axis

z-axis

Consists of all points of the form (x, y, 0)

Consists of all points of the form (x, 0, z)

Consists of all points of the form (0, y, z)

Consists of all points of the form (x, 0, 0)

Consists of all points of the form (0, y, 0)

Consists of all points of the form (0, 0, z)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DISTANCE IN 3-SPACE
To derive a formula for the distance between two points in 3-space, we start by considering

a box whose sides have lengths a, b, and c (Figure 12.1.5). The length d of a diagonal of

the box can be obtained by applying the Theorem of Pythagoras twice: first to show that a

diagonal of the base has length
√
a2 + b2, then again to show that a diagonal of the box has

length

d =
√

(
√

a2 + b2 )2 + c2 =
√

a2 + b2 + c2 (1)

We can now obtain a formula for the distance d between two points P1(x1, y1, z1) and

P2(x2, y2, z2) in 3-space by finding the length of the diagonal of a box that has these points

as diagonal corners (Figure 12.1.6). The sides of such a box have lengths

|x2 − x1|, |y2 − y1|, and |z2 − z1|

and hence from (1) the distance d between the points P1 and P2 is

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (2)

(where we have omitted the unnecessary absolute value signs).
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REMARK. Recall that in 2-space the distance d between points P1(x1, y1) and P2(x2, y2)

is

d =
√

(x2 − x1)2 + (y2 − y1)2

Thus, the distance formula in 3-space has the same form as the formula in 2-space, but it

has a third term to account for the additional dimension. We will see that this is a common

occurrence in extending formulas from 2-space to 3-space.

Example 1 Find the distance d between the points (2, 3,−1) and (4,−1, 3).

Solution. From Formula (2)

d =
√

(4 − 2)2 + (−1 − 3)2 + (3 + 1)2 =
√

36 = 6 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GRAPHS IN 3-SPACE
Recall that in an xy-coordinate system, the set of points (x, y) whose coordinates satisfy an

equation in x and y is called the graph of the equation. Analogously, in an xyz-coordinate

system, the set of points (x, y, z) whose coordinates satisfy an equation in x, y, and z is

called the graph of the equation. For example, consider the equation

x2 + y2 + z2 = 25

The coordinates of a point (x, y, z) satisfy this equation if and only if the distance from
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the origin to the point is 5 (why?). Thus, the graph of this equation is a sphere of radius 5

centered at the origin (Figure 12.1.7).
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Figure 12.1.7

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SPHERES
The sphere with center (x0, y0, z0) and radius r consists of those points (x, y, z) whose

coordinates satisfy
√

(x − x0)2 + (y − y0)2 + (z− z0)2 = r

or, equivalently,

(x − x0)
2 + (y − y0)

2 + (z− z0)
2 = r2 (3)

This is called the standard equation of the sphere with center (x0, y0, z0) and radius r .

Some examples are given in the following table.

equation graph

(x – 3)2 + (y – 2)2 + (z – 1)2 = 9 

(x + 1)2 + y2 + (z + 4)2 = 5

x2 + y2 + z2 = 1

Sphere with center (3, 2, 1) and radius 3

Sphere with center (–1, 0, –4) and radius √5

Sphere with center (0, 0, 0) and radius 1

Recall that in 2-space the standard equation of the circle with center (x0, y0) and radius

r is

(x − x0)
2 + (y − y0)

2 = r2

Thus, the standard equation of a sphere in 3-space has the same form as the standard equation

of a circle in 2-space, but with an additional term to account for the third coordinate.

Example 2 A sphere S has center in the first octant and is tangent to each of the three

coordinate planes. The distance from the origin to the sphere is 3 −
√

3 units. What is the

equation of the sphere?

Solution. Let P(x0, y0, z0) and r denote the center and radius of S, respectively. In order

for S to be tangent to the xy-plane, the distance |z0| from P(x0, y0, z0) to the xy-plane

must equal r . Since P(x0, y0, z0) is in the first octant, we conclude that z0 = |z0| = r . Sim-

ilarly, x0 = y0 = r and the center of S is P(r, r, r). The distance from the origin to the

center of S is then
√
r2 + r2 + r2 =

√
3r2 =

√
3r , from which it follows that the distance

3 −
√

3 =
√

3(
√

3 − 1) from the origin to S is given by
√

3r − r = (
√

3 − 1)r . Solving the

equation (
√

3 − 1)r =
√

3(
√

3 − 1) yields the solution r =
√

3. Therefore, the equation of

the sphere is

(x −
√

3)2 + (y −
√

3)2 + (z−
√

3)2 = 3 ◭

If the terms in (3) are expanded and like terms are then collected, then the resulting

equation has the form

x2 + y2 + z2 +Gx +Hy + Iz+ J = 0 (4)

The following example shows how the center and radius of a sphere that is expressed in this

form can be obtained by completing the squares.

Example 3 Find the center and radius of the sphere

x2 + y2 + z2 − 2x − 4y + 8z+ 17 = 0
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Solution. We can put the equation in the form of (3) by completing the squares:

(x2 − 2x)+ (y2 − 4y)+ (z2 + 8z) = −17

(x2 − 2x + 1)+ (y2 − 4y + 4)+ (z2 + 8z+ 16) = −17 + 21

(x − 1)2 + (y − 2)2 + (z+ 4)2 = 4

which is the equation of the sphere with center (1, 2,−4) and radius 2. ◭

In general, completing the squares in (4) produces an equation of the form

(x − x0)
2 + (y − y0)

2 + (z− z0)
2 = k

If k > 0, then the graph of this equation is a sphere with center (x0, y0, z0) and radius
√
k.

If k = 0, then the sphere has radius zero, so the graph is the single point (x0, y0, z0). If

k < 0, the equation is not satisfied by any values of x, y, and z (why?), so it has no graph.

12.1.1 THEOREM. An equation of the form

x2 + y2 + z2 +Gx +Hy + Iz+ J = 0

represents a sphere, a point, or has no graph.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CYLINDRICAL SURFACES
Although it is natural to graph equations in two variables in 2-space and equations in three

variables in 3-space, it is also possible to graph equations in two variables in 3-space. For

example, the graph of the equation y = x2 in an xy-coordinate system is a parabola; however,

there is nothing to prevent us from writing this equation as y = x2 +0z and inquiring about

its graph in an xyz-coordinate system. To obtain this graph we need only observe that the

equation y = x2 does not impose any restrictions on z. Thus, if we find values of x and

y that satisfy this equation, then the coordinates of the point (x, y, z) will also satisfy the

equation for arbitrary values of z. Geometrically, the point (x, y, z) lies on the vertical line

through the point (x, y, 0) in the xy-plane, which means that we can obtain the graph of

y = x2 in an xyz-coordinate system by first graphing the equation in the xy-plane and then

translating that graph parallel to the z-axis to generate the entire graph (Figure 12.1.8).
y
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(x, y, 0)

Figure 12.1.8

The process of generating a surface by translating a plane curve parallel to some line is

called extrusion, and surfaces that are generated by extrusion are called cylindrical surfaces.

A familiar example is the surface of a right circular cylinder, which can be generated by

translating a circle parallel to the axis of the cylinder. The following theorem provides basic

information about graphing equations in two variables in 3-space:

12.1.2 THEOREM. An equation that contains only two of the variables x, y, and z

represents a cylindrical surface in an xyz-coordinate system. The surface can be obtained

by graphing the equation in the coordinate plane of the two variables that appear in the

equation and then translating that graph parallel to the axis of the missing variable.

Example 4 Sketch the graph of x2 + z2 = 1 in 3-space.

Solution. Since y does not appear in this equation, the graph is a cylindrical surface

generated by extrusion parallel to the y-axis. In the xz-plane the graph of the equation

x2 +z2 = 1 is a circle (Figure 12.1.9). Thus, in 3-space the graph is a right circular cylinder

along the y-axis. ◭

y
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x2 + z2 = 1

x

z

x2 + z2 = 1 

3-space

2-space

Figure 12.1.9

Example 5 Sketch the graph of z = sin y in 3-space.

Solution. (See Figure 12.1.10.) ◭

• FOR THE READER. Describe the graph of x = 1 in an xyz-coordinate system.
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Figure 12.1.10

EXERCISE SET 12.1 Graphing Utility
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the coordinates of the eight corners of the

box.

(a) (b)

y

x

z

y

x

z

2. A cube of side 4 has its geometric center at the origin and

its faces parallel to the coordinate planes. Sketch the cube

and give the coordinates of the corners.

3. Suppose that a box has its faces parallel to the coordinate

planes and the points (4, 2,−2) and (−6, 1, 1) are endpoints

of a diagonal. Sketch the box and give the coordinates of

the remaining six corners.

4. Suppose that a box has its faces parallel to the coordinate

planes and the points (x1, y1, z1) and (x2, y2, z2) are end-

points of a diagonal.

(a) Find the coordinates of the remaining six corners.

(b) Show that the midpoint of the line segment joining

(x1, y1, z1) and (x2, y2, z2) is
(

1
2
(x1 + x2),

1
2
(y1 + y2),

1
2
(z1 + z2)

)

[Suggestion: Apply Theorem D.2 in Appendix D to

three appropriate edges of the box.]

5. Find the center and radius of the sphere that has (1,−2, 4)

and (3, 4,−12) as endpoints of a diameter. [See Exercise 4.]

6. Show that (4, 5, 2), (1, 7, 3), and (2, 4, 5) are vertices of an

equilateral triangle.

7. (a) Show that (2, 1, 6), (4, 7, 9), and (8, 5,−6) are the ver-

tices of a right triangle.

(b) Which vertex is at the 90◦ angle?

(c) Find the area of the triangle.

8. Find the distance from the point (−5, 2,−3) to the

(a) xy-plane (b) xz-plane (c) yz-plane

(d) x-axis (e) y-axis (f ) z-axis.

9. In each part, find the standard equation of the sphere that

satisfies the stated conditions.

(a) Center (1, 0,−1); diameter = 8.

(b) Center (−1, 3, 2) and passing through the origin.

(c) A diameter has endpoints (−1, 2, 1) and (0, 2, 3).

10. Find equations of two spheres that are centered at the ori-

gin and are tangent to the sphere of radius 1 centered at

(3,−2, 4).

11. In each part, find an equation of the sphere with center

(2,−1,−3) and satisfying the given condition.

(a) Tangent to the xy-plane

(b) Tangent to the xz-plane

(c) Tangent to the yz-plane

12. (a) Find an equation of the sphere that is inscribed in the

cube that is centered at the point (−2, 1, 3) and has sides

of length 1 that are parallel to the coordinate planes.

(b) Find an equation of the sphere that is circumscribed

about the cube in part (a).

In Exercises 13–18, describe the surface whose equation is

given.

13. x2 + y2 + z2 + 10x + 4y + 2z− 19 = 0

14. x2 + y2 + z2 − y = 0

15. 2x2 + 2y2 + 2z2 − 2x − 3y + 5z− 2 = 0

16. x2 + y2 + z2 + 2x − 2y + 2z+ 3 = 0

17. x2 + y2 + z2 − 3x + 4y − 8z+ 25 = 0

18. x2 + y2 + z2 − 2x − 6y − 8z+ 1 = 0

19. In each part, sketch the portion of the surface that lies in the

first octant.

(a) y = x (b) y = z (c) x = z

20. In each part, sketch the graph of the equation in 3-space.

(a) x = 1 (b) y = 1 (c) z = 1

21. In each part, sketch the graph of the equation in 3-space.

(a) x2 + y2 = 25 (b) y2 + z2 = 25 (c) x2 + z2 = 25

22. In each part, sketch the graph of the equation in 3-space.

(a) x = y2 (b) z = x2 (c) y = z2
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23. In each part, write an equation for the surface.

(a) The plane that contains thex-axis and the point (0, 1, 2).
(b) The plane that contains they-axis and the point (1, 0, 2).
(c) The right circular cylinder that has radius 1 and is cen-

tered on the line parallel to the z-axis that passes through

the point (1, 1, 0).
(d) The right circular cylinder that has radius 1 and is cen-

tered on the line parallel to they-axis that passes through

the point (1, 0, 1).

24. Find equations for the following right circular cylinders.

Each cylinder has radius a and is “tangent” to two coordi-

nate planes.

y

x

z

(a, 0, a) y

x

z

(a, a, 0)

y

x

z

(0, a, a)

(a) (b) (c)

In Exercises 25–34, sketch the surface in 3-space.

25. y = sin x 26. y = ex

27. z = 1 − y2 28. z = cos x

29. 2x + z = 3 30. 2x + 3y = 6

31. 4x2 + 9z2 = 36 32. z =
√

3 − x
33. y2 − 4z2 = 4 34. yz = 1

35. Use a graphing utility to generate the curve y = x3/(1+x2)

in the xy-plane, and then use the graph to help sketch the

surface z = y3/(1 + y2) in 3-space.

36. Use a graphing utility to generate the curve y = x/(1 + x4)

in the xy-plane, and then use the graph to help sketch the

surface z = y/(1 + y4) in 3-space.

37. If a bug walks on the sphere

x2 + y2 + z2 + 2x − 2y − 4z− 3 = 0

how close and how far can it get from the origin?

38. Describe the set of all points in 3-space whose coordinates

satisfy the inequality x2 + y2 + z2 − 2x + 8z ≤ 8.

39. Describe the set of all points in 3-space whose coordinates

satisfy the inequality y2 + z2 + 6y − 4z > 3.

40. The distance between a point P(x, y, z) and the point

A(1,−2, 0) is twice the distance between P and the point

B(0, 1, 1). Show that the set of all such points is a sphere,

and find the center and radius of the sphere.

41. As shown in the accompanying figure, a bowling ball of ra-

dius R is placed inside a box just large enough to hold it,

and it is secured for shipping by packing a Styrofoam sphere

into each corner of the box. Find the radius of the largest

Styrofoam sphere that can be used. [Hint: Take the origin

of a Cartesian coordinate system at a corner of the box with

the coordinate axes along the edges.]

Figure Ex-41

42. Consider the equation

x2 + y2 + z2 +Gx +Hy + Iz+ J = 0

and let K = G2 +H 2 + I 2 − 4J .

(a) Prove that the equation represents a sphere if K > 0, a

point if K = 0, and has no graph if K < 0.

(b) In the case where K > 0, find the center and radius of

the sphere.

43. Show that for all values of θ and φ, the point

(a sinφ cos θ, a sinφ sin θ, a cosφ)

lies on the sphere x2 + y2 + z2 = a2.

12.2 VECTORS

Many physical quantities such as area, length, mass, and temperature are completely

described once the magnitude of the quantity is given. Such quantities are called

“scalars.” Other physical quantities, called “vectors,” are not completely determined

until both a magnitude and a direction are specified. For example, winds are usually

described by giving their speed and direction, say 20 mi/h northeast. The wind speed

and wind direction together form a vector quantity called the wind velocity. Other ex-

amples of vectors are force and displacement. In this section we will develop the basic

mathematical properties of vectors.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS IN PHYSICS
AND ENGINEERING

A particle that moves along a line can move in only two directions, so its direction of motion

can be described by taking one direction to be positive and the other negative. Thus, the

displacement or change in position of the point can be described by a signed real number. For
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example, a displacement of 3 (= +3) describes a position change of 3 units in the positive

direction, and a displacement of −3 describes a position change of 3 units in the negative

direction. However, for a particle that moves in two dimensions or three dimensions, a plus

or minus sign is no longer sufficient to specify the direction of motion—other methods

are required. One method is to use an arrow, called a vector, that points in the direction

of motion and whose length represents the distance from the starting point to the ending

point; this is called the displacement vector for the motion. For example, Figure 12.2.1a

shows the displacement vector of a particle that moves from point A to point B along a

circuitous path. Note that the length of the arrow describes the distance between the starting

and ending points and not the actual distance traveled by the particle.

Arrows are not limited to describing displacements—they can be used to describe any

physical quantity that involves both a magnitude and direction. Two important examples are

forces and velocities. For example, the arrow in Figure 12.2.1b shows a force vector of 10 lb

acting in a specific direction on a block, and the arrows in Figure 12.2.1c show the velocity

vector of a boat whose motor propels it parallel to the shore at 2 mi/h and the velocity

vector of a 3 mi/h wind acting at an angle of 45◦ with the shoreline. Intuition suggests that

the two velocity vectors will combine to produce some net velocity for the boat at an angle

to the shoreline. Thus, our first objective in this section is to define mathematical operations

on vectors that can be used to determine the combined effect of vectors.

A

B
Rope

45°

3 mi/h10 lb

2 mi/h

Two velocity vectors that affect

the motion of the boat

A force vector acting

on a block

A displacement

vector

(a) (b) (c)

Figure 12.2.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS VIEWED
GEOMETRICALLY

Vectors can be represented geometrically by arrows in 2-space or 3-space; the direction

of the arrow specifies the direction of the vector and the length of the arrow describes its

magnitude. The tail of the arrow is called the initial point of the vector, and the tip of the

arrow the terminal point. We will denote vectors with lowercase boldface type such as a,

k, v, w, and x. When discussing vectors, we will refer to real numbers as scalars. Scalars

will be denoted by lowercase italic type such as a, k, v, w, and x. Two vectors, v and w,

are considered to be equal (also called equivalent) if they have the same length and same

direction, in which case we write v = w. Geometrically, two vectors are equal if they are

translations of one another; thus, the three vectors in Figure 12.2.2a are equal, even though

they are in different positions.
A

B

(a) (b)

Figure 12.2.2 Because vectors are not affected by translation, the initial point of a vector v can be

moved to any convenient point A by making an appropriate translation. If the initial point

of v is A and the terminal point is B, then we write v =
−→
AB when we want to emphasize

the initial and terminal points (Figure 12.2.2b). If the initial and terminal points of a vector

coincide, then the vector has length zero; we call this the zero vector and denote it by 0.

The zero vector does not have a specific direction, so we will agree that it can be assigned

any convenient direction in a specific problem.

There are various algebraic operations that are performed on vectors, all of whose defi-

nitions originated in physics. We begin with vector addition.
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12.2.1 DEFINITION. If v and w are vectors, then the sum v + w is the vector from the

initial point of v to the terminal point of w when the vectors are positioned so the initial

point of w is at the terminal point of v (Figure 12.2.3a).

(a)

v

w

v + w

(b)

v
v

w

w

v + w

w + v

Figure 12.2.3

In Figure 12.2.3b we have constructed two sums, v+w (purple arrows) and w+v (green

arrows). It is evident that

v + w = w + v

and that the sum coincides with the diagonal of the parallelogram determined by v and w

when these vectors are positioned so they have the same initial point.

Since the initial and terminal points of 0 coincide, it follows that

0 + v = v + 0 = v

12.2.2 DEFINITION. If v is a nonzero vector and k is a nonzero real number (a scalar),

then the scalar multiple kv is defined to be the vector whose length is |k| times the length

of v and whose direction is the same as that of v if k > 0 and opposite to that of v if

k < 0. We define kv = 0 if k = 0 or v = 0.

Figure 12.2.4 shows the geometric relationship between a vector v and various scalar

multiples of it. Observe that if k and v are nonzero, then the vectors v and kv lie on the

same line if their initial points coincide and lie on parallel or coincident lines if they do not.

Thus, we say that v and kv are parallel vectors. Observe also that the vector (−1)v has the

same length as v but is oppositely directed. We call (−1)v the negative of v and denote it

by −v (Figure 12.2.5). In particular, −0 = (−1)0 = 0.

v

2v

1

2
v

(−1)v
3

2(− )v

Figure 12.2.4
Vector subtraction is defined in terms of addition and scalar multiplication by

v − w = v + (−w)

The difference v − w can be obtained geometrically by first constructing the vector −w

and then adding v and −w, say by the parallelogram method (Figure 12.2.6a). However,

if v and w are positioned so their initial points coincide, then v − w can be formed more

directly, as shown in Figure 12.2.6b, by drawing the vector from the terminal point of w

(the second term) to the terminal point of v (the first term). In the special case where v = w

the terminal points of the vectors coincide, so their difference is 0; that is,

v + (−v) = v − v = 0

−v

v

Figure 12.2.5

(a)

v

w–w

v – w v – w

(b)

v

w

Figure 12.2.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS IN COORDINATE
SYSTEMS

Problems involving vectors are often best solved by introducing a rectangular coordinate

system. If a vector v is positioned with its initial point at the origin of a rectangular coordinate

system, then its terminal point will have coordinates of the form (v1, v2) or (v1, v2, v3),

depending on whether the vector is in 2-space or 3-space (Figure 12.2.7). We call these

coordinates the components of v, and we write

v = 〈v1, v2〉 or v = 〈v1, v2, v3〉
2-space 3-space
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In particular, the zero vector is

0 = 〈0, 0〉 and 0 = 〈0, 0, 0〉
2-space 3-space

x

y

v

(v1, v2)

v

(v1, v2, v3)

y

z

x

Figure 12.2.7

Components provide a simple way of identifying equivalent vectors. For example, con-

sider the vectors v = 〈v1, v2〉 and w = 〈w1, w2〉 in 2-space. If v = w, then the vectors

have the same length and same direction, and this means that their terminal points coincide

when their initial points are placed at the origin. It follows that v1 = w1 and v2 = w2, so

we have shown that equivalent vectors have the same components. Conversely, if v1 = w1

and v2 = w2, then the terminal points of the vectors coincide when their initial points are

placed at the origin. It follows that the vectors have the same length and same direction, so

we have shown that vectors with the same components are equivalent. A similar argument

holds for vectors in 3-space, so we have the following result:

12.2.3 THEOREM. Two vectors are equivalent if and only if their corresponding com-

ponents are equal.

For example,

〈a, b, c〉 = 〈1,−4, 2〉
if and only if a = 1, b = −4, and c = 2.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ARITHMETIC OPERATIONS
ON VECTORS

The next theorem shows how to perform arithmetic operations on vectors using components.

12.2.4 THEOREM. If v = 〈v1, v2〉 and w = 〈w1, w2〉 are vectors in 2-space and k is

any scalar, then

v + w = 〈v1 + w1, v2 + w2〉 (1)

v − w = 〈v1 − w1, v2 − w2〉 (2)

kv = 〈kv1, kv2〉 (3)

Similarly, if v = 〈v1, v2, v3〉 and w = 〈w1, w2, w3〉 are vectors in 3-space and k is any

scalar, then

v + w = 〈v1 + w1, v2 + w2, v3 + w3〉 (4)

v − w = 〈v1 − w1, v2 − w2, v3 − w3〉 (5)

kv = 〈kv1, kv2, kv3〉 (6)

We will not prove this theorem. However, results (1) and (3) should be evident from

Figure 12.2.8. Similar figures in 3-space can be used to motivate (4) and (6). Formulas (2)

and (5) can be obtained by writing v + w = v + (−1)w.

v1 w1

w2

v2
(w1, w2)

(v1, v2)

w

v

v 
+ w

(v1 + w1, v2 + w2)

v1

kv1

kv2

v2
(v1, v2)

(kv1, kv2)

v

kv

x

y

x

y

Figure 12.2.8

Example 1 If v = 〈−2, 0, 1〉 and w = 〈3, 5,−4〉, then

v + w = 〈−2, 0, 1〉 + 〈3, 5,−4〉 = 〈1, 5,−3〉
3v = 〈−6, 0, 3〉
−w = 〈−3,−5, 4〉
w − 2v = 〈3, 5,−4〉 − 〈−4, 0, 2〉 = 〈7, 5,−6〉 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS WITH INITIAL POINT NOT
AT THE ORIGIN

Recall that we defined the components of a vector to be the coordinates of its terminal

point when its initial point is at the origin. We will now consider the problem of finding
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the components of a vector whose initial point is not at the origin. To be specific, suppose

that P1(x1, y1) and P2(x2, y2) are points in 2-space and we are interested in finding the

components of the vector
−−→
P1P2. As illustrated in Figure 12.2.9, we can write this vector as

−−→
P1P2 =

−→
OP2 −

−→
OP1 = 〈x2, y2〉 − 〈x1, y1〉 = 〈x2 − x1, y2 − y1〉

Thus, we have shown that the components of the vector
−−→
P1P2 can be obtained by subtract-

ing the coordinates of its initial point from the coordinates of its terminal point. Similar

computations hold in 3-space, so we have established the following result:

12.2.5 THEOREM. If
−−→
P1P2 is a vector in 2-space with initial point P1(x1, y1) and

terminal point P2(x2, y2), then

−−→
P1P2 = 〈x2 − x1, y2 − y1〉 (7)

Similarly, if
−−→
P1P2 is a vector in 3-space with initial point P1(x1, y1, z1) and terminal

point P2(x2, y2, z2), then

−−→
P1P2 = 〈x2 − x1, y2 − y1, z2 − z1〉 (8)

x

y

O

P2(x2, y2)
P1(x1, y1) P1P2

OP2

OP1

Figure 12.2.9

Example 2 In 2-space the vector from P1(1, 3) to P2(4,−2) is
−−→
P1P2 = 〈4 − 1,−2 − 3〉 = 〈3,−5〉

and in 3-space the vector from A(0,−2, 5) to B(3, 4,−1) is
−→
AB = 〈3 − 0, 4 − (−2),−1 − 5〉 = 〈3, 6,−6〉 ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RULES OF VECTOR ARITHMETIC
The following theorem shows that many of the familiar rules of ordinary arithmetic also

hold for vector arithmetic.

12.2.6 THEOREM. For any vectors u, v, and w and any scalars k and ℓ, the following

relationships hold:

(a) u + v = v + u (e) k(ℓu) = (kℓ)u
(b) (u + v)+ w = u + (v + w) ( f ) k(u + v) = ku + kv
(c) u + 0 = 0 + u = u (g) (k + ℓ)u = ku + ℓu
(d ) u + (−u) = 0 (h) 1u = u

The results in this theorem can be proved either algebraically by using components or

geometrically by treating the vectors as arrows. We will prove part (b) both ways and leave

some of the remaining proofs as exercises.

Proof (b) (Algebraic in 2-space). Let u = 〈u1, u2〉, v = 〈v1, v2〉, and w = 〈w1, w2〉.
Then

(u + v)+ w = (〈u1, u2〉 + 〈v1, v2〉)+ 〈w1, w2〉

= 〈u1 + v1, u2 + v2〉 + 〈w1, w2〉

= 〈(u1 + v1)+ w1, (u2 + v2)+ w2〉

= 〈u1 + (v1 + w1), u2 + (v2 + w2)〉

= 〈u1, u2〉 + 〈v1 + w1, v2 + w2〉

= u + (v + w)
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Proof (b) (Geometric). Let u, v, and w be represented by
−→
PQ,

−→
QR, and

−→
RS as shown in

Figure 12.2.10. Then

v + w =
−→
QS and u + (v + w) =

−→
PS

u + v =
−→
PR and (u + v)+ w =

−→
PS

Therefore,

(u + v)+ w = u + (v + w)

u

v

w

u + v

v + wu + (v + w)
(u + v) + w

P

S

R

Q

Figure 12.2.10

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It follows from part (b) of this theorem that the symbol u + v + w is unam-

biguous since the same vector results no matter how the terms are grouped. Moreover,

Figure 12.2.10 shows that if the vectors u, v, and w are placed “tip to tail,” then the sum

u+v+w is the vector from the initial point of u to the terminal point of w. This also works

for four or more vectors (Figure 12.2.11).

u
vx

w
u +

 v +
 w

 +
 x

Figure 12.2.11

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NORM OF A VECTOR
The distance between the initial and terminal points of a vector v is called the length, the

norm, or the magnitude of v and is denoted by ‖v‖. This distance does not change if the

vector is translated, so for purposes of calculating the norm we can assume that the vector

is positioned with its initial point at the origin (Figure 12.2.12). This makes it evident that

the norm of a vector v = 〈v1, v2〉 in 2-space is given by

‖v‖ =
√

v2
1 + v2

2 (9)

and the norm of a vector v = 〈v1, v2, v3〉 in 3-space is given by

‖v‖ =
√

v2
1 + v2

2 + v2
3 (10)

x

y

y

z

(v1, v2)

v1

v2

x

||v||

(v1, v2, v3)

v3

v2

v1

||v||

Figure 12.2.12

Example 3 Find the norms of v = 〈−2, 3〉 and w = 〈2, 3, 6〉.

Solution. From (9) and (10)

‖v‖ =
√

(−2)2 + 32 =
√

13

‖w‖ =
√

22 + 32 + 62 =
√

49 = 7 ◭

Recall from Definition 12.2.2 that the length of kv is |k| times the length of v; that is,

‖kv‖ = |k|‖v‖ (11)

Thus, for example,

‖3v‖ = |3|‖v‖ = 3‖v‖
‖−2v‖ = |−2|‖v‖ = 2‖v‖
‖−v‖ = |−1|‖v‖ = ‖v‖

This applies to vectors in 2-space and 3-space.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

UNIT VECTORS
A vector of length 1 is called a unit vector. In an xy-coordinate system the unit vectors

along the x- and y-axes are denoted by i and j, respectively; and in an xyz-coordinate

system the unit vectors along the x-, y-, and z-axes are denoted by i, j, and k, respectively

(Figure 12.2.13). Thus,

i = 〈1, 0〉, j = 〈0, 1〉 In 2-space

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, k = 〈0, 0, 1〉 In 3-space

Every vector in 2-space is expressible uniquely in terms of i and j, and every vector in
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3-space is expressible uniquely in terms of i, j, and k as follows:

v = 〈v1, v2〉 = 〈v1, 0〉 + 〈0, v2〉 = v1〈1, 0〉 + v2〈0, 1〉 = v1i + v2 j

v = 〈v1, v2, v3〉 = v1〈1, 0, 0〉 + v2〈0, 1, 0〉 + v3〈0, 0, 1〉 = v1i + v2 j + v3k

x

x

y

y

z

(1, 0)

(0, 1)

i

j

(0, 1, 0)
(1, 0, 0)

(0, 0, 1)

j

i

k

Figure 12.2.13

•
•
•
•
•
•
•
•

REMARK. The bracket and unit vector notations for vectors are completely interchange-

able, the choice being a matter of convenience or personal preference.

Example 4

2-space 3-space

〈2, 3〉 = 2i + 3j

〈–4, 0〉 = –4i + 0j = –4i

〈0, 0〉 = 0i + 0j = 0

(3i + 2j) + (4i + j) = 7i + 3j

5(6i – 2j) = 30i – 10j

||2i – 3j|| = √22 + (–3)2 = √13

||v1i + v2j|| = √v1
2 + v2

2

〈2, –3, 4〉 = 2i – 3j + 4k

〈0, 3, 0〉 = 3j

〈0, 0, 0〉 = 0i + 0j + 0k = 0

(3i + 2j – k) – (4i – j + 2k) = –i + 3j – 3k

2(i + j – k) + 4(i – j) = 6i – 2j – 2k

||i + 2j – 3k|| = √12 + 22 + (–3)2 = √14

||〈v1, v2, v3〉|| = √v1
2 + v2

2 + v3
2

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NORMALIZING A VECTOR
A common problem in applications is to find a unit vector u that has the same direction as

some given nonzero vector v. This can be done by multiplying v by the reciprocal of its

length; that is,

u =
1

‖v‖
v =

v

‖v‖
is a unit vector with the same direction as v—the direction is the same because k = 1/‖v‖
is a positive scalar, and the length is 1 because

‖u‖ = ‖kv‖ = |k|‖v‖ = k‖v‖ =
1

‖v‖
‖v‖ = 1

The process of multiplying a vector v by the reciprocal of its length to obtain a unit vector

with the same direction is called normalizing v.

Example 5 Find the unit vector that has the same direction as v = 2i + 2 j − k.

Solution. The vector v has length

‖v‖ =
√

22 + 22 + (−1)2 = 3

so the unit vector u in the same direction as v is

u = 1
3
v = 2

3
i + 2

3
j − 1

3
k ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Many calculating utilities can perform vector operations, and some

have built-in norm and normalization operations. If your calculating utility has these capa-

bilities, use it to check the computations in Examples 1, 3, and 5.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS DETERMINED BY
LENGTH AND ANGLE

If v is a nonzero vector with its initial point at the origin of an xy-coordinate system, and if

φ is the angle from the positive x-axis to the radial line through v, then the x-component of

v can be written as ‖v‖cosφ and the y-component as ‖v‖sinφ (Figure 12.2.14); and hence

v can be expressed in trigonometric form as

v = ‖v‖〈cosφ, sinφ〉 or v = ‖v‖cosφi + ‖v‖sinφ j (12)



March 6, 2001 14:27 g65-ch12 Sheet number 14 Page number 804 cyan magenta yellow black

804 Three-Dimensional Space; Vectors

In the special case of a unit vector u this simplifies to

u = 〈cosφ, sinφ〉 or u = cosφi + sinφ j (13)

||v||
||v|| sin f

||v|| cos f

x

y

f

Figure 12.2.14

Example 6

(a) Find the vector of length 2 that makes an angle of π/4 with the positive x-axis.

(b) Find the angle that the vector v = −
√

3 i + j makes with the positive x-axis.

Solution (a). From (12)

v = 2 cos
π

4
i + 2 sin

π

4
j =

√
2 i +

√
2 j

Solution (b). We will normalize v, then use (13) to find sinφ and cosφ, and then use these

values to find φ. Normalizing v yields

v

‖v‖
=

−
√

3 i + j
√

(−
√

3 )2 + 12

= −
√

3

2
i +

1

2
j

Thus, cosφ = −
√

3/2 and sinφ = 1
2
, from which we conclude that φ = 5π/6. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTORS DETERMINED BY
LENGTH AND A VECTOR IN THE
SAME DIRECTION

It is a common problem in many applications that a direction in 2-space or 3-space is

determined by some known unit vector u, and it is of interest to find the components of a

vector v that has the same direction as u and some specified length ‖v‖. This can be done

by expressing v as

v = ‖v‖u v is equal to its length times a unit vector in the same direction.

and then reading off the components of ‖v‖u.

Example 7 Figure 12.2.15 shows a vector v of length
√

5 that extends along the line

through A and B. Find the components of v.
y

x

z

A(0, 0, 4)

B(2, 5, 0)

v

||v|| = √5

Figure 12.2.15

Solution. First we will find the components of the vector
−→
AB, then we will normalize this

vector to obtain a unit vector in the direction of v, and then we will multiply this unit vector

by ‖v‖ to obtain the vector v. The computations are as follows:
−→
AB = 〈2, 5, 0〉 − 〈0, 0, 4〉 = 〈2, 5,−4〉

‖
−→
AB‖ =

√

22 + 52 + (−4)2 =
√

45 = 3
√

5

−→
AB

‖
−→
AB‖

=
〈

2

3
√

5
,

5

3
√

5
,−

4

3
√

5

〉

v = ‖v‖

( −→
AB

‖
−→
AB‖

)

=
√

5

〈

2

3
√

5
,

5

3
√

5
,−

4

3
√

5

〉

=
〈

2

3
,

5

3
,−

4

3

〉

◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

RESULTANT OF TWO CONCURRENT
FORCES

The effect that a force has on an object depends on the magnitude and direction of the force

and the point at which it is applied. Thus, forces are regarded to be vector quantities and,

indeed, the algebraic operations on vectors that we have defined in this section have their

origin in the study of forces. For example, it is a fact of physics that if two forces F1 and

F2 are applied at the same point on an object, then the two forces have the same effect on

the object as the single force F1 + F2 applied at the point (Figure 12.2.16). Physicists and

engineers call F1 + F2 the resultant of F1 and F2, and they say that the forces F1 and F2

are concurrent to indicate that they are applied at the same point.

In many applications, the magnitudes of two concurrent forces and the angle between

them are known, and the problem is to find the magnitude and direction of the resultant. For

example, referring to Figure 12.2.17, suppose that we know the magnitudes of the forces

F1 and F2 and the angle φ between them, and we are interested in finding the magnitude of
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the resultant F1 + F2 and the angle α that the resultant makes with the force F1. This can

be done by trigonometric methods based on the laws of sines and cosines. For this purpose,

recall that the law of sines applied to the triangle in Figure 12.2.18 states that

a

sinα
=

b

sinβ
=

c

sin γ

and the law of cosines implies that

c2 = a2 + b2 − 2ab cos γF1

F1 + F2

F2

The single force F1 + F2 

has the same effect as the 

two forces F1 and F2.

Figure 12.2.16

F1

F1 + F2

F2

a

f

Figure 12.2.17

g

a

b

a

b

c

Figure 12.2.18

Referring to Figure 12.2.19, and using the fact that cos(π − φ) = − cosφ, it follows

from the law of cosines that

‖F1 + F2‖2 = ‖F1‖2 + ‖F2‖2 + 2‖F1‖‖F2‖ cosφ (14)

Moreover, it follows from the law of sines that

‖F2‖
sinα

=
‖F1 + F2‖
sin(π− φ)

which, with the help of the identity sin(π− φ) = sinφ, can be expressed as

sinα =
‖F2‖

‖F1 + F2‖
sinφ (15)

a

f fp – f
||F2||

||F2||
||F 1

 +
 F 2

||

||F1||

Figure 12.2.19

Example 8 Suppose that two forces are applied to an eye bracket, as shown in Figure

12.2.20. Find the magnitude of the resultant and the angle θ that it makes with the positive

x-axis.

Solution. We are given that ‖F1‖ = 200 N and ‖F2‖ = 300 N and that the angle between

the vectors F1 and F2 is φ = 40◦ . Thus, it follows from (14) that the magnitude of the

resultant is

‖F1 + F2‖ =
√

‖F1‖2 + ‖F2‖2 + 2‖F1‖‖F2‖cosφ

=
√

(200)2 + (300)2 + 2(200)(300) cos 40◦

≈ 471 N

Moreover, it follows from (15) that the angle α between F1 and the resultant is

α = sin−1

(

‖F2‖
‖F1 + F2‖

sinφ

)

≈ sin−1

(

300

471
sin 40◦

)

≈ 24.2◦

Thus, the angle θ that the resultant makes with the positive x-axis is

θ = α + 30◦ ≈ 24.2◦ + 30◦ = 54.2◦

(Figure 12.2.21). ◭

x

y

30°

||F2|| = 300 N

||F1|| = 200 N
40°

Figure 12.2.20

x

||F1|| = 200 N

||F1 + F2|| ≈  471 N

54.2°

24.2°

y

||F2|| = 300 N

Figure 12.2.21
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•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The resultant of three or more concurrent forces can be found by working in

pairs. For example, the resultant of three concurrent forces can be found by finding the

resultant of any two of the three forces and then finding the resultant of that resultant with

the third force.

EXERCISE SET 12.2
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1–4, sketch the vectors with their initial points

at the origin.

1. (a) 〈2, 5〉 (b) 〈−5,−4〉 (c) 〈2, 0〉
(d) −5i + 3 j (e) 3i − 2 j (f ) −6 j

2. (a) 〈−3, 7〉 (b) 〈6,−2〉 (c) 〈0,−8〉
(d) 4i + 2 j (e) −2i − j (f ) 4i

3. (a) 〈1,−2, 2〉 (b) 〈2, 2,−1〉
(c) −i + 2 j + 3k (d) 2i + 3 j − k

4. (a) 〈−1, 3, 2〉 (b) 〈3, 4, 2〉
(c) 2 j − k (d) i − j + 2k

In Exercises 5 and 6, find the components of the vector, and

sketch an equivalent vector with its initial point at the origin.

5.

y

x

z

x

y

(1, 5)

(4, 1)

(a)

(0, 0, 4)

(2, 3, 0)

(b)

6.

x

(2, 3)(–3, 3)

(a)
(0, 4, 4)

(3, 0, 4)

(b)y

y

x

z

In Exercises 7 and 8, find the components of the vector
−−→
P1P2.

7. (a) P1(3, 5), P2(2, 8) (b) P1(7,−2), P2(0, 0)

(c) P1(5,−2, 1), P2(2, 4, 2)

8. (a) P1(−6,−2), P2(−4,−1)

(b) P1(0, 0, 0), P2(−1, 6, 1)

(c) P1(4, 1,−3), P2(9, 1,−3)

9. (a) Find the terminal point of v = 3i−2 j if the initial point

is (1,−2).

(b) Find the initial point of v = 〈−3, 1, 2〉 if the terminal

point is (5, 0,−1).

10. (a) Find the terminal point of v = 〈7, 6〉 if the initial point

is (2,−1).

(b) Find the terminal point of v = i + 2 j − 3k if the initial

point is (−2, 1, 4).

In Exercises 11 and 12, perform the stated operations on the

vectors u, v, and w.

11. u = 3i − k, v = i − j + 2k, w = 3 j

(a) w − v (b) 6u + 4w

(c) −v − 2w (d) 4(3u + v)

(e) −8(v + w)+ 2u (f ) 3w − (v − w)

12. u = 〈2,−1, 3〉, v = 〈4, 0,−2〉, w = 〈1, 1, 3〉
(a) u − w (b) 7v + 3w (c) −w + v

(d) 3(u − 7v) (e) −3v − 8w (f) 2v − (u + w)

In Exercises 13 and 14, find the norm of v.

13. (a) v = 〈1,−1〉 (b) v = −i + 7 j

(c) v = 〈−1, 2, 4〉 (d) v = −3i + 2 j + k

14. (a) v = 〈3, 4〉 (b) v =
√

2i −
√

7 j

(c) v = 〈0,−3, 0〉 (d) v = i + j + k

15. Let u = i − 3 j + 2k, v = i + j, and w = 2i + 2 j − 4k. Find

(a) ‖u + v‖ (b) ‖u‖ + ‖v‖
(c) ‖−2u‖ + 2‖v‖ (d) ‖3u − 5v + w‖

(e)
1

‖w‖
w (f )

∥

∥

∥

∥

1

‖w‖
w

∥

∥

∥

∥

.

16. Is it possible to have ‖u‖ + ‖v‖ = ‖u + v‖ if u and v are

nonzero vectors? Justify your conclusion geometrically.

In Exercises 17 and 18, find unit vectors that satisfy the stated

conditions.

17. (a) Same direction as −i + 4 j.

(b) Oppositely directed to 6i − 4 j + 2k.

(c) Same direction as the vector from the pointA(−1, 0, 2)

to the point B(3, 1, 1).

18. (a) Oppositely directed to 3i − 4 j.

(b) Same direction as 2i − j − 2k.

(c) Same direction as the vector from the point A(−3, 2)

to the point B(1,−1).

In Exercises 19 and 20, find vectors that satisfy the stated

conditions.



March 6, 2001 14:27 g65-ch12 Sheet number 17 Page number 807 cyan magenta yellow black

12.2 Vectors 807

19. (a) Oppositely directed to v = 〈3,−4〉 and half the length

of v.

(b) Length
√

17 and same direction as v = 〈7, 0,−6〉.
20. (a) Same direction as v = −2i + 3 j and three times the

length of v.

(b) Length 2 and oppositely directed to v = −3i + 4 j + k.

21. In each part, find the component form of the vector v in

2-space that has the stated length and makes the stated angle

φ with the positive x-axis.

(a) ‖v‖ = 3; φ = π/4 (b) ‖v‖ = 2; φ = 90◦

(c) ‖v‖ = 5; φ = 120◦ (d) ‖v‖ = 1; φ = π

22. Find the component forms of v + w and v − w in 2-space,

given that ‖v‖ = 1, ‖w‖ = 1, v makes an angle of π/6 with

the positive x-axis, and w makes an angle of 3π/4 with the

positive x-axis.

In Exercises 23 and 24, find the component form of v + w,

given that v and w are unit vectors.

23.

x

y

30°

135°

v

w

24.

x

y

120°
v

w

25. In each part, sketch the vector u + v + w and express it in

component form.

x

y

w

v

u

x

y

w

v

u

(a) (b)

26. In each part of Exercise 25, sketch the vector u − v + w and

express it in component form.

27. Let u = 〈1, 3〉, v = 〈2, 1〉, w = 〈4,−1〉. Find the vector x

that satisfies 2u − v + x = 7x + w.

28. Let u = 〈−1, 1〉, v = 〈0, 1〉, and w = 〈3, 4〉. Find the vector

x that satisfies u − 2x = x − w + 3v.

29. Find u and v if u + 2v = 3i − k and 3u − v = i + j + k.

30. Find u and v if u + v = 〈2,−3〉 and 3u + 2v = 〈−1, 2〉.
31. Use vectors to find the lengths of the diagonals of the par-

allelogram that has i + j and i − 2 j as adjacent sides.

32. Use vectors to find the fourth vertex of a parallelogram,

three of whose vertices are (0, 0), (1, 3), and (2, 4). [Note:

There is more than one answer.]

33. (a) Given that ‖v‖ = 3, find all values of k such that

‖kv‖ = 5.

(b) Given that k = −2 and ‖kv‖ = 6, find ‖v‖.

34. What do you know about k and v if ‖kv‖ = 0?

35. In each part, find two unit vectors in 2-space that satisfy the

stated condition.

(a) Parallel to the line y = 3x + 2

(b) Parallel to the line x + y = 4

(c) Perpendicular to the line y = −5x + 1

36. In each part, find two unit vectors in 3-space that satisfy the

stated condition.

(a) Perpendicular to the xy-plane

(b) Perpendicular to the xz-plane

(c) Perpendicular to the yz-plane

37. Let r = 〈x, y〉 be an arbitrary vector. In each part, describe

the set of all points (x, y) in 2-space that satisfy the stated

condition.

(a) ‖r‖ = 1 (b) ‖r‖ ≤ 1 (c) ‖r‖ > 1

38. Let r = 〈x, y〉 and r0 = 〈x0, y0〉. In each part, describe

the set of all points (x, y) in 2-space that satisfy the stated

condition.

(a) ‖r − r0‖ = 1 (b) ‖r − r0‖ ≤ 1 (c) ‖r − r0‖ > 1

39. Let r = 〈x, y, z〉 be an arbitrary vector. In each part, de-

scribe the set of all points (x, y, z) in 3-space that satisfy

the stated condition.

(a) ‖r‖ = 1 (b) ‖r‖ ≤ 1 (c) ‖r‖ > 1

40. Let r1 = 〈x1, y1〉, r2 = 〈x2, y2〉, and r = 〈x, y〉. Describe

the set of all points (x, y) for which ‖r−r1‖+‖r−r2‖ = k,
assuming that k > ‖r2 − r1‖.

In Exercises 41–46, find the magnitude of the resultant force

and the angle that it makes with the positive x-axis.

41.

x

y

30 lb

60 lb

42.

x

y

100 N

120 N60°

43.

x

y

120°

30°

400 N

400 N

44.

x

y

50°

27°

2 lb

4 lb

45.

x

y

60°

30°

40 N
75 N

50 N

46.

x

y

75°

60°

200 N
150 N

100 N
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A particle is said to be in static equilibrium if the resultant

of all forces applied to it is zero. In Exercises 47 and 48, find

the force F that must be applied to the point to produce static

equilibrium. Describe F by specifying its magnitude and the

angle that it makes with the positive x-axis.

47.

x

y

60°

10 lb

8 lb

48.

x

y

75°

45°

150 N
120 N

100 N

49. The accompanying figure shows a 250-lb traffic light sup-

ported by two flexible cables. The magnitudes of the forces

that the cables apply to the eye ring are called the cable ten-

sions. Find the tensions in the cables if the traffic light is in

static equilibrium (defined above Exercise 47).

50. Find the tensions in the cables shown in the accompanying

figure if the block is in static equilibrium (see Exercise 49).

45°30°

Figure Ex-49

200 N

30° 60°

Figure Ex-50

51. A vector w is said to be a linear combination of the vectors

v1 and v2 if w can be expressed as w = c1v1 + c2v2 , where

c1 and c2 are scalars.

(a) Find scalars c1 and c2 to express the vector 4 j as

a linear combination of the vectors v1 = 2i − j and

v2 = 4i + 2 j.

(b) Show that the vector 〈3, 5〉 cannot be expressed as

a linear combination of the vectors v1 = 〈1,−3〉 and

v2 = 〈−2, 6〉.
52. A vector w is said to be a linear combination of the vectors

v1, v2, and v3 if w can be expressed as w = c1v1 + c2v2 +
c3v3, where c1, c2, and c3 are scalars.

(a) Find scalars c1, c2, and c3 to express 〈−1, 1, 5〉 as a

linear combination of the vectors v1 = 〈1, 0, 1〉, v2 =
〈3, 2, 0〉, and v3 = 〈0, 1, 1〉.

(b) Show that the vector 2i+ j−k cannot be expressed as a

linear combination of the vectors v1 = i−j, v2 = 3i+k,

and v3 = 4i − j + k.

53. Use a theorem from plane geometry to show that if u and v

are vectors in 2-space or 3-space, then

‖u + v‖ ≤ ‖u‖ + ‖v‖
which is called the triangle inequality for vectors. Give

some examples to illustrate this inequality.

54. Prove parts (a), (c), and (e) of Theorem 12.2.6 algebraically

in 2-space.

55. Prove parts (d ), (g), and (h) of Theorem 12.2.6 algebraically

in 2-space.

56. Prove part ( f ) of Theorem 12.2.6 geometrically.

57. Use vectors to prove that the line segment joining the mid-

points of two sides of a triangle is parallel to the third side

and half as long.

58. Use vectors to prove that the midpoints of the sides of a

quadrilateral are the vertices of a parallelogram.

12.3 DOT PRODUCT; PROJECTIONS

In the last section we defined three operations on vectors—addition, subtraction, and

scalar multiplication. In scalar multiplication a vector is multiplied by a scalar and

the result is a vector. In this section we will define a new kind of multiplication in

which two vectors are multiplied to produce a scalar. This multiplication operation has

many uses, some of which we will also discuss in this section.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DEFINITION OF THE DOT PRODUCT 12.3.1 DEFINITION. If u = 〈u1, u2〉 and v = 〈v1, v2〉 are vectors in 2-space, then the

dot product of u and v is written as u · v and is defined as

u · v = u1v1 + u2v2

Similarly, if u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 are vectors in 3-space, then their dot

product is defined as

u · v = u1v1 + u2v2 + u3v3
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In words, the dot product of two vectors is formed by multiplying their corresponding

components and adding the products. Note that the dot product of two vectors is a scalar.

Example 1

〈3, 5〉 · 〈−1, 2〉 = 3(−1)+ 5(2) = 7

〈2, 3〉 · 〈−3, 2〉 = 2(−3)+ 3(2) = 0

〈1,−3, 4〉 · 〈1, 5, 2〉 = 1(1)+ (−3)(5)+ 4(2) = −6

Here are the same computations expressed another way:

(3i + 5 j) · (−i + 2 j) = 3(−1)+ 5(2) = 7

(2i + 3 j) · (−3i + 2 j) = 2(−3)+ 3(2) = 0

(i − 3 j + 4k) · (i + 5 j + 2k) = 1(1)+ (−3)(5)+ 4(2) = −6 ◭

•
•
•
•
•
•
•
•

FOR THE READER. Many calculating utilities have a built-in dot product operation. If your

calculating utility has this capability, use it to check the computations in Example 1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ALGEBRAIC PROPERTIES OF THE
DOT PRODUCT

The following theorem provides some of the basic algebraic properties of the dot product:

12.3.2 THEOREM. If u, v, and w are vectors in 2- or 3-space and k is a scalar, then

(a) u · v = v · u

(b) u · (v + w) = u · v + u · w

(c) k(u · v) = (ku) · v = u · (kv)

(d ) v · v = ‖v‖2

(e) 0 · v = 0

We will prove parts (c) and (d ) for vectors in 3-space and leave some of the others as

exercises.

Proof (c). Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉. Then

k(u · v) = k(u1v1 + u2v2 + u3v3) = (ku1)v1 + (ku2)v2 + (ku3)v3 = (ku) · v

Similarly, k(u · v) = u · (kv).

Proof (d). v · v = v1v1 + v2v2 + v3v3 = v2
1 + v2

2 + v2
3 = ‖v‖2.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Pay particular attention to the two zeros that appear in part (e) of the last

theorem—the zero on the left side is the zero vector (boldface), and the zero on the right

side is the zero scalar (lightface). It is also worth noting that the result in part (d ) can be

written as

‖v‖ =
√

v · v (1)

which provides a way of expressing the norm of a vector in terms of a dot product.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ANGLE BETWEEN VECTORS
Suppose that u and v are nonzero vectors in 2-space or 3-space that are positioned so their

initial points coincide. We define the angle between u and v to be the angle θ determined

by the vectors that satisfies the condition 0 ≤ θ ≤ π (Figure 12.3.1). In 2-space, θ is the

smallest counterclockwise angle through which one of the vectors can be rotated until it

aligns with the other.
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u

u

v

u

u

v

u

vu

u

v

u

Figure 12.3.1

The next theorem provides a way of calculating the angle between two vectors from their

components.

12.3.3 THEOREM. If u and v are nonzero vectors in 2-space or 3-space, and if θ is

the angle between them, then

cos θ =
u · v

‖u‖‖v‖
(2)

Proof. Suppose that the vectors u, v, and v − u are positioned to form three sides of a

triangle, as shown in Figure 12.3.2. It follows from the law of cosines that

‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ (3)

Using the properties of the dot product in Theorem 12.3.2, we can rewrite the left side of

this equation as

‖v − u‖2 = (v − u) · (v − u)

= (v − u) · v − (v − u) · u

= v · v − u · v − v · u + u · u

= ‖v‖2 − 2u · v + ‖u‖2

Substituting this back into (3) yields

‖v‖2 − 2u · v + ‖u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

which we can simplify and rewrite as

u · v = ‖u‖‖v‖ cos θ

Finally, dividing both sides of this equation by ‖u‖‖v‖ yields (2).

v – u
v

u

u

Figure 12.3.2

Example 2 Find the angle between the vector u = i − 2 j + 2k and

(a) v = −3i + 6 j + 2k (b) w = 2i + 7 j + 6k (c) z = −3i + 6 j − 6k

Solution (a).

cos θ =
u · v

‖u‖‖v‖
=

−11

(3)(7)
= −

11

21

Thus,

θ = cos−1
(

− 11
21

)

≈ 2.12 radians ≈ 121.6◦

Solution (b).

cos θ =
u · w

‖u‖‖w‖
=

0

‖u‖‖w‖
= 0

Thus, θ = π/2, which means that the vectors are perpendicular.
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Solution (c).

cos θ =
u · z

‖u‖‖z‖
=

−27

(3)(9)
= −1

Thus, θ = π, which means that the vectors are oppositely directed. In retrospect, we could

have seen this without computing θ , since z = −3u. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

INTERPRETING THE SIGN OF THE
DOT PRODUCT

It will often be convenient to express Formula (2) as

u · v = ‖u‖‖v‖ cos θ (4)

which expresses the dot product of u and v in terms of the lengths of these vectors and the

angle between them. Since u and v are assumed to be nonzero vectors, this version of the

formula makes it clear that the sign of u · v is the same as the sign of cos θ . Thus, we can tell

from the dot product whether the angle between two vectors is acute or obtuse or whether

the vectors are perpendicular (Figure 12.3.3).

v

u u

v

uu

u . v > 0

u

v

u . v < 0 u . v = 0

Figure 12.3.3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The terms “perpendicular,” “orthogonal,” and “normal” are all commonly used

to describe geometric objects that meet at right angles. For consistency, we will say that

two vectors are orthogonal, a vector is normal to a plane, and two planes are perpendicular.

Moreover, although the zero vector does not make a well-defined angle with other vectors,

we will consider 0 to be orthogonal to all vectors. This convention allows us to say that u

and v are orthogonal vectors if and only if u · v = 0, and it makes Formula (4) valid if u or

v (or both) is zero.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DIRECTION ANGLES
In an xy-coordinate system, the direction of a nonzero vector v is completely determined

by the angles α and β between v and the unit vectors i and j (Figure 12.3.4), and in an

xyz-coordinate system the direction is completely determined by the angles α, β, and γ

between v and the unit vectors i, j, and k (Figure 12.3.5). In both 2-space and 3-space

the angles between a nonzero vector v and the vectors i, j, and k are called the direction

angles of v, and the cosines of those angles are called the direction cosines of v. Formulas

for the direction cosines of a vector can be obtained from Formula (2). For example, if

v = v1i + v2 j + v3k, then

cosα =
v · i

‖v‖‖i‖
=
v1

‖v‖
, cosβ =

v · j

‖v‖‖ j‖
=
v2

‖v‖
, cos γ =

v · k

‖v‖‖k‖
=
v3

‖v‖

Thus, we have the following result:

x

y

i

j v

a

b

Figure 12.3.4

12.3.4 THEOREM. The direction cosines of a nonzero vector v = v1i + v2 j + v3k are

cosα =
v1

‖v‖
, cosβ =

v2

‖v‖
, cos γ =

v3

‖v‖
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The direction cosines of a vector v = v1i + v2 j + v3k can be computed by normalizing

v and reading off the components of v/‖v‖, since

v

‖v‖
=
v1

‖v‖
i +

v2

‖v‖
j +

v3

‖v‖
k = (cosα)i + (cosβ) j + (cos γ )k

We leave it as an exercise for you to show that the direction cosines of a vector satisfy the

equation

cos2 α + cos2 β + cos2 γ = 1 (5)

v

a

b
g

x

y

z

j

i

k

Figure 12.3.5
Example 3 Find the direction cosines of the vector v = 2i − 4 j + 4k, and approximate

the direction angles to the nearest degree.

Solution. First we will normalize the vector v and then read off the components. We have

‖v‖ =
√

4 + 16 + 16 = 6, so that v/‖v‖ = 1
3
i − 2

3
j + 2

3
k. Thus,

cosα = 1
3
, cosβ = − 2

3
, cos γ = 2

3

With the help of a calculating utility we obtain

α = cos−1
(

1
3

)

≈ 71◦ , β = cos−1
(

− 2
3

)

≈ 132◦ , γ = cos−1
(

2
3

)

≈ 48◦ ◭

Example 4 Find the angle between a diagonal of a cube and one of its edges.

Solution. Assume that the cube has side a, and introduce a coordinate system as shown

in Figure 12.3.6. In this coordinate system the vector

d = ai + a j + ak

is a diagonal of the cube and the unit vectors i, j, and k run along the edges. By symmetry, the

diagonal makes the same angle with each edge, so it is sufficient to find the angle between

d and i (the direction angle α). Thus,

cosα =
d · i

‖d‖‖i‖
=

a

‖d‖
=

a
√

3a2
=

1
√

3

and hence

α = cos−1

(

1
√

3

)

≈ 0.955 radian ≈ 54.7◦
◭

x

y

z

j
i

k

(0, a, 0)

(a, a, a)

(a, 0, 0)

(0, 0, a)

d

a

Figure 12.3.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DECOMPOSING VECTORS INTO
ORTHOGONAL COMPONENTS

In many applications it is desirable to “decompose” a vector into a sum of two orthogonal

vectors with convenient specified directions. For example, Figure 12.3.7 shows a block on

an inclined plane. The downward force F that gravity exerts on the block can be decomposed

into the sum

F = F1 + F2

where the force F1 is parallel to the ramp and the force F2 is perpendicular to the ramp. The

forces F1 and F2 are useful because F1 is the force that pulls the block along the ramp, and

F2 is the force that the block exerts against the ramp.

F2

F1

F

The force of gravity pulls the block 

against the ramp and down the ramp.

Figure 12.3.7

Thus, our next objective is to develop a computational procedure for decomposing a

vector into a sum of orthogonal vectors. For this purpose, suppose that e1 and e2 are two

orthogonal unit vectors in 2-space, and suppose that we want to express a given vector v as

a sum

v = w1 + w2

where w1 is a scalar multiple of e1 and w2 is a scalar multiple of e2 (Figure 12.3.8a); that

is, we want to find scalars k1 and k2 such that

v = k1e1 + k2e2 (6)
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w1e1

w2

e2 v

(a)

e1

e2

(b)

||v||

(||v|| sin u)e2

(||v|| cos u)e1

||v|| cos u

||v|| sin u

u

Figure 12.3.8

We can find k1 by taking the dot product of v with e1. This yields

v · e1 = (k1e1 + k2e2) · e1 = k1(e1 · e1)+ k2(e2 · e1) = k1‖e1‖2 + 0 = k1

and, similarly,

v · e2 = (k1e1 + k2e2) · e2 = k1(e1 · e2)+ k2(e2 · e2) = 0 + k2‖e2‖2 = k2

Substituting these expressions for k1 and k2 in (6) yields

v = (v · e1)e1 + (v · e2)e2 (7)

In this formula we call (v · e1)e1 and (v · e2)e2 the vector components of v along e1 and

e2, respectively; and we call v · e1 and v · e2 the scalar components of v along e1 and e2,

respectively. If θ denotes the angle between v and e1, then the scalar components of v can

be written in trigonometric form as

v · e1 = ‖v‖cos θ and v · e2 = ‖v‖sin θ (8)

(Figure 12.3.8b). Moreover, the vector components of v can be expressed as

(v · e1)e1 = (‖v‖cos θ)e1 and (v · e2)e2 = (‖v‖sin θ)e2 (9)

and the decomposition (6) can be expressed as

v = (‖v‖cos θ)e1 + (‖v‖sin θ)e2 (10)

Example 5 A rope is attached to a 100-lb block on a ramp that is inclined at an angle

of 30◦ with the ground (Figure 12.3.9a). How much force does the block exert against the

ramp, and how much force must be applied to the rope in a direction parallel to the ramp

to prevent the block from sliding down the ramp? (Assume that the ramp is smooth, that is,

exerts no frictional forces.)
30°

60°
F1

F2

F

(b)

100 lb

30°

(a)

Figure 12.3.9

Solution. Let F denote the downward force of gravity on the block (so ‖F‖ = 100 lb),

and let F1 and F2 be the vector components of F parallel and perpendicular to the ramp (as

shown in Figure 12.3.9b). The lengths of F1 and F2 are

‖F1‖ = ‖F‖cos 60◦ = 100

(

1

2

)

= 50 lb

‖F2‖ = ‖F‖sin 60◦ = 100

(√
3

2

)

≈ 86.6 lb

Thus, the block exerts a force of approximately 86.6 lb against the ramp, and it requires a

force of 50 lb to prevent the block from sliding down the ramp. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ORTHOGONAL PROJECTIONS
The vector components of v along e1 and e2 in (7) are also called the orthogonal projections

of v on e1 and e2 and are commonly denoted by

proje1
v = (v · e1)e1 and proje2

v = (v · e2)e2

In general, if e is a unit vector, then we define the orthogonal projection of v on e to be

projev = (v · e)e (11)
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The orthogonal projection of v on an arbitrary nonzero vector b can be obtained by normal-

izing b and then applying Formula (11); that is,

projbv =
(

v ·

b

‖b‖

) (

b

‖b‖

)

which can be rewritten as

projbv =
v · b

‖b‖2
b (12)

Geometrically, if b and v have a common initial point, then projbv is the vector that is

determined when a perpendicular is dropped from the terminal point of v to the line through

b (illustrated in Figure 12.3.10 in two cases). Moreover, it is evident from Figure 12.3.10

that if we subtract projbv from v, then the resulting vector

v − projbv

will be orthogonal to b; we call this the vector component of v orthogonal to b.

b projbv

projbv

v – projbv

v – projbv

v

Acute angle

between v and b

b

v

Obtuse angle

between v and b

Figure 12.3.10

Example 6 Find the orthogonal projection of v = i + j + k on b = 2i + 2 j, and then

find the vector component of v orthogonal to b.

Solution. We have

v · b = (i + j + k) · (2i + 2 j) = 2 + 2 + 0 = 4

‖b‖2 = 22 + 22 = 8

Thus, the orthogonal projection of v on b is

projbv =
v · b

‖b‖2
b =

4

8
(2i + 2 j) = i + j

and the vector component of v orthogonal to b is

v − projbv = (i + j + k)− (i + j) = k

These results are consistent with Figure 12.3.11. ◭

y

x

z

b = 2i + 2j

v = i + j + k

i + j

k

Figure 12.3.11

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

WORK
In Section 6.6 we discussed the work done by a constant force acting on an object that moves

along a line. We defined the work W done on the object by a constant force of magnitude

F acting in the direction of motion over a distance d to be

W = Fd = force × distance (13)

If we let F denote a force vector of magnitude ‖F‖ = F acting in the direction of motion,

then we can write (13) as

W = ‖F‖d

Furthermore, if we assume that the object moves along a line from point P to pointQ, then

d = ‖
−→
PQ‖, so that the work can be expressed entirely in vector form as

W = ‖F‖‖
−→
PQ‖

(Figure 12.3.12a). The vector
−→
PQ is called the displacement vector for the object. In the

case where a constant force F is not in the direction of motion, but rather makes an angle θ

||F||

P Q

||PQ||

(a)

||F|| F

F
||F|| cos u

u

||PQ||

(b)

Figure 12.3.12
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with the displacement vector, then we define the workW done by F to be

W = (‖F‖cos θ)‖
−→
PQ‖ = F ·

−→
PQ (14)

(Figure 12.3.12b).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Note that in Formula (14) the quantity ‖F‖cos θ is the scalar component of

force along the displacement vector. Thus, in the case where cos θ > 0, a force of magnitude

‖F‖ acting at an angle θ does the same work as a force of magnitude ‖F‖cos θ acting in the

direction of motion.

Example 7 A wagon is pulled horizontally by exerting a constant force of 10 lb on the

handle at an angle of 60◦ with the horizontal. How much work is done in moving the wagon

50 ft?

Solution. Introduce an xy-coordinate system so that the wagon moves from P(0, 0) to

Q(50, 0) along the x-axis (Figure 12.3.13). In this coordinate system

−→
PQ = 50i

and

F = (10 cos 60◦ )i + (10 sin 60◦ ) j = 5i + 5
√

3 j

so the work done is

W = F ·
−→
PQ = (5i + 5

√
3 j) · (50i) = 250 (foot-pounds) ◭

x

y

Q(50, 0)P(0, 0)

10 lb
60°

F

Figure 12.3.13

EXERCISE SET 12.3 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. In each part, find the dot product of the vectors and the

cosine of the angle between them.

(a) u = i + 2 j, v = 6i − 8 j

(b) u = 〈−7,−3〉, v = 〈0, 1〉
(c) u = i − 3 j + 7k, v = 8i − 2 j − 2k

(d) u = 〈−3, 1, 2〉, v = 〈4, 2,−5〉

2. In each part use the given information to find u · v.

(a) ‖u‖ = 1, ‖v‖ = 2, the angle between u and v is π/6.

(b) ‖u‖ = 2, ‖v‖ = 3, the angle between u and v is 135◦ .

3. In each part, determine whether u and v make an acute angle,

an obtuse angle, or are orthogonal.

(a) u = 7i + 3 j + 5k, v = −8i + 4 j + 2k

(b) u = 6i + j + 3k, v = 4i − 6k

(c) u = 〈1, 1, 1〉, v = 〈−1, 0, 0〉
(d) u = 〈4, 1, 6〉, v = 〈−3, 0, 2〉

4. Does the triangle in 3-space with vertices (−1, 2, 3),

(2,−2, 0), and (3, 1,−4) have an obtuse angle? Justify your

answer.

5. The accompanying figure shows eight vectors that are

equally spaced around a circle of radius 1. Find the dot

product of v0 with each of the other seven vectors.

6. The accompanying figure shows six vectors that are equally

spaced around a circle of radius 5. Find the dot product of

v0 with each of the other five vectors.

v0

v1

v2

v6

v3

v5 v7

v4

Figure Ex-5

v0v3

v1
v2

v5v4

Figure Ex-6

7. (a) Use vectors to show that A(2,−1, 1), B(3, 2,−1), and

C(7, 0,−2) are vertices of a right triangle. At which

vertex is the right angle?

(b) Use vectors to find the interior angles of the triangle

with vertices (−1, 0), (2,−1), and (1, 4). Express your

answers to the nearest degree.

8. Find k so that the vector from the point A(1,−1, 3) to the

point B(3, 0, 5) is orthogonal to the vector from A to the

point P(k, k, k).
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9. (a) Show that if v = ai +b j is a vector in 2-space, then the

vectors

v1 = −bi + a j and v2 = bi − a j

are both orthogonal to v.

(b) Use the result in part (a) to find two unit vectors that are

orthogonal to the vector v = 3i−2 j. Sketch the vectors

v, v1, and v2.

10. Find two unit vectors in 2-space that make an angle of 45◦

with 4i + 3 j.

11. Explain why each of the following expressions makes no

sense.

(a) u · (v · w) (b) (u · v)+ w

(c) ‖u · v‖ (d) k · (u + v)

12. Verify parts (b) and (c) of Theorem 12.3.2 for the vectors

u = 6i − j + 2k, v = 2i + 7 j + 4k, w = i + j − 3k and

k = −5.

13. Let u = 〈1, 2〉, v = 〈4,−2〉, and w = 〈6, 0〉. Find

(a) u · (7v + w) (b) ‖(u · w)w‖
(c) ‖u‖(v · w) (d) (‖u‖v) · w.

14. True or False? If a · b = a · c and if a �= 0, then b = c.

Justify your conclusion.

In Exercises 15 and 16, find the direction cosines of v, and

confirm that they satisfy Equation (5). Then use the direction

cosines to approximate the direction angles to the nearest

degree.

15. (a) v = i + j − k (b) v = 2i − 2 j + k

16. (a) v = 3i − 2 j − 6k (b) v = 3i − 4k

17. Show that the direction cosines of a vector satisfy

cos2 α + cos2 β + cos2 γ = 1

18. Let θ and λ be the angles shown in the accompanying figure.

Show that the direction cosines of v can be expressed as

cosα = cos λ cos θ

cosβ = cos λ sin θ

cos γ = sin λ

[Hint: Express v in component form and normalize.]

19. Use the result in Exercise 18 to find the direction angles of

the vector shown in the accompanying figure to the nearest

degree.

y

z

x

v

u

l

Figure Ex-18

y

z

x

v

30°

60°

Figure Ex-19

20. Show that two nonzero vectors v1 and v2 are orthogonal if

and only if their direction cosines satisfy

cosα1 cosα2 + cosβ1 cosβ2 + cos γ1 cos γ2 = 0

21. In each part, find the vector component of v along b and

the vector component of v orthogonal to b. Then sketch the

vectors v, projbv, and v − projbv.

(a) v = 2i − j, b = 3i + 4 j

(b) v = 〈4, 5〉, b = 〈1,−2〉
(c) v = −3i − 2 j, b = 2i + j

22. In each part, find the vector component of v along b and the

vector component of v orthogonal to b.

(a) v = 2i − j + 3k, b = i + 2 j + 2k

(b) v = 〈4,−1, 7〉, b = 〈2, 3,−6〉

In Exercises 23 and 24, express the vector v as the sum of a

vector parallel to b and a vector orthogonal to b.

23. (a) v = 2i − 4 j, b = i + j

(b) v = 3i + j − 2k, b = 2i − k

24. (a) v = 〈−3, 5〉, b = 〈1, 1〉
(b) v = 〈−2, 1, 6〉, b = 〈0,−2, 1〉

25. If L is a line in 2-space or 3-space that passes through the

points A and B, then the distance from a point P to the line

L is equal to the length of the component of the vector
−→
AP

that is orthogonal to the vector
−→
AB (see the accompanying

figure). Use this result to find the distance from the point

P(1, 0) to the line through A(2,−3) and B(5, 1).

A B

L

P

Figure Ex-25

26. Use the method of Exercise 25 to find the distance from

the point P(−3, 1, 2) to the line through A(1, 1, 0) and

B(−2, 3,−4).

27. As shown in the accompanying figure, a block with a mass

of 10 kg rests on a smooth (frictionless) ramp that is inclined

at an angle of 45◦ with the ground. How much force does

the block exert on the ramp, and how much force must be

applied in the direction of P to prevent the block from slid-

ing down the ramp? Take the acceleration due to gravity to

be 9.8 m/s2.

28. For the block in Exercise 27, how much force must be ap-

plied in the direction of Q (shown in the accompanying

figure) to prevent the block from sliding down the ramp?

P

45°

Figure Ex-27

Q

45°

Figure Ex-28

29. A block weighing 300 lb is suspended by cables A and B,

as shown in the accompanying figure. Determine the forces

that the block exerts along the cables.
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30. A block weighing 100 N is suspended by cables A and B,

as shown in the accompanying figure.

(a) Use a graphing utility to graph the forces that the block

exerts along cablesA andB as functions of the “sag” d .

(b) Does increasing the sag increase or decrease the forces

on the cables?

(c) How much sag is required if the cables cannot tolerate

forces in excess of 150 N?

300 lb

45° 30°

A B

Figure Ex-29

100 N

A
d

B

10 ft 20 ft

Figure Ex-30

31. Find the work done by a force F = −3 j (pounds) applied

to a point that moves on a line from (1, 3) to (4, 7). Assume

that distance is measured in feet.

32. A boat travels 100 meters due north while the wind exerts a

force of 500 newtons toward the northeast. How much work

does the wind do?

33. A box is dragged along the floor by a rope that applies a

force of 50 lb at an angle of 60◦ with the floor. How much

work is done in moving the box 15 ft?

34. A force of F = 4i − 6 j + k newtons is applied to a point

that moves a distance of 15 meters in the direction of the

vector i + j + k. How much work is done?

35. Find, to the nearest degree, the acute angle formed by two

diagonals of a cube.

36. Find, to the nearest degree, the angles that a diagonal of a

box with dimensions 10 cm by 15 cm by 25 cm makes with

the edges of the box.

37. Let u and v be adjacent sides of a parallelogram. Use vectors

to prove that the diagonals of the parallelogram are perpen-

dicular if the sides are equal in length.

38. Let u and v be adjacent sides of a parallelogram. Use vectors

to prove that the parallelogram is a rectangle if the diagonals

are equal in length.

39. Prove that

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2

and interpret the result geometrically by translating it into a

theorem about parallelograms.

40. Prove: u · v = 1
4
‖u + v‖2 − 1

4
‖u − v‖2.

41. Show that if v1, v2, and v3 are mutually orthogonal nonzero

vectors in 3-space, and if a vector v in 3-space is expressed

as

v = c1v1 + c2v2 + c3v3

then the scalars c1, c2, and c3 are given by the formulas

ci = (v · vi)/‖vi‖2, i = 1, 2, 3

42. Show that the three vectors

v1 = 3i − j + 2k, v2 = i + j − k, v3 = i − 5 j − 4k

are mutually orthogonal, and then use the result of Exercise

41 to find scalars c1, c2, and c3 so that

c1v1 + c2v2 + c3v3 = i − j + k

C 43. For each x in (−�,+�), let u(x) be the vector from the

origin to the point P(x, y) on the curve y = x2 + 1, and

v(x) the vector from the origin to the point Q(x, y) on the

line y = −x − 1.

(a) Use a CAS to find, to the nearest degree, the minimum

angle between u(x) and v(x) for x in (−�,+�).

(b) Determine whether there are any real values of x for

which u(x) and v(x) are orthogonal.

C 44. Let u be a unit vector in the xy-plane of an xyz-coordinate

system, and let v be a unit vector in the yz-plane. Let θ1 be

the angle between u and i, let θ2 be the angle between v and

k, and let θ be the angle between u and v.

(a) Show that cos θ = ± sin θ1 sin θ2.

(b) Find θ if θ is acute and θ1 = θ2 = 45◦ .

(c) Use a CAS to find, to the nearest degree, the maximum

and minimum values of θ if θ is acute and θ2 = 2θ1.

45. Prove parts (b) and (e) of Theorem 12.3.2 for vectors in

3-space.

12.4 CROSS PRODUCT

In many applications of vectors in mathematics, physics, and engineering, there is a

need to find a vector that is orthogonal to two given vectors. In this section we will

discuss a new type of vector multiplication that can be used for this purpose.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DETERMINANTS
Some of the concepts that we will develop in this section require basic ideas about deter-

minants, which are functions that assign numerical values to square arrays of numbers. For

example, if a1, a2, b1, and b2 are real numbers, then we define a 2 × 2 determinant by

a1

b1

a2

b2
� a1b2 − a2b1 (1)
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The purpose of the arrows is to help you remember the formula—the determinant is the

product of the entries on the rightward arrow minus the product of the entries on the leftward

arrow. For example,

3

4

–2

5
� (3)(5) − (−2)(4) � 15 + 8 � 23

A 3 × 3 determinant is defined in terms of 2 × 2 determinants by
∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

− a2

∣

∣

∣

∣

b1 b3

c1 c3

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

b1 b2

c1 c2

∣

∣

∣

∣

(2)

The right side of this formula is easily remembered by noting that a1, a2, and a3 are the

entries in the first “row” of the left side, and the 2×2 determinants on the right side arise by

deleting the first row and an appropriate column from the left side. The pattern is as follows:

a1

b1

c1

a2

b2

c2

a3

b3

c3

a1

b1

c1

a2

b2

c2

a3

b3

c3

a1

b1

c1

a2

b2

c2

a3

b3

c3

a1

b1

c1

a2

b2

c2

a3

b3

c3

� a1 − a2 + a3

For example,
∣

∣

∣

∣

∣

∣

3 −2 −5

1 4 −4

0 3 2

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

4 −4

3 2

∣

∣

∣

∣

− (−2)

∣

∣

∣

∣

1 −4

0 2

∣

∣

∣

∣

+ (−5)

∣

∣

∣

∣

1 4

0 3

∣

∣

∣

∣

= 3(20)+ 2(2)− 5(3) = 49

There are also definitions of 4 × 4 determinants, 5 × 5 determinants, and higher, but

we will not need them in this text. Properties of determinants are studied in a branch of

mathematics called linear algebra, but we will only need the two properties stated in the

following theorem:

12.4.1 THEOREM.

(a) If two rows in the array of a determinant are the same, then the value of the deter-

minant is 0.

(b) Interchanging two rows in the array of a determinant multiplies its value by −1.

We will give the proofs of parts (a) and (b) for 2 × 2 determinants and leave the proofs

for 3 × 3 determinants as exercises.

Proof (a).
∣

∣

∣

∣

a1 a2

a1 a2

∣

∣

∣

∣

= a1a2 − a2a1 = 0

Proof (b).
∣

∣

∣

∣

b1 b2

a1 a2

∣

∣

∣

∣

= b1a2 − b2a1 = −(a1b2 − a2b1) = −
∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CROSS PRODUCT
We now turn to the main concept in this section.

12.4.2 DEFINITION. If u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 are vectors in 3-space,

then the cross product u × v is the vector defined by

u × v =
∣

∣

∣

∣

u2 u3

v2 v3

∣

∣

∣

∣

i −
∣

∣

∣

∣

u1 u3

v1 v3

∣

∣

∣

∣

j +
∣

∣

∣

∣

u1 u2

v1 v2

∣

∣

∣

∣

k (3)

or, equivalently,

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1) j + (u1v2 − u2v1)k (4)
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Observe that the right side of Formula (3) has the same form as the right side of Formula

(2), the difference being notation and the order of the factors in the three terms. Thus, we

can rewrite (3) as

u × v =

∣

∣

∣

∣

∣

∣

i j k

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

(5)

However, this is just a mnemonic device and not a true determinant since the entries in a

determinant are numbers, not vectors.

Example 1 Let u = 〈1, 2,−2〉 and v = 〈3, 0, 1〉. Find

(a) u × v (b) v × u

Solution (a).

u × v =

∣

∣

∣

∣

∣

∣

i j k

1 2 −2

3 0 1

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

2 −2

0 1

∣

∣

∣

∣

i −
∣

∣

∣

∣

1 −2

3 1

∣

∣

∣

∣

j +
∣

∣

∣

∣

1 2

3 0

∣

∣

∣

∣

k = 2i − 7 j − 6k

Solution (b). We could use the method of part (a), but it is really not necessary to perform

any computations. We need only observe that reversing u and v interchanges the second and

third rows in (5), which in turn interchanges the rows in the arrays for the 2×2 determinants

in (3). But interchanging the rows in the array of a 2×2 determinant reverses its sign, so the

net effect of reversing the factors in a cross product is to reverse the signs of the components.

Thus, by inspection

v × u = −(u × v) = −2i + 7 j + 6k ◭

Example 2 Show that u × u = 0 for any vector u in 3-space.

Solution. We could let u = u1i +u2 j +u3k and apply the method in part (a) of Example

1 to show that

u × u =

∣

∣

∣

∣

∣

∣

i j k

u1 u2 u3

u1 u2 u3

∣

∣

∣

∣

∣

∣

= 0

However, the actual computations are unnecessary. We need only observe that if the two

factors in a cross product are the same, then each 2 × 2 determinant in (3) is zero because

its array has identical rows. Thus, u × u = 0 by inspection. ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ALGEBRAIC PROPERTIES OF THE
CROSS PRODUCT

Our next goal is to establish some of the basic algebraic properties of the cross product. As

you read the discussion, keep in mind the essential differences between the cross product

and the dot product:

• The cross product is defined only for vectors in 3-space, whereas the dot product is

defined for vectors in 2-space and 3-space.

• The cross product of two vectors is a vector, whereas the dot product of two vectors is

a scalar.

The main algebraic properties of the cross product are listed in the next theorem.
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12.4.3 THEOREM. If u, v, and w are any vectors in 3-space and k is any scalar, then

(a) u × v = −(v × u)

(b) u × (v + w) = (u × v)+ (u × w)

(c) (u + v)× w = (u × w)+ (v × w)

(d ) k(u × v) = (ku)× v = u × (kv)

(e) u × 0 = 0 × u = 0

( f ) u × u = 0

Parts (a) and ( f ) were addressed in Examples 1 and 2. The other proofs are left as exercises.

•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. In ordinary multiplication and in dot products the order of the factors does

not matter, but in cross products it does. Part (a) of the last theorem shows that reversing

the order of the factors in a cross product reverses the direction of the resulting vector.

The following cross products occur so frequently that it is helpful to be familiar with

them:

i × j = k j × k = i k × i = j

j × i = −k k × j = −i i × k = −j
(6)

These results are easy to obtain; for example,

i × j =

∣

∣

∣

∣

∣

∣

i j k

1 0 0

0 1 0

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

0 0

1 0

∣

∣

∣

∣

i −
∣

∣

∣

∣

1 0

0 0

∣

∣

∣

∣

j +
∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

k = k

However, rather than computing these cross products each time you need them, you can use

the diagram in Figure 12.4.1. In this diagram, the cross product of two consecutive vectors in

the clockwise direction is the next vector around, and the cross product of two consecutive

vectors in the counterclockwise direction is the negative of the next vector around.
k j

i

Figure 12.4.1 •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

WARNING. We can write a product of three real numbers as uvw because the associative

law u(vw) = (uv)w ensures that the same value for the product results no matter where

the parentheses are inserted. However, the associative law does not hold for cross products.

For example,

i × ( j × j) = i × 0 = 0 and (i × j)× j = k × j = −i

so that i × ( j × j) �= (i × j)× j. Thus, we cannot write a cross product with three vectors

as u × v × w, since this expression is ambiguous without parentheses.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GEOMETRIC PROPERTIES OF THE
CROSS PRODUCT

The following theorem shows that the cross product of two vectors is orthogonal to both

factors.

12.4.4 THEOREM. If u and v are vectors in 3-space, then

(a) u · (u × v) = 0 (u × v is orthogonal to u)

(b) v · (u × v) = 0 (u × v is orthogonal to v)

We will prove part (a). The proof of part (b) is similar.

Proof (a). Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉. Then from (4)

u × v = 〈u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1〉 (7)

so that

u · (u × v) = u1(u2v3 − u3v2)+ u2(u3v1 − u1v3)+ u3(u1v2 − u2v1) = 0
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Example 3 In Example 1 we showed that the cross product u × v of u = 〈1, 2,−2〉 and

v = 〈3, 0, 1〉 is

u × v = 2i − 7 j − 6k = 〈2,−7,−6〉

Theorem 12.4.4 guarantees that this vector is orthogonal to both u and v; this is confirmed

by the computations

u · (u × v) = 〈1, 2,−2〉 · 〈2,−7,−6〉 = (1)(2)+ (2)(−7)+ (−2)(−6) = 0

v · (u × v) = 〈3, 0, 1〉 · 〈2,−7,−6〉 = (3)(2)+ (0)(−7)+ (1)(−6) = 0 ◭

It can be proved that if u and v are nonzero and nonparallel vectors, then the direction

of u × v relative to u and v is determined by a right-hand rule;
∗

that is, if the fingers of the

right hand are cupped so they curl from u toward v in the direction of rotation that takes

u into v in less than 180◦ , then the thumb will point (roughly) in the direction of u × v

(Figure 12.4.2). For example, we stated in (6) that

i × j = k, j × k = i, k × i = j

all of which are consistent with the right-hand rule (verify).

u

v

u × v

u

Figure 12.4.2

The next theorem lists some more important geometric properties of the cross product.

12.4.5 THEOREM. Let u and v be nonzero vectors in 3-space, and let θ be the angle

between these vectors when they are positioned so their initial points coincide.

(a) ‖u × v‖ = ‖u‖‖v‖sin θ

(b) The area A of the parallelogram that has u and v as adjacent sides is

A = ‖u × v‖ (8)

(c) u × v = 0 if and only if u and v are parallel vectors, that is, if and only if they are

scalar multiples of one another.

Proof (a).

‖u‖‖v‖sin θ = ‖u‖‖v‖
√

1 − cos2 θ

= ‖u‖‖v‖

√

1 −
(u · v)2

‖u‖2‖v‖2
Theorem 12.3.3

=
√

‖u‖2‖v‖2 − (u · v)2

=
√

(u2
1 + u2

2 + u2
3)(v

2
1 + v2

2 + v2
3)− (u1v1 + u2v2 + u3v3)

2

=
√

(u2v3 − u3v2)
2 + (u1v3 − u3v1)

2 + (u1v2 − u2v1)
2

= ‖u × v‖ See Formula (4).

Proof (b). Referring to Figure 12.4.3, the parallelogram that has u and v as adjacent sides

can be viewed as having base ‖u‖ and altitude ‖v‖sin θ . Thus, its area A is

A = (base)(altitude) = ‖u‖‖v‖sin θ = ‖u × v‖u

||v|| sin u
||v||

||u||

u

v

Figure 12.4.3
Proof (c). Since u and v are assumed to be nonzero vectors, it follows from part (a) that

u × v = 0 if and only if sin θ = 0; this is true if and only if θ = 0 or θ = π (since

∗
Recall that we agreed to consider only right-handed coordinate systems in this text. Had we used left-handed

systems instead, a “left-hand rule” would apply here.
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0 ≤ θ ≤ π). Geometrically, this means that u × v = 0 if and only if u and v are parallel

vectors.

Example 4 Find the area of the triangle that is determined by the points P1(2, 2, 0),

P2(−1, 0, 2), and P3(0, 4, 3).

Solution. The area A of the triangle is half the area of the parallelogram determined by

the vectors
−−→
P1P2 and

−−→
P1P3 (Figure 12.4.4). But

−−→
P1P2 = 〈−3,−2, 2〉 and

−−→
P1P3 = 〈−2, 2, 3〉,

so
−−→
P1P2 ×

−−→
P1P3 = 〈−10, 5,−10〉

(verify), and consequently

A = 1
2
‖
−−→
P1P2 ×

−−→
P1P3‖ = 15

2
◭

P1(2, 2, 0)

P3(0, 4, 3)

y

z

x

P2(–1, 0, 2)

Figure 12.4.4

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SCALAR TRIPLE PRODUCTS
If u = 〈u1, u2, u3〉, v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉 are vectors in 3-space, then the

number

u · (v × w)

is called the scalar triple product of u, v, and w. It is not necessary to compute the dot

product and cross product to evaluate a scalar triple product—the value can be obtained

directly from the formula

u · (v × w) =

∣

∣

∣

∣

∣

∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

(9)

the validity of which can be seen by writing

u · (v × w) = u ·

(
∣

∣

∣

∣

v2 v3

w2 w3

∣

∣

∣

∣

i −
∣

∣

∣

∣

v1 v3

w1 w3

∣

∣

∣

∣

j +
∣

∣

∣

∣

v1 v2

w1 w2

∣

∣

∣

∣

k

)

= u1

∣

∣

∣

∣

v2 v3

w2 w3

∣

∣

∣

∣

− u2

∣

∣

∣

∣

v1 v3

w1 w3

∣

∣

∣

∣

+ u3

∣

∣

∣

∣

v1 v2

w1 w2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

Example 5 Calculate the scalar triple product u · (v × w) of the vectors

u = 3i − 2 j − 5k, v = i + 4 j − 4k, w = 3 j + 2k

Solution.

u · (v × w) =

∣

∣

∣

∣

∣

∣

3 −2 −5

1 4 −4

0 3 2

∣

∣

∣

∣

∣

∣

= 49 ◭

•
•
•
•
•
•
•
•
•
•
•
•
•

FOR THE READER. Many calculating utilities have built-in cross product and determinant

operations. If your calculating utility has these capabilities, use it to check the computations

in Examples 1 and 5.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

GEOMETRIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT

If u, v, and w are nonzero vectors in 3-space that are positioned so their initial points

coincide, then these vectors form the adjacent sides of a parallelepiped (Figure 12.4.5). The

following theorem establishes a relationship between the volume of this parallelepiped and

the scalar triple product of the sides.
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12.4.6 THEOREM. Let u, v, and w be nonzero vectors in 3-space.

(a) The volume V of the parallelepiped that has u, v, and w as adjacent edges is

V = |u · (v × w)| (10)

(b) u · (v × w) = 0 if and only if u, v, and w lie in the same plane.

v

w

u

Figure 12.4.5 Proof (a). Referring to Figure 12.4.6, let us regard the base of the parallelepiped with u,

v, and w as adjacent sides to be the parallelogram determined by v and w. Thus, the area

of the base is ‖v × w‖, and the altitude h of the parallelepiped (shown in the figure) is the

length of the orthogonal projection of u on the vector v × w. Therefore, from Formula (12)

of Section 12.3 we have

h = ‖projv×wu‖ =
|u · (v × w)|
‖v × w‖2

‖v × w‖ =
|u · (v × w)|

‖v × w‖
It now follows that the volume of the parallelepiped is

V = (area of base)(height) = ‖v × w‖h = |u · (v × w)|

v × w

v

w

u

h = ||projv× wu||

Figure 12.4.6

Proof (b). The vectors u, v, and w lie in the same plane if and only if the parallelepiped

with these vectors as adjacent sides has volume zero (why?). Thus, from part (a) the vectors

lie in the same plane if and only if u · (v × w) = 0.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. It follows from Formula (10) that

u · (v × w) = ±V
The + occurs when u makes an acute angle with v × w and the − occurs when it makes

an obtuse angle.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ALGEBRAIC PROPERTIES OF THE
SCALAR TRIPLE PRODUCT

We observed earlier in this section that the expression u × v × w must be avoided because it

is ambiguous without parentheses. However, the expression u · v × w is not ambiguous—it

has to mean u · (v × w) and not (u · v)× w because we cannot form the cross product of

a scalar and a vector. Similarly, the expression u × v · w must mean (u × v) · w and not

u × (v · w). Thus, when you see an expression of the form u · v × w or u × v · w, the

cross product is formed first and the dot product second.

Since interchanging two rows of a determinant multiplies its value by −1, making two

row interchanges in a determinant has no effect on its value. This being the case, it follows

that

u · (v × w) = w · (u × v) = v · (w × u) (11)

since the 3 × 3 determinants that are used to compute these scalar triple products can be

obtained from one another by two row interchanges (verify).

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. Observe that the second expression in (11) can be obtained from the first by

leaving the dot, the cross, and the parentheses fixed, moving the first two vectors to the

right, and bringing the third vector to the first position. The same procedure produces the

third expression from the second and the first expression from the third (verify).

Another useful formula can be obtained by rewriting the first equality in (11) as

u · (v × w) = (u × v) · w

and then omitting the superfluous parentheses to obtain

u · v × w = u × v · w (12)

In words, this formula states that the dot and cross in a scalar triple product can be inter-

changed (provided the factors are grouped appropriately).
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• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DOT AND CROSS PRODUCTS ARE
COORDINATE INDEPENDENT

In Definitions 12.3.1 and 12.4.2 we defined the dot product and the cross product of two

vectors in terms of the components of those vectors in a coordinate system. Thus, it is

theoretically possible that changing the coordinate system might change u · v or u × v,

since the components of a vector depend on the coordinate system that is chosen. However,

the relationships

u · v = ‖u‖‖v‖cos θ (13)

‖u × v‖ = ‖u‖‖v‖sin θ (14)

that were obtained in Theorems 12.3.3 and 12.4.5 show that this is not the case. Formula

(13) shows that the value of u · v depends only on the lengths of the vectors and the angle

between them—not on the coordinate system. Similarly, Formula (14), in combination

with the right-hand rule and Theorem 12.4.4, shows that u × v does not depend on the

coordinate system (as long as it is right handed). These facts are important in applications

because they allow us to choose any convenient coordinate system for solving a problem

with full confidence that the choice will not affect computations that involve dot products

or cross products.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MOMENTS AND ROTATIONAL
MOTION IN 3-SPACE

Cross products play an important role in describing rotational motion in 3-space. For ex-

ample, suppose that an astronaut on a satellite repair mission in space applies a force F at a

pointQ on the surface of a spherical satellite. If the force is directed along a line that passes

through the center P of the satellite, then Newton’s Second Law of Motion implies that

the force will accelerate the satellite in the direction of F. However, if the astronaut applies

the same force at an angle θ with the vector
−→
PQ, then F will tend to cause a rotation, as

well as an acceleration in the direction of F. To see why this is so, let us resolve F into a

sum of orthogonal components F = F1 + F2, where F1 is the orthogonal projection of F

on the vector
−→
PQ and F2 is the component of F orthogonal to

−→
PQ (Figure 12.4.7). Since

the force F1 acts along the line through the center of the satellite, it contributes to the linear

acceleration of the satellite but does not cause any rotation. However, the force F2 is tangent

to the circle around the satellite in the plane of F and
−→
PQ, so it causes the satellite to rotate

about an axis that is perpendicular to that plane.

Astronauts use tools that are designed to 

limit forces that would impart unintended 

rotational motion to a satellite.

Figure 12.4.7

F1

F
F2

P Q u

You know from your own experience that the “tendency” for rotation about an axis

depends both on the amount of force and how far from the axis it is applied. For example,

it is easier to close a door by pushing on its outer edge than applying the same force close

to the hinges. In fact, the tendency of rotation of the satellite can be measured by

‖
−→
PQ‖‖F2‖ distance from the center × magnitude of the force (15)

However, ‖F2‖ = ‖F‖sin θ , so we can rewrite (15) as

‖
−→
PQ‖‖F‖sin θ = ‖

−→
PQ× F‖

This is called the scalar moment or torque of F about the pointP . Scalar moments have units

of force times distance—pound-feet or newton-meters, for example. The vector
−→
PQ× F

is called the vector moment or torque vector of F about P .
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Recalling that the direction of
−→
PQ× F is determined by the right-hand rule, it follows

that the direction of rotation about P that results by applying the force F at the point Q

is counterclockwise looking down the axis of
−→
PQ× F (Figure 12.4.7). Thus, the vector

moment
−→
PQ× F captures the essential information about the rotational effect of the force—

the magnitude of the cross product provides the scalar moment of the force, and the cross

product vector itself provides the axis and direction of rotation.

Example 6 Figure 12.4.8a shows a force F of 100 N applied in the positive z-direction

at the pointQ(1, 1, 1) of a cube whose sides have a length of 1 m. Assuming that the cube

is free to rotate about the point P(0, 0, 0) (the origin), find the scalar moment of the force

about P , and describe the direction of rotation.

y

z

x

Q(1, 1, 1)

P

F = 100k

(a)

z

x

F

y

100(i – j)

(b)

Figure 12.4.8

Solution. The force vector is F = 100k, and the vector from P toQ is
−→
PQ = i + j + k,

so the vector moment of F about P is

−→
PQ× F =

∣

∣

∣

∣

∣

∣

i j k

1 1 1

0 0 100

∣

∣

∣

∣

∣

∣

= 100i − 100 j

Thus, the scalar moment of F about P is ‖100i − 100 j‖ = 100
√

2 ≈ 141 N·m, and the

direction of rotation is counterclockwise looking along the vector 100i−100 j = 100(i− j)

toward its initial point (Figure 12.4.8b). ◭

EXERCISE SET 12.4 C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Use a determinant to find the cross product

i × (i + j + k)

(b) Check your answer in part (a) by rewriting the cross

product as

i × (i + j + k) = (i × i)+ (i × j)+ (i × k)

and evaluating each term.

2. In each part, use the two methods in Exercise 1 to find

(a) j × (i + j + k) (b) k × (i + j + k).

In Exercises 3–6, find u × v, and check that it is orthogonal

to both u and v.

3. u = 〈1, 2,−3〉, v = 〈−4, 1, 2〉

4. u = 3i + 2 j − k, v = −i − 3 j + k

5. u = 〈0, 1,−2〉, v = 〈3, 0,−4〉

6. u = 4i + k, v = 2i − j

7. Let u = 〈2,−1, 3〉, v = 〈0, 1, 7〉, and w = 〈1, 4, 5〉. Find

(a) u × (v × w) (b) (u × v)× w

(c) (u × v)× (v × w) (d) (v × w)× (u × v).

C 8. Use a CAS or a calculating utility that can compute deter-

minants or cross products to solve Exercise 7.

9. Find the direction cosines of u × v for the vectors u and v

in the accompanying figure.

y

z

x

v

u

(1, 1, 1)

Figure Ex-9

10. Find two unit vectors that are normal to both

u = −7i + 3 j + k, v = 2i + 4k

11. Find two unit vectors that are perpendicular to the plane

determined by the points A(0,−2, 1), B(1,−1,−2), and

C(−1, 1, 0).

12. Find two unit vectors that are parallel to the yz-plane and

are orthogonal to the vector 3i − j + 2k.

In Exercises 13 and 14, find the area of the parallelogram that

has u and v as adjacent sides.

13. u = i − j + 2k, v = 3 j + k

14. u = 2i + 3 j, v = −i + 2 j − 2k

In Exercises 15 and 16, find the area of the triangle with

vertices P ,Q, and R.
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15. P(1, 5,−2), Q(0, 0, 0), R(3, 5, 1)

16. P(2, 0,−3), Q(1, 4, 5), R(7, 2, 9)

In Exercises 17–20, find u · (v × w).

17. u = 2i − 3 j + k, v = 4i + j − 3k, w = j + 5k

18. u = 〈1,−2, 2〉, v = 〈0, 3, 2〉, w = 〈−4, 1,−3〉
19. u = 〈2, 1, 0〉, v = 〈1,−3, 1〉, w = 〈4, 0, 1〉
20. u = i, v = i + j, w = i + j + k

In Exercises 21 and 22, use a scalar triple product to find the

volume of the parallelepiped that has u, v, and w as adjacent

edges.

21. u = 〈2,−6, 2〉, v = 〈0, 4,−2〉, w = 〈2, 2,−4〉
22. u = 3i + j + 2k, v = 4i + 5 j + k, w = i + 2 j + 4k

23. In each part, use a scalar triple product to determine whether

the vectors lie in the same plane.

(a) u = 〈1,−2, 1〉, v = 〈3, 0,−2〉, w = 〈5,−4, 0〉
(b) u = 5i − 2 j + k, v = 4i − j + k, w = i − j

(c) u = 〈4,−8, 1〉, v = 〈2, 1,−2〉, w = 〈3,−4, 12〉
24. Suppose that u · (v × w) = 3. Find

(a) u · (w × v) (b) (v × w) · u

(c) w · (u × v) (d) v · (u × w)

(e) (u × w) · v (f ) v · (w × w).

25. Consider the parallelepiped with adjacent edges

u = 3i + 2 j + k

v = i + j + 2k

w = i + 3 j + 3k

(a) Find the volume.

(b) Find the area of the face determined by u and w.

(c) Find the angle between u and the plane containing the

face determined by v and w.

26. Show that in 3-space the distance d from a point P to the

line L through points A and B can be expressed as

d =
‖
−→
AP ×

−→
AB‖

‖
−→
AB‖

27. Use the result in Exercise 26 to find the distance between

the point P and the line through the points A and B.

(a) P(−3, 1, 2), A(1, 1, 0), B(−2, 3,−4)

(b) P(4, 3), A(2, 1), B(0, 2)

28. It is a theorem of solid geometry that the volume of a tetra-

hedron is 1
3
(area of base) · (height). Use this result to prove

that the volume of a tetrahedron with adjacent edges given

by the vectors u, v, and w is 1
6
|u · (v × w)|.

29. Use the result of Exercise 28 to find the volume of the tetra-

hedron with vertices

P(−1, 2, 0), Q(2, 1,−3), R(1, 0, 1), S(3,−2, 3)

30. Let θ be the angle between the vectors u = 2i + 3 j − 6k

and v = 2i + 3 j + 6k.

(a) Use the dot product to find cos θ .

(b) Use the cross product to find sin θ .

(c) Confirm that sin2 θ + cos2 θ = 1.

31. What can you say about the angle between nonzero vectors

u and v if u · v = ‖u × v‖?

32. Show that if u and v are vectors in 3-space, then

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2

[Note: This result is sometimes called Lagrange’s identity.]

33. The accompanying figure shows a force F of 10 lb applied

in the positive y-direction to the point Q(1, 1, 1) of a cube

whose sides have a length of 1 ft. In each part, find the

scalar moment of F about the point P , and describe the di-

rection of rotation, if any, if the cube is free to rotate aboutP .

(a) P is the point (0, 0, 0). (b) P is the point (1, 0, 0).

(c) P is the point (1, 0, 1).

34. The accompanying figure shows a force F of 1000 N applied

to the corner of a box.

(a) Find the scalar moment of F about the point P .

(b) Find the direction angles of the vector moment of F

about the point P to the nearest degree.

y

z

x

Q(1, 1, 1)

1 ft

1 ft

10 lb

1 ft

Figure Ex-33

y

z

x

2 m

1 m

1000 N

1 m

P

Q

Figure Ex-34

35. As shown in the accompanying figure, a force of 200 N is

applied at an angle of 18◦ to a point near the end of a monkey

wrench. Find the scalar moment of the force about the center

of the bolt. [Treat this as a problem in two dimensions.]

30 mm

200 mm 200 N

18°

Figure Ex-35

36. Prove parts (b) and (c) of Theorem 12.4.3.

37. Prove parts (d ) and (e) of Theorem 12.4.3.

38. Prove part (b) of Theorem 12.4.1 for 3 × 3 determinants.

[Just give the proof for the first two rows.] Then use (b) to

prove (a).

39. Expressions of the form

u × (v × w) and (u × v)× w

are called vector triple products. It can be proved with some
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effort that

u × (v × w) = (u · w)v − (u · v)w

(u × v)× w = (w · u)v − (w · v)u

These expressions can be summarized with the following

mnemonic rule:

vector triple product = (outer · remote)adjacent

− (outer · adjacent)remote

See if you can figure out what the expressions “outer,” “re-

mote,” and “adjacent” mean in this rule, and then use the

rule to find the two vector triple products of the vectors

u = i + 3 j − k, v = i + j + 2k, w = 3i − j + 2k

40. (a) Use the result in Exercise 39 to show that:

u × (v × w) lies in the same plane as v and w

(u × v)× w lies in the same plane as u and v.
(b) Use a geometrical argument to justify the results in

part (a).

41. Prove: If a, b, c, and d lie in the same plane when positioned

with a common initial point, then

(a × b)× (c × d) = 0

C 42. Use a CAS to approximate the minimum area of a triangle

if two of its vertices are (2,−1, 0) and (3, 2, 2) and its third

vertex is on the curve y = ln x in the xy-plane.

43. If a force F is applied to an object at a pointQ, then the line

through Q parallel to F is called the line of action of the

force. We defined the vector moment of F about a pointP to

be
−→
PQ× F. Show that ifQ′ is any point on the line of action

of F, then
−→
PQ× F =

−→
PQ′

× F; that is, it is not essential to

use the point of application to compute the vector moment—

any point on the line of action will do. [Hint: Write
−→
PQ′ =

−→
PQ+

−−→
QQ′ and use properties of the cross product.]

12.5 PARAMETRIC EQUATIONS OF LINES

In this section we will discuss parametric equations of lines in 2-space and 3-space. In

3-space, parametric equations of lines are especially important because they generally

provide the most convenient form for representing lines algebraically.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINES DETERMINED BY A POINT
AND A VECTOR

A line in 2-space or 3-space can be determined uniquely by specifying a point on the line and

a nonzero vector parallel to the line (Figure 12.5.1). The following theorem gives parametric

equations of the line through a point P0 and parallel to a nonzero vector v:

(a, b)

P0(x0, y0)

v

L

x

y

(a, b, c)

P0(x0, y0, z0)

v

L

y

z

x

A unique line L passes through 

P0 and is parallel to v. 

Figure 12.5.1

12.5.1 THEOREM.

(a) The line in 2-space that passes through the point P0(x0,y0) and is parallel to the

nonzero vector v = 〈a, b〉 = ai + bj has parametric equations

x = x0 + at, y = y0 + bt (1)

(b) The line in 3-space that passes through the point P0(x0, y0, z0) and is parallel to

the nonzero vector v = 〈a, b, c〉 = ai + bj + ck has parametric equations

x = x0 + at, y = y0 + bt, z = z0 + ct (2)

We will prove part (b). The proof of (a) is similar.

Proof (b). IfL is the line in 3-space that passes through the point P0(x0, y0, z0) and is par-

allel to the nonzero vector v = 〈a, b, c〉, thenL consists precisely of those points P(x, y, z)

for which the vector
−→
P0P is parallel to v (Figure 12.5.2). In other words, the pointP(x, y, z)

is on L if and only if
−→
P0P is a scalar multiple of v, say

−→
P0P = tv

This equation can be written as

〈x − x0, y − y0, z− z0〉 = 〈ta, tb, tc〉
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which implies that

x − x0 = ta, y − y0 = tb, z− z0 = tc
from which (2) follows.

(a, b, c)

P0(x0, y0, z0)

P(x, y, z)

v
L

y

z

x

Figure 12.5.2

•
•
•
•
•
•
•
•

REMARK. Although it is not stated explicitly, it is understood in Equations (1) and (2)

that −� < t < +�, which reflects the fact that lines extend indefinitely.

Example 1 Find parametric equations of the line

(a) passing through (4, 2) and parallel to v = 〈−1, 5〉;
(b) passing through (1, 2,−3) and parallel to v = 4i + 5j − 7k;

(c) passing through the origin in 3-space and parallel to v = 〈1, 1, 1〉.

Solution (a). From (1) with x0 = 4, y0 = 2, a = −1, and b = 5 we obtain

x = 4 − t, y = 2 + 5t

Solution (b). From (2) we obtain

x = 1 + 4t, y = 2 + 5t, z = −3 − 7t

Solution (c). From (2) with x0 = 0, y0 = 0, z0 = 0, a = 1, b = 1, and c = 1 we obtain

x = t, y = t, z = t ◭

Example 2

(a) Find parametric equations of the line L passing through the points P1(2, 4,−1) and

P2(5, 0, 7).

(b) Where does the line intersect the xy-plane?

Solution (a). The vector
−−→
P1P2 = 〈3,−4, 8〉 is parallel to L and the point P1(2, 4,−1) lies

on L, so it follows from (2) that L has parametric equations

x = 2 + 3t, y = 4 − 4t, z = −1 + 8t (3)

Had we used P2 as the point on L rather than P1, we would have obtained the equations

x = 5 + 3t, y = −4t, z = 7 + 8t

Although these equations look different from those obtained using P1, the two sets of

equations are actually equivalent in that both generate L as t varies from −� to +�. To see

this, note that if t1 gives a point

(x, y, z) = (2 + 3t1, 4 − 4t1,−1 + 8t1)

on L using the first set of equations, then t2 = t1 − 1 gives the same point

(x, y, z) = (5 + 3t2,−4t2, 7 + 8t2)

= (5 + 3(t1 − 1),−4(t1 − 1), 7 + 8(t1 − 1))

= (2 + 3t1, 4 − 4t1,−1 + 8t1)

onL using the second set of equations. Conversely, if t2 gives a point onL using the second

set of equations, then t1 = t2 + 1 gives the same point using the first set.

Solution (b). It follows from (3) in part (a) that the line intersects the xy-plane at the point

where z = −1 + 8t = 0, that is, when t = 1
8
. Substituting this value of t in (3) yields the

point of intersection (x, y, z) =
(

19
8
, 7

2
, 0

)

. ◭

Example 3 Let L1 and L2 be the lines

L1 : x = 1 + 4t, y = 5 − 4t, z = −1 + 5t

L2 : x = 2 + 8t, y = 4 − 3t, z = 5 + t
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(a) Are the lines parallel?

(b) Do the lines intersect?

Solution (a). The line L1 is parallel to the vector 4i − 4j + 5k, and the line L2 is parallel

to the vector 8i − 3j + k. These vectors are not parallel since neither is a scalar multiple of

the other. Thus, the lines are not parallel.

Solution (b). ForL1 andL2 to intersect at some point (x0, y0, z0) these coordinates would

have to satisfy the equations of both lines. In other words, there would have to exist values

t1 and t2 for the parameters such that

x0 = 1 + 4t1, y0 = 5 − 4t1, z0 = −1 + 5t1

and

x0 = 2 + 8t2, y0 = 4 − 3t2, z0 = 5 + t2
This leads to three conditions on t1 and t2,

1 + 4t1 = 2 + 8t2

5 − 4t1 = 4 − 3t2

−1 + 5t1 = 5 + t2

(4)

Thus, the lines intersect if there are values of t1 and t2 that satisfy all three equations, and

the lines do not intersect if there are no such values. You should be familiar with methods

for solving systems of two linear equations in two unknowns; however, this is a system of

three linear equations in two unknowns. To determine whether this system has a solution we

will solve the first two equations for t1 and t2 and then check whether these values satisfy

the third equation.

We will solve the first two equations by the method of elimination. We can eliminate the

unknown t1 by adding the equations. This yields the equation

6 = 6 + 5t2

from which we obtain t2 = 0. We can now find t1 by substituting this value of t2 in either

the first or second equation. This yields t1 = 1
4
. However, the values t1 = 1

4
and t2 = 0 do

not satisfy the third equation in (4), so the lines do not intersect. ◭

Two lines in 3-space that are not parallel and do not intersect (such as those in Example 3)

are called skew lines. As illustrated in Figure 12.5.3, any two skew lines lie in parallel planes.

L1

L2

Parallel planes containing skew 

lines L1 and L2 can be determined 

by translating each line until it 

intersects the other.

Figure 12.5.3

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

LINE SEGMENTS
Sometimes one is not interested in an entire line, but rather some segment of a line. Para-

metric equations of a line segment can be obtained by finding parametric equations for the

entire line, then restricting the parameter appropriately so that only the desired segment is

generated.

Example 4 Find parametric equations for the line segment that joins the pointsP1(2, 4,−1)

and P2(5, 0, 7).

Solution. From Example 2, the line through the pointsP1 andP2 has parametric equations

x = 2 + 3t , y = 4 − 4t , z = −1 + 8t . With these equations, the point P1 corresponds to

t = 0 and P2 to t = 1. Thus, the line segment that joins P1 and P2 is given by

x = 2 + 3t, y = 4 − 4t, z = −1 + 8t (0 ≤ t ≤ 1) ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

VECTOR EQUATIONS OF LINES
We will now show how vector notation can be used to express the parametric equations of

a line more compactly. Because two vectors are equal if and only if their components are

equal, (1) and (2) can be written in vector form as

〈x, y〉 = 〈x0 + at, y0 + bt〉
〈x, y, z〉 = 〈x0 + at, y0 + bt, z0 + ct〉
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or, equivalently, as

〈x, y〉 = 〈x0, y0〉 + t〈a, b〉 (5)

〈x, y, z〉 = 〈x0, y0, z0〉 + t〈a, b, c〉 (6)

For the equation in 2-space we define the vectors r, r0, and v as

r = 〈x, y〉, r0 = 〈x0, y0〉, v = 〈a, b〉 (7)

and for the equation in 3-space we define them as

r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉, v = 〈a, b, c〉 (8)

Substituting (7) and (8) in (5) and (6), respectively, yields the equation

r = r0 + tv (9)

in both cases. We call this the vector equation of a line in 2-space or 3-space. In this

equation, v is a nonzero vector parallel to the line, and r0 is a vector whose components are

the coordinates of a point on the line.

We can interpret Equation (9) geometrically by positioning the vectors r0 and v with

their initial points at the origin and the vector tv with its initial point at P0 (Figure 12.5.4).

The vector tv is a scalar multiple of v and hence is parallel to v and L. Moreover, since the

initial point of tv is at the point P0 on L, this vector actually runs along L; hence, the vector

r = r0 + tv can be interpreted as the vector from the origin to a point onL. As the parameter

t varies from 0 to +�, the terminal point of r traces out the portion of L that extends from

P0 in the direction of v, and as t varies from 0 to −�, the terminal point of r traces out the

portion of L that extends from P0 in the direction that is opposite to v. Thus, the entire line

is traced as t varies over the interval (−�,+�), and it is traced in the direction of v as t

increases.

P0

r0

v

r

tv

tv L

x

y

r = r0 + tv

Figure 12.5.4

Example 5 The equation

〈x, y, z〉 = 〈−1, 0, 2〉 + t〈1, 5,−4〉

is of form (9) with

r0 = 〈−1, 0, 2〉 and v = 〈1, 5,−4〉

Thus, the equation represents the line in 3-space that passes through the point (−1, 0, 2)

and is parallel to the vector 〈1, 5,−4〉. ◭

Example 6 Find an equation of the line in 3-space that passes through the points

P1(2, 4,−1) and P2(5, 0, 7).

Solution. The vector
−−→
P1P2 = 〈3,−4, 8〉

is parallel to the line, so it can be used as v in (9). For r0 we can use either the vector from

the origin to P1 or the vector from the origin to P2. Using the former yields

r0 = 〈2, 4,−1〉

Thus, a vector equation of the line through P1 and P2 is

〈x, y, z〉 = 〈2, 4,−1〉 + t〈3,−4, 8〉

If needed, we can express the line parametrically by equating corresponding components

on the two sides of this vector equation, in which case we obtain the parametric equations

in Example 2 (verify). ◭
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EXERCISE SET 12.5 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. (a) Find parametric equations for the lines through the cor-

ner of the unit square shown in part (a) of the accom-

panying figure.

(b) Find parametric equations for the lines through the cor-

ner of the unit cube shown in part (b) of the accompa-

nying figure.

y

z

x

(1, 1, 1)

L4

L1
L2

L3

(1, 1)

L1

L2

L3

x

y

(a) (b)

Figure Ex-1

2. (a) Find parametric equations for the line segments on the

unit square in part (a) of the accompanying figure.

(b) Find parametric equations for the line segments in the

unit cube shown in part (b) of the accompanying figure.

y

z

x

(1, 1, 1)

L4
L1

L2
L3

(1, 1)
L1

L2

L3

x

y

(a) (b)

Figure Ex-2

In Exercises 3 and 4, find parametric equations for the line

through P1 and P2 and also for the line segment joining those

points.

3. (a) P1(3,−2), P2(5, 1) (b) P1(5,−2, 1), P2(2, 4, 2)

4. (a) P1(0, 1), P2(−3,−4) (b) P1(−1, 3, 5), P2(−1, 3, 2)

In Exercises 5 and 6, find parametric equations for the line

whose vector equation is given.

5. (a) 〈x, y〉 = 〈2,−3〉 + t〈1,−4〉
(b) xi + y j + zk = k + t (i − j + k)

6. (a) xi + y j = (3i − 4 j)+ t (2i + j)

(b) 〈x, y, z〉 = 〈−1, 0, 2〉 + t〈−1, 3, 0〉

In Exercises 7 and 8, find a point P on the line and a vector

v parallel to the line by inspection.

7. (a) xi + y j = (2i − j)+ t (4i − j)

(b) 〈x, y, z〉 = 〈−1, 2, 4〉 + t〈5, 7,−8〉
8. (a) 〈x, y〉 = 〈−1, 5〉 + t〈2, 3〉

(b) xi + y j + zk = (i + j − 2k)+ t j

In Exercises 9 and 10, express the given parametric equations

of a line in vector form using bracket notation and also using

i, j, k notation.

9. (a) x = −3 + t , y = 4 + 5t

(b) x = 2 − t , y = −3 + 5t , z = t
10. (a) x = t , y = −2 + t

(b) x = 1 + t , y = −7 + 3t , z = 4 − 5t

In Exercises 11–18, find parametric equations of the line that

satisfies the stated conditions.

11. The line through (−5, 2) that is parallel to 2i − 3 j.

12. The line through (0, 3) that is parallel to the line x = −5+t ,
y = 1 − 2t .

13. The line that is tangent to the circle x2 + y2 = 25 at the

point (3,−4).

14. The line that is tangent to the parabola y = x2 at the point

(−2, 4).

15. The line through (−1, 2, 4) that is parallel to 3i − 4 j + k.

16. The line through (2,−1, 5) that is parallel to 〈−1, 2, 7〉.
17. The line through (−2, 0, 5) that is parallel to the line

x = 1 + 2t , y = 4 − t , z = 6 + 2t .

18. The line through the origin that is parallel to the line x = t ,
y = −1 + t , z = 2.

19. Where does the line x = 1 + 3t , y = 2 − t intersect

(a) the x-axis (b) the y-axis (c) the parabola y = x2?

20. Where does the line 〈x, y〉 = 〈4t, 3t〉 intersect the circle

x2 + y2 = 25?

In Exercises 21 and 22, find the intersections of the lines with

the xy-plane, the xz-plane, and the yz-plane.

21. x = −2, y = 4 + 2t , z = −3 + t
22. x = −1 + 2t , y = 3 + t , z = 4 − t
23. Where does the line x = 1 + t , y = 3 − t , z = 2t intersect

the cylinder x2 + y2 = 16?

24. Where does the line x = 2 − t , y = 3t , z = −1 + 2t

intersect the plane 2y + 3z = 6?

In Exercises 25 and 26, show that the lines L1 and L2 inter-

sect, and find their point of intersection.

25. L1 : x = 2 + t, y = 2 + 3t, z = 3 + t
L2 : x = 2 + t, y = 3 + 4t, z = 4 + 2t
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26. L1 : x + 1 = 4t, y − 3 = t, z− 1 = 0

L2 : x + 13 = 12t, y − 1 = 6t, z− 2 = 3t

In Exercises 27 and 28, show that the lines L1 and L2 are

skew.

27. L1 : x = 1 + 7t, y = 3 + t, z = 5 − 3t

L2 : x = 4 − t, y = 6, z = 7 + 2t

28. L1 : x = 2 + 8t, y = 6 − 8t, z = 10t

L2 : x = 3 + 8t, y = 5 − 3t, z = 6 + t

In Exercises 29 and 30, determine whether the lines L1 and

L2 are parallel.

29. L1 : x = 3 − 2t, y = 4 + t, z = 6 − t
L2 : x = 5 − 4t, y = −2 + 2t, z = 7 − 2t

30. L1 : x = 5 + 3t, y = 4 − 2t, z = −2 + 3t

L2 : x = −1 + 9t, y = 5 − 6t, z = 3 + 8t

In Exercises 31 and 32, determine whether the points P1, P2,

and P3 lie on the same line.

31. P1(6, 9, 7), P2(9, 2, 0), P3(0,−5,−3)

32. P1(1, 0, 1), P2(3,−4,−3), P3(4,−6,−5)

In Exercises 33 and 34, show that the lines L1 and L2 are the

same.

33. L1 : x = 3 − t, y = 1 + 2t

L2 : x = −1 + 3t, y = 9 − 6t

34. L1 : x = 1 + 3t, y = −2 + t, z = 2t

L2 : x = 4 − 6t, y = −1 − 2t, z = 2 − 4t

In Exercises 35 and 36, describe the line segment represented

by the vector equation.

35. 〈x, y〉 = 〈1, 0〉 + t〈−2, 3〉 (0 ≤ t ≤ 2)

36. 〈x, y, z〉 = 〈−2, 1, 4〉 + t〈3, 0,−1〉 (0 ≤ t ≤ 3)

In Exercises 37 and 38, use the method in Exercise 25 of

Section 12.3 to find the distance from the point P to the line

L, and then check your answer using the method in Exercise

26 of Section 12.4.

37. P(−2, 1, 1)

L: x = 3 − t , y = t , z = 1 + 2t

38. P(1, 4,−3)

L: x = 2 + t , y = −1 − t , z = 3t

In Exercises 39 and 40, show that the lines L1 and L2 are

parallel, and find the distance between them.

39. L1 : x = 2 − t, y = 2t, z = 1 + t
L2 : x = 1 + 2t, y = 3 − 4t, z = 5 − 2t

40. L1 : x = 2t, y = 3 + 4t, z = 2 − 6t

L2 : x = 1 + 3t, y = 6t, z = −9t

41. (a) Find parametric equations for the line through the points

(x0, y0, z0) and (x1, y1, z1).

(b) Find parametric equations for the line through the point

(x1, y1, z1) and parallel to the line

x = x0 + at, y = y0 + bt, z = z0 + ct

42. Let L be the line that passes through the point (x0, y0, z0)

and is parallel to the vector v = 〈a, b, c〉, where a, b, and c

are nonzero. Show that a point (x, y, z) lies on the line L if

and only if

x − x0

a
=
y − y0

b
=
z− z0

c

These equations, which are called the symmetric equations

of L, provide a nonparametric representation of L.

43. (a) Describe the line whose symmetric equations are

x − 1

2
=
y + 3

4
= z− 5

[See Exercise 42.]

(b) Find parametric equations for the line in part (a).

44. Find the point on the line segment joining P1(1, 4,−3) and

P2(1, 5,−1) that is 2
3

of the way from P1 to P2.

45. Let L1 and L2 be the lines whose parametric equations are

L1 : x = 1 + 2t, y = 2 − t, z = 4 − 2t

L2 : x = 9 + t, y = 5 + 3t, z = −4 − t
(a) Show that L1 and L2 intersect at the point (7,−1,−2).

(b) Find, to the nearest degree, the acute angle between L1

and L2 at their intersection.

(c) Find parametric equations for the line that is perpen-

dicular to L1 and L2 and passes through their point of

intersection.

46. Let L1 and L2 be the lines whose parametric equations are

L1 : x = 4t, y = 1 − 2t, z = 2 + 2t

L2 : x = 1 + t, y = 1 − t, z = −1 + 4t

(a) Show that L1 and L2 intersect at the point (2, 0, 3).

(b) Find, to the nearest degree, the acute angle between L1

and L2 at their intersection.

(c) Find parametric equations for the line that is perpen-

dicular to L1 and L2 and passes through their point of

intersection.

In Exercises 47 and 48, find parametric equations of the line

that contains the point P and intersects the line L at a right

angle.

47. P(0, 2, 1)

L: x = 2t, y = 1 − t, z = 2 + t

48. P(3, 1,−2)

L: x = −2 + 2t, y = 4 + 2t, z = 2 + t
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49. Two bugs are walking along lines in 3-space. At time t bug

1 is at the point (x, y, z) on the line

x = 4 − t, y = 1 + 2t, z = 2 + t
and at the same time t bug 2 is at the point (x, y, z) on the

line

x = t, y = 1 + t, z = 1 + 2t

Assume that distance is in centimeters and that time is in

minutes.

(a) Find the distance between the bugs at time t = 0.

(b) Use a graphing utility to graph the distance between the

bugs as a function of time from t = 0 to t = 5.

(c) What does the graph tell you about the distance between

the bugs?

(d) How close do the bugs get?

C 50. Suppose that the temperature T at a point (x, y, z) on the

line x = t , y = 1 + t , z = 3 − 2t is T = 25x2yz. Use a

CAS or a calculating utility with a root-finding capability

to approximate the maximum temperature on that portion

of the line that extends from the xz-plane to the xy-plane.

12.6 PLANES IN 3-SPACE

In this section we will use vectors to derive equations of planes in 3-space, and then

we will use these equations to solve various geometric problems.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PLANES PARALLEL TO THE
COORDINATE PLANES

The graph of the equation x = a in an xyz-coordinate system consists of all points of the

form (a, y, z), where y and z are arbitrary. One such point is (a, 0, 0), and all others are

in the plane that passes through this point and is parallel to the yz-plane (Figure 12.6.1).

Similarly, the graph of y = b is the plane through (0, b, 0) that is parallel to the xz-plane,

and the graph of z = c is the plane through (0, 0, c) that is parallel to the xy-plane.

y

x

z

z = c

(0, 0, c)

x

z

y = b

(0, b, 0)

y

z

x = a

(a, 0, 0)

x

y

Figure 12.6.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

PLANES DETERMINED BY A POINT
AND A NORMAL VECTOR

A plane in 3-space can be determined uniquely by specifying a point in the plane and a

vector perpendicular to the plane (Figure 12.6.2). A vector perpendicular to a plane is called

a normal to the plane.

n

P

The colored plane is 

uniquely determined by the 

point P and the vector n 

perpendicular to the plane.

Figure 12.6.2

Suppose that we want to find an equation of the plane passing through P0(x0, y0, z0) and

perpendicular to the vector n = 〈a, b, c〉. Define the vectors r0 and r as

r0 = 〈x0, y0, z0〉 and r = 〈x, y, z〉
It should be evident from Figure 12.6.3 that the plane consists precisely of those points

P(x, y, z) for which the vector r − r0 is orthogonal to n; or, expressed as an equation,

n · (r − r0) = 0 (1)

If preferred, we can express this vector equation in terms of components as

〈a, b, c〉 · 〈x − x0, y − y0, z− z0〉 = 0 (2)

from which we obtain

a(x − x0)+ b(y − y0)+ c(z− z0) = 0 (3)

This is called the point-normal form of the equation of a plane. Formulas (1) and (2) are

vector versions of this formula.
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•
•
•
•
•
•
•
•

FOR THE READER. What does Equation (1) represent if n = 〈a, b〉, r0 = 〈x0, y0〉, and

r = 〈x, y〉 are vectors in an xy-plane in 2-space? Draw a picture.

P0(x0, y0, z0)

P(x, y, z)

O

n

r0

r

r – r0

Figure 12.6.3

Example 1 Find an equation of the plane passing through the point (3,−1, 7) and per-

pendicular to the vector n = 〈4, 2,−5〉.

Solution. From (3), a point-normal form of the equation is

4(x − 3)+ 2(y + 1)− 5(z− 7) = 0 (4)

If preferred, this equation can be written in vector form as

〈4, 2,−5〉 · 〈x − 3, y + 1, z− 7〉 = 0 ◭

Observe that if we multiply out the terms in (3) and simplify, we obtain an equation of

the form

ax + by + cz+ d = 0 (5)

For example, Equation (4) in Example 1 can be rewritten as

4x + 2y − 5z+ 25 = 0

The following theorem shows that every equation of form (5) represents a plane in

3-space.

12.6.1 THEOREM. If a, b, c, and d are constants, and a, b, and c are not all zero,

then the graph of the equation

ax + by + cz+ d = 0 (6)

is a plane that has the vector n = 〈a, b, c〉 as a normal.

Proof. Since a, b, and c are not all zero, there is at least one point (x0, y0, z0) whose

coordinates satisfy Equation (6). For example, if a �= 0, then such a point is (−d/a, 0, 0),
and similarly if b �= 0 or c �= 0 (verify). Thus, let (x0, y0, z0) be any point whose coordinates

satisfy (6); that is,

ax0 + by0 + cz0 + d = 0

Subtracting this equation from (6) yields

a(x − x0)+ b(y − y0)+ c(z− z0) = 0

which is the point-normal form of a plane with normal n = 〈a, b, c〉.

Equation (6) is called the general form of the equation of a plane.

Example 2 Determine whether the planes

3x − 4y + 5z = 0 and − 6x + 8y − 10z− 4 = 0

are parallel.

Solution. It is clear geometrically that two planes are parallel if and only if their normals

are parallel vectors. A normal to the first plane is

n1 = 〈3,−4, 5〉

and a normal to the second plane is

n2 = 〈−6, 8,−10〉

Since n2 is a scalar multiple of n1, the normals are parallel, and hence so are the planes. ◭
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We have seen that a unique plane is determined by a point in the plane and a nonzero

vector normal to the plane. In contrast, a unique plane is not determined by a point in the

plane and a nonzero vector parallel to the plane (Figure 12.6.4). However, a unique plane is

determined by a point in the plane and two nonparallel vectors that are parallel to the plane

(Figure 12.6.5). A unique plane is also determined by three noncollinear points that lie in

the plane (Figure 12.6.6).

P
v

There are infinitely many 

planes containing P and 

parallel to v.

Figure 12.6.4

P

v
w

There is a unique plane 

through P that is parallel 

to both v and w.

Figure 12.6.5

P1

P2

P3

There is a unique 

plane through three 

noncollinear points.

Figure 12.6.6

Example 3 Find an equation of the plane through the points P1(1, 2,−1), P2(2, 3, 1),

and P3(3,−1, 2).

Solution. Since the points P1, P2, and P3 lie in the plane, the vectors
−−→
P1P2 = 〈1, 1, 2〉

and
−−→
P1P3 = 〈2,−3, 3〉 are parallel to the plane. Therefore,

−−→
P1P2 ×

−−→
P1P3 =

∣

∣

∣

∣

∣

∣

i j k

1 1 2

2 −3 3

∣

∣

∣

∣

∣

∣

= 9i + j − 5k

is normal to the plane, since it is orthogonal to both
−−→
P1P2 and

−−→
P1P3. By using this normal

and the point P1(1, 2,−1) in the plane, we obtain the point-normal form

9(x − 1)+ (y − 2)− 5(z+ 1) = 0

which can be rewritten as

9x + y − 5z− 16 = 0 ◭

Example 4 Determine whether the line

x = 3 + 8t, y = 4 + 5t, z = −3 − t

is parallel to the plane x − 3y + 5z = 12.

Solution. The vector v = 〈8, 5,−1〉 is parallel to the line and the vector n = 〈1,−3, 5〉
is normal to the plane. For the line and plane to be parallel, the vectors v and n must be

orthogonal. But this is not so, since the dot product

v · n = (8)(1)+ (5)(−3)+ (−1)(5) = −12

is nonzero. Thus, the line and plane are not parallel. ◭

Example 5 Find the intersection of the line and plane in Example 4.

Solution. If we let (x0, y0, z0) be the point of intersection, then the coordinates of this

point satisfy both the equation of the plane and the parametric equations of the line. Thus,

x0 − 3y0 + 5z0 = 12 (7)

and for some value of t , say t = t0,

x0 = 3 + 8t0, y0 = 4 + 5t0, z0 = −3 − t0 (8)

Substituting (8) in (7) yields

(3 + 8t0)− 3(4 + 5t0)+ 5(−3 − t0) = 12

Solving for t0 yields t0 = −3 and on substituting this value in (8), we obtain

(x0, y0, z0) = (−21,−11, 0) ◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

ANGLES BETWEEN PLANES
Two distinct intersecting planes determine two positive angles of intersection—an (acute)

angle θ that satisfies the condition 0 ≤ θ ≤ π/2 and the supplement of that angle (Fig-

ure 12.6.7a). If n1 and n2 are normals to the planes, then depending on the directions of n1
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and n2, the angle θ is either the angle between n1 and n2 or the angle between n1 and −n2

(Figure 12.6.7b). In both cases, Theorem 12.3.3 yields the following formula for the acute

angle θ between the planes:

cos θ =
|n1 · n2|
‖n1‖‖n2‖

(9)

(a)

180° – u

(b)

Plane 1

Plane 2

u
u

u

n1

n2

Figure 12.6.7

Example 6 Find the acute angle of intersection between the two planes

2x − 4y + 4z = 7 and 6x + 2y − 3z = 2

Solution. The given equations yield the normals n1 = 〈2,−4, 4〉 and n2 = 〈6, 2,−3〉.
Thus, Formula (9) yields

cos θ =
|n1 · n2|

‖n1‖ ‖n2‖
=

|−8|
√

36
√

49
=

4

21

from which we obtain

θ = cos−1

(

4

21

)

≈ 79◦
◭

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DISTANCE PROBLEMS INVOLVING
PLANES

Next we will consider three basic “distance problems” in 3-space:

• Find the distance between a point and a plane.

• Find the distance between two parallel planes.

• Find the distance between two skew lines.

The three problems are related. If we can find the distance between a point and a plane, then

we can find the distance between parallel planes by computing the distance between one

of the planes and an arbitrary point P0 in the other plane (Figure 12.6.8a). Moreover, we

can find the distance between two skew lines by computing the distance between parallel

planes containing them (Figure 12.6.8b).

(b)

(a)

P0

Figure 12.6.8

12.6.2 THEOREM. The distance D between a point P0(x0, y0, z0) and the plane

ax + by + cz+ d = 0 is

D =
|ax0 + by0 + cz0 + d|

√
a2 + b2 + c2

(10)

P0(x0, y0, z0)

Q(x1, y1, z1)

DD

projn QP0

n

Figure 12.6.9

Proof. Let Q(x1, y1, z1) be any point in the plane, and position the normal n = 〈a, b, c〉
so that its initial point is atQ. As illustrated in Figure 12.6.9, the distanceD is equal to the

length of the orthogonal projection of
−−→
QP0 on n. Thus, from (12) of Section 12.3,

D = ‖projn
−−→
QP0‖ =

∥

∥

∥

∥

∥

−−→
QP0 · n

‖n‖2
n

∥

∥

∥

∥

∥

=
|
−−→
QP0 · n|
‖n‖2

‖n‖ =
|
−−→
QP0 · n|

‖n‖

But
−−→
QP0 = 〈x0 − x1, y0 − y1, z0 − z1〉
−−→
QP0 · n = a(x0 − x1)+ b(y0 − y1)+ c(z0 − z1)

‖n‖ =
√
a2 + b2 + c2
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Thus,

D =
|a(x0 − x1)+ b(y0 − y1)+ c(z0 − z1)|√

a2 + b2 + c2
(11)

Since the point Q(x1, y1, z1) lies in the plane, its coordinates satisfy the equation of the

plane; that is,

ax1 + by1 + cz1 + d = 0

or

d = −ax1 − by1 − cz1

Combining this expression with (11) yields (10).

Example 7 Find the distance D between the point (1,−4,−3) and the plane

2x − 3y + 6z = −1

Solution. Formula (10) requires the plane to be rewritten in the form ax+by+cz+d = 0.

Thus, we rewrite the equation of the given plane as

2x − 3y + 6z+ 1 = 0

from which we obtain a = 2, b = −3, c = 6, and d = 1. Substituting these values and the

coordinates of the given point in (10), we obtain

D =
|(2)(1)+ (−3)(−4)+ 6(−3)+ 1|

√

22 + (−3)2 + 62
=

|−3|
7

=
3

7
◭

•
•
•
•
•
•
•
•

REMARK. See Exercise 48 for an analog of Formula (10) in 2-space that can be used to

compute the distance between a point and a line.

Example 8 The planes

x + 2y − 2z = 3 and 2x + 4y − 4z = 7

are parallel since their normals, 〈1, 2,−2〉 and 〈2, 4,−4〉, are parallel vectors. Find the

distance between these planes.

Solution. To find the distance D between the planes, we can select an arbitrary point in

one of the planes and compute its distance to the other plane. By setting y = z = 0 in the

equation x + 2y − 2z = 3, we obtain the point P0(3, 0, 0) in this plane. From (10), the

distance from P0 to the plane 2x + 4y − 4z = 7 is

D =
|(2)(3)+ 4(0)+ (−4)(0)− 7|

√

22 + 42 + (−4)2
=

1

6
◭

Example 9 It was shown in Example 3 of Section 12.5 that the lines

L1 : x = 1 + 4t, y = 5 − 4t, z = −1 + 5t

L2 : x = 2 + 8t, y = 4 − 3t, z = 5 + t
are skew. Find the distance between them.

P2

P1
L1

L2

D

Q1(1, 5, –1)

Q2(2, 4, 5)

Figure 12.6.10

Solution. Let P1 and P2 denote parallel planes containing L1 and L2, respectively (Fig-

ure 12.6.10). To find the distance D between L1 and L2, we will calculate the distance

from a point in P1 to the plane P2. Since L1 lies in plane P1, we can find a point in P1

by finding a point on the line L1; we can do this by substituting any convenient value of

t in the parametric equations of L1. The simplest choice is t = 0, which yields the point

Q1(1, 5,−1).
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The next step is to find an equation for the plane P2. For this purpose, observe that the

vector u1 = 〈4,−4, 5〉 is parallel to line L1, and therefore also parallel to planes P1 and P2.

Similarly, u2 = 〈8,−3, 1〉 is parallel to L2 and hence parallel to P1 and P2. Therefore, the

cross product

n = u1 × u2 =

∣

∣

∣

∣

∣

∣

i j k

4 −4 5

8 −3 1

∣

∣

∣

∣

∣

∣

= 11i + 36j + 20k

is normal to both P1 and P2. Using this normal and the point Q2(2, 4, 5) found by setting

t = 0 in the equations of L2, we obtain an equation for P2:

11(x − 2)+ 36(y − 4)+ 20(z− 5) = 0

or

11x + 36y + 20z− 266 = 0

The distance betweenQ1(1, 5,−1) and this plane is

D =
|(11)(1)+ (36)(5)+ (20)(−1)− 266|

√
112 + 362 + 202

=
95

√
1817

which is also the distance between L1 and L2. ◭

EXERCISE SET 12.6
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1. Find equations of the planes P1, P2, and P3 that are par-

allel to the coordinate planes and pass through the corner

(3, 4, 5) of the box shown in the accompanying figure.

2. Find equations of the planes P1, P2, and P3 that are par-

allel to the coordinate planes and pass through the corner

(x0, y0, z0) of the box shown in the accompanying figure.

(3, 4, 5)

P1

P2 P3

y

x

z

Figure Ex-1

P1

P2 P3

y

x

z

(x0, y0, z0)

Figure Ex-2

In Exercises 3–6, find an equation of the plane that passes

through the point P and has the vector n as a normal.

3. P(2, 6, 1); n = 〈1, 4, 2〉

4. P(−1,−1, 2); n = 〈−1, 7, 6〉

5. P(1, 0, 0); n = 〈0, 0, 1〉

6. P(0, 0, 0); n = 〈2,−3,−4〉

In Exercises 7–10, find an equation of the plane indicated in

the figure.

7.

y

z

x

1

1

1

8.

y

z

x

1

1

1

9.

y

z

x

1

1

1

10.

y

z

x

1

1

1

In Exercises 11 and 12, find an equation of the plane that

passes through the given points.

11. (−2, 1, 1), (0, 2, 3), and (1, 0,−1)

12. (3, 2, 1), (2, 1,−1), and (−1, 3, 2)

In Exercises 13 and 14, determine whether the planes are

parallel, perpendicular, or neither.
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13. (a) 2x − 8y − 6z− 2 = 0

−x + 4y + 3z− 5 = 0

(b) 3x − 2y + z = 1

4x + 5y − 2z = 4

(c) x − y + 3z− 2 = 0

2x + z = 1

14. (a) 3x − 2y + z = 4

6x − 4y + 3z = 7

(b) y = 4x − 2z+ 3

x = 1
4
y + 1

2
z

(c) x + 4y + 7z = 3

5x − 3y + z = 0

In Exercises 15 and 16, determine whether the line and plane

are parallel, perpendicular, or neither.

15. (a) x = 4 + 2t, y = −t, z = −1 − 4t;
3x + 2y + z− 7 = 0

(b) x = t, y = 2t, z = 3t;
x − y + 2z = 5

(c) x = −1 + 2t, y = 4 + t, z = 1 − t;
4x + 2y − 2z = 7

16. (a) x = 3 − t, y = 2 + t, z = 1 − 3t;
2x + 2y − 5 = 0

(b) x = 1 − 2t, y = t, z = −t;
6x − 3y + 3z = 1

(c) x = t, y = 1 − t, z = 2 + t;
x + y + z = 1

In Exercises 17 and 18, determine whether the line and plane

intersect; if so, find the coordinates of the intersection.

17. (a) x = t, y = t, z = t;
3x − 2y + z− 5 = 0

(b) x = 2 − t, y = 3 + t, z = t;
2x + y + z = 1

18. (a) x = 3t, y = 5t, z = −t;
2x − y + z+ 1 = 0

(b) x = 1 + t, y = −1 + 3t, z = 2 + 4t;
x − y + 4z = 7

In Exercises 19 and 20, find the acute angle of intersection

of the planes to the nearest degree.

19. x = 0 and 2x − y + z− 4 = 0

20. x + 2y − 2z = 5 and 6x − 3y + 2z = 8

In Exercises 21–30, find an equation of the plane that satisfies

the stated conditions.

21. The plane through the origin that is parallel to the plane

4x − 2y + 7z+ 12 = 0.

22. The plane that contains the line x = −2 + 3t , y = 4 + 2t ,

z = 3 − t and is perpendicular to the plane x− 2y+ z = 5.

23. The plane through the point (−1, 4, 2) that contains the line

of intersection of the planes 4x − y + z− 2 = 0 and

2x + y − 2z− 3 = 0.

24. The plane through (−1, 4,−3) that is perpendicular to the

line x − 2 = t , y + 3 = 2t , z = −t .
25. The plane through (1, 2,−1) that is perpendicular to the

line of intersection of the planes 2x + y + z = 2 and

x + 2y + z = 3.

26. The plane through the points P1(−2, 1, 4), P2(1, 0, 3) that

is perpendicular to the plane 4x − y + 3z = 2.

27. The plane through (−1, 2,−5) that is perpendicular to the

planes 2x − y + z = 1 and x + y − 2z = 3.

28. The plane that contains the point (2, 0, 3) and the line

x = −1 + t , y = t , z = −4 + 2t .

29. The plane whose points are equidistant from (2,−1, 1) and

(3, 1, 5).

30. The plane that contains the line x = 3t , y = 1 + t , z = 2t

and is parallel to the intersection of the planes 2x−y+z = 0

and y + z+ 1 = 0.

31. Find parametric equations of the line through the point

(5, 0,−2) that is parallel to the planes x − 4y + 2z = 0 and

2x + 3y − z +1 = 0.

32. Do the points (1, 0,−1), (0, 2, 3), (−2, 1, 1), and (4, 2, 3)

lie in the same plane? Justify your answer two different

ways.

33. Show that the line x = 0, y = t , z = t
(a) lies in the plane 6x + 4y − 4z = 0

(b) is parallel to and below the plane 5x − 3y + 3z = 1

(c) is parallel to and above the plane 6x + 2y − 2z = 3.

34. Show that if a, b, and c are nonzero, then the plane whose

intercepts with the coordinate axes are x = a, y = b, and

z = c is given by the equation
x

a
+
y

b
+
z

c
= 1

35. Show that the lines

x = −2 + t, y = 3 + 2t, z = 4 − t
x = 3 − t, y = 4 − 2t, z = t

are parallel and find an equation of the plane they determine.

36. Show that the lines

L1 : x + 1 = 4t, y − 3 = t, z− 1 = 0

L2 : x + 13 = 12t, y − 1 = 6t, z− 2 = 3t

intersect and find an equation of the plane they determine.

In Exercises 37 and 38, find parametric equations of the line

of intersection of the planes.

37. −2x + 3y + 7z+ 2 = 0

x + 2y − 3z+ 5 = 0

38. 3x − 5y + 2z = 0

z = 0

In Exercises 39 and 40, find the distance between the point

and the plane.

39. (1,−2, 3); 2x − 2y + z = 4
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40. (0, 1, 5); 3x + 6y − 2z− 5 = 0

In Exercises 41 and 42, find the distance between the given

parallel planes.

41. −2x + y + z = 0

6x − 3y − 3z− 5 = 0

42. x + y + z = 1

x + y + z = −1

In Exercises 43 and 44, find the distance between the given

skew lines.

43. x = 1 + 7t , y = 3 + t , z = 5 − 3t

x = 4 − t , y = 6, z = 7 + 2t

44. x = 3 − t , y = 4 + 4t , z = 1 + 2t

x = t , y = 3, z = 2t

45. Find an equation of the sphere with center (2, 1,−3) that is

tangent to the plane x − 3y + 2z = 4.

46. Locate the point of intersection of the plane 2x+y− z = 0

and the line through (3, 1, 0) that is perpendicular to the

plane.

47. Show that the line x = −1 + t , y = 3 + 2t , z = −t and

the plane 2x − 2y − 2z + 3 = 0 are parallel, and find the

distance between them.

48. Formulas (1), (2), (3), (5), and (10), which apply to planes

in 3-space, have analogs for lines in 2-space.

(a) Draw an analog of Figure 12.6.3 in 2-space to illustrate

that the equation of the line that passes through the point

P(x0, y0) and is perpendicular to the vector n = 〈a, b〉

can be expressed as

n · (r − r0) = 0

where r = 〈x, y〉 and r0 = 〈x0, y0〉.
(b) Show that the vector equation in part (a) can be ex-

pressed as

a(x − x0)+ b(y − y0) = 0

This is called the point-normal form of a line.

(c) Using the proof of Theorem 12.6.1 as a guide, show

that if a and b are not both zero, then the graph of the

equation

ax + by + c = 0

is a line that has n = 〈a, b〉 as a normal.

(d) Using the proof of Theorem 12.6.2 as a guide, show that

the distance D between a point P(x0, y0) and the line

ax + by + c = 0 is

D =
|ax0 + by0 + c|

√
a2 + b2

49. Use the formula in part (d) of Exercise 48 to find the distance

between the point P(−3, 5) and the line y = −2x + 1.

50. (a) Show that the distance D between parallel planes

ax + by + cz+ d1 = 0

ax + by + cz+ d2 = 0

is

D =
|d1 − d2|√
a2 + b2 + c2

(b) Use the formula in part (a) to solve Exercise 41.

12.7 QUADRIC SURFACES

In this section we will study an important class of surfaces that are the three-

dimensional analogs of the conic sections.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRACES OF SURFACES
Although the general shape of a curve in 2-space can be obtained by plotting points, this

method is not usually helpful for surfaces in 3-space because too many points are required.

It is more common to build up the shape of a surface with a network of mesh lines, which are

curves obtained by cutting the surface with well-chosen planes. For example, Figure 12.7.1,

which was generated by a CAS, shows the graph of z = x3 − 3xy2 rendered with a com-

bination of mesh lines and colorization to produce the surface detail. This surface is called

a “monkey saddle” because a monkey sitting astride the surface has a place for its two legs

and tail.

y
x

z

Figure 12.7.1

The mesh line that results when a surface is cut by a plane is called the trace of the

surface in the plane (Figure 12.7.2). Usually, surfaces are built up from traces in planes that

are parallel to the coordinate planes, so we will begin by showing how the equations of such

traces can be obtained. For this purpose, we will consider the surface

z = x2 + y2 (1)

shown in Figure 12.7.3a.
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Trace of surface

Figure 12.7.2

yx yx

z

z = 1

z

(a) (b)

Figure 12.7.3

The basic procedure for finding the equation of a trace is to substitute the equation of

the plane into the equation of the surface. For example, to find the trace of the surface

z = x2 + y2 in the plane z = 1, we substitute z = 1 in (1), which yields

x2 + y2 = 1 (z = 1) (2)

This is a circle of radius 1 centered at the point (0, 0, 1) (Figure 12.7.3b).

•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The parenthetical part of Equation (2) is a reminder that the z-coordinate of all

points on the trace is z = 1. This needs to be stated explicitly because z does not appear in

the equation x2 + y2 = 1.

Figure 12.7.4a suggests that the traces of (1) in planes that are parallel to and above the

xy-plane form a family of circles that are centered on the z-axis and whose radii increase

with z. To confirm this, let us consider the trace in a general plane z = k that is parallel to

the xy-plane. The equation of the trace is

x2 + y2 = k (z = k)
If k ≥ 0, then the trace is a circle of radius

√
k centered at the point (0, 0, k). In particular,

if k = 0, then the radius is zero, so the trace in the xy-plane is the single point (0, 0, 0).

Thus, for nonnegative values of k the traces parallel to the xy-plane form a family of circles,

centered on the z-axis, whose radii start at zero and increase with k. This confirms our

conjecture. If k < 0, then the equation x2 + y2 = k has no graph, which means that there

is no trace.

Now let us examine the traces of (1) in planes parallel to the yz-plane. Such planes have

equations of the form x = k, so we substitute this in (1) to obtain

z = k2 + y2 (x = k)
which we can rewrite as

z− k2 = y2 (x = k) (3)

For simplicity, let us start with the case where k = 0 (the trace in the yz-plane), in which

case the trace has the equation

z = y2 (x = 0)

You should be able to recognize that this is a parabola that has its vertex at the origin,

opens in the positive z-direction, and is symmetric about the z-axis (Figure 12.7.4b shows

a two-dimensional view). You should also be able to recognize that the −k2 term in (3) has

the effect of translating the parabola z = y2 in the positive z-direction, so the new vertex

falls at (k, 0, k2). Thus, the traces parallel to the yz-plane form a family of parabolas whose

vertices move upward as k2 increases. This is consistent with Figure 12.7.4c. Similarly, the

traces in planes parallel to the xz-plane have equations of the form

z− k2 = x2 (y = k)
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yx yxyx

z z z

y

z

z = y2

(a) (b) (c) (d)

Figure 12.7.4

which again is a family of parabolas whose vertices move upward as k2 increases (Fig-

ure 12.7.4d ).

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

THE QUADRIC SURFACES
In the discussion of Formula (2) in Section 11.5 we noted that a second-degree equation

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0

represents a conic section (possibly degenerate). The analog of this equation in an xyz-

coordinate system is

Ax2 + By2 + Cz2 +Dxy + Exz+ Fyz+Gx +Hy + Iz+ J = 0 (4)

which is called a second-degree equation in x, y, and z. The graphs of such equations are

called quadric surfaces or sometimes quadrics.

The six nondegenerate types of quadric surfaces are shown in Table 12.7.1—ellipsoids,

hyperboloids of one sheet, hyperboloids of two sheets, elliptic cones, elliptic paraboloids,

and hyperbolic paraboloids. (The constants a, b, and c that appear in the equations in the

table are assumed to be positive.) Observe that none of the quadric surfaces in the table

have cross-product terms in their equations. This is because of their orientations relative

to the coordinate axes. Later in this section we will discuss other possible orientations that

produce equations of the quadric surfaces with no cross-product terms. In the special case

where the elliptic cross sections of an elliptic cone or an elliptic paraboloid are circles, the

terms circular cone and circular paraboloid are used.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TECHNIQUES FOR GRAPHING
QUADRIC SURFACES

Accurate graphs of quadric surfaces are best left for graphing utilities. However, the tech-

niques that we will now discuss can be used to generate rough sketches of these surfaces

that are useful for various purposes.

A rough sketch of an ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1 (a > 0, b > 0, c > 0) (5)

can be obtained by first plotting the intersections with the coordinate axes, then sketching

the elliptical traces in the coordinate planes, and then sketching the surface itself using the

traces as a guide. Example 1 illustrates this technique.

Example 1 Sketch the ellipsoid

x2

4
+
y2

16
+
z2

9
= 1 (6)

Rough sketch

Figure 12.7.5

Solution. The x-intercepts can be obtained by setting y = 0 and z = 0 in (6). This yields

x = ±2. Similarly, the y-intercepts are y = ±4, and the z-intercepts are z = ±3. From these

intercepts we obtain the elliptical traces and the ellipsoid sketched in Figure 12.7.5. ◭
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Table 12.7.1

y

x

z

x2

a2

y2

b2

z2

c2
+ + = 1

The traces in the coordinate

planes are ellipses, as are the 

traces in those planes that are 

parallel to the coordinate planes

and intersect the surface in more

than one point.

x2

a2

y2

b2

z2

c2
+ – = 1

x2

a2

y2

b2

z2

c2
– – = 1

x2

a2

y2

b2
+z2 =

x2

a2

y2

b2
+z =

x2

a2

y2

b2
–z =

The trace in the xy-plane is a

point (the origin), and the traces

in planes parallel to the xy-plane

are ellipses.  The traces in the yz-

and xz-planes are pairs of lines

intersecting at the origin. The

traces in planes parallel to these

are hyperbolas.

The trace in the xy-plane is a

point (the origin), and the traces

in planes parallel to and above 

the xy-plane are ellipses. The

traces in the yz- and xz-planes

are parabolas, as are the traces in

planes parallel to these.

The trace in the xy-plane is a

pair of lines intersecting at the

origin. The traces in planes

parallel to the xy-plane are

hyperbolas. The hyperbolas

above the xy-plane open in the

y-direction, and those below in

the x-direction. The traces in the

yz- and xz-planes are parabolas,

as are the traces in planes

parallel to these.

y

x

z

ellipsoid elliptic cone

elliptic paraboloid

hyperbolic paraboloid

hyperboloid

of one sheet

hyperboloid

of two sheets

y

x

z

y

x

z

y

x

z

y

x

z

surface equation surface equation

The trace in the xy-plane is an 

ellipse, as are the traces in 

planes parallel to the xy-plane. 

The traces in the yz-plane and 

xz-plane are hyperbolas, as are 

the traces in those planes that are 

parallel to these and do not pass 

through the x- or y-intercepts.  

At these intercepts the traces are 

pairs of intersecting lines.

There is no trace in the xy-plane. 

In planes parallel to the xy-plane 

that intersect the surface in more

than one point the traces are 

ellipses. In the yz- and xz-planes, 

the traces are hyperbolas, as are 

the traces in those planes that are 

parallel to these.

A rough sketch of a hyperboloid of one sheet

x2

a2
+
y2

b2
−
z2

c2
= 1 (a > 0, b > 0, c > 0) (7)

can be obtained by first sketching the elliptical trace in the xy-plane, then the elliptical traces

in the planes z = ±c, and then the hyperbolic curves that join the endpoints of the axes of

these ellipses. The next example illustrates this technique.
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Example 2 Sketch the graph of the hyperboloid of one sheet

x2 + y2 −
z2

4
= 1 (8)

Solution. The trace in the xy-plane, obtained by setting z = 0 in (8), is

x2 + y2 = 1 (z = 0)

which is a circle of radius 1 centered on the z-axis. The traces in the planes z = 2 and

z = −2, obtained by setting z = ±2 in (8), are given by

x2 + y2 = 2 (z = ±2)

which are circles of radius
√

2 centered on the z-axis. Joining these circles by the hyperbolic

traces in the vertical coordinate planes yields the graph in Figure 12.7.6. ◭

Rough sketch

Figure 12.7.6

A rough sketch of the hyperboloid of two sheets

z2

c2
−
x2

a2
−
y2

b2
= 1 (a > 0, b > 0, c > 0) (9)

can be obtained by first plotting the intersections with the z-axis, then sketching the elliptical

traces in the planes z = ±2c, and then sketching the hyperbolic traces that connect the z-

axis intersections and the endpoints of the axes of the ellipses. (It is not essential to use the

planes z = ±2c, but these are good choices since they simplify the calculations slightly

and have the right spacing for a good sketch.) The next example illustrates this technique.

Example 3 Sketch the graph of the hyperboloid of two sheets

z2 − x2 −
y2

4
= 1 (10)

Solution. The z-intercepts, obtained by setting x = 0 and y = 0 in (10), are z = ±1. The

traces in the planes z = 2 and z = −2, obtained by setting z = ±2 in (10), are given by

x2

3
+
y2

12
= 1 (z = ±2)

Sketching these ellipses and the hyperbolic traces in the vertical coordinate planes yields

Figure 12.7.7. ◭

Rough sketch

Figure 12.7.7

A rough sketch of the elliptic cone

z2 =
x2

a2
+
y2

b2
(a > 0, b > 0) (11)

can be obtained by first sketching the elliptical traces in the planes z = ±1 and then

sketching the linear traces that connect the endpoints of the axes of the ellipses. The next

example illustrates this technique.

Example 4 Sketch the graph of the elliptic cone

z2 = x2 +
y2

4
(12)

Solution. The traces of (12) in the planes z = ±1 are given by

x2 +
y2

4
= 1 (z = ±1)

Sketching these ellipses and the linear traces in the vertical coordinate planes yields the

graph in Figure 12.7.8. ◭

Rough sketch

Figure 12.7.8
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•
•
•
•
•
•
•
•

REMARK. Observe that if a = b in (11), then the traces parallel to the xy-plane are circles,

in which case we call the surface a circular cone.

A rough sketch of the elliptic paraboloid

z =
x2

a2
+
y2

b2
(a > 0, b > 0) (13)

can be obtained by first sketching the elliptical trace in the plane z = 1 and then sketching

the parabolic traces in the vertical coordinate planes to connect the origin to the ends of the

axes of the ellipse. The next example illustrates this technique.

Example 5 Sketch the graph of the elliptic paraboloid

z =
x2

4
+
y2

9
(14)

Solution. The trace of (14) in the plane z = 1 is

x2

4
+
y2

9
= 1 (z = 1)

Sketching this ellipse and the parabolic traces in the vertical coordinate planes yields the

graph in Figure 12.7.9. ◭

Rough sketch

Figure 12.7.9

A rough sketch of the hyperbolic paraboloid

z =
y2

b2
−
x2

a2
(a > 0, b > 0) (15)

can be obtained by first sketching the two parabolic traces that pass through the origin (one

in the plane x = 0 and the other in the plane y = 0). After the parabolic traces are drawn,

sketch the hyperbolic traces in the planes z = ±1 and then fill in any missing edges. The

next example illustrates this technique.

Example 6 Sketch the graph of the hyperbolic paraboloid

z =
y2

4
−
x2

9
(16)

Solution. Setting x = 0 in (16) yields

z =
y2

4
(x = 0)

which is a parabola in the yz-plane with vertex at the origin and opening in the positive

z-direction (since z ≥ 0), and setting y = 0 yields

z = −
x2

9
(y = 0)

which is a parabola in the xz-plane with vertex at the origin and opening in the negative

z-direction.

The trace in the plane z = 1 is

y2

4
−
x2

9
= 1 (z = 1)

which is a hyperbola that opens along a line parallel to the y-axis (verify), and the trace in
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the plane z = −1 is

x2

9
−
y2

4
= 1 (z = −1)

which is a hyperbola that opens along a line parallel to the x-axis. Combining all of the

above information leads to the sketch in Figure 12.7.10. ◭

Rough sketch

Figure 12.7.10

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

REMARK. The hyperbolic paraboloid in Figure 12.7.10 has an interesting behavior at the

origin—the trace in the xz-plane has a relative maximum at (0, 0, 0), and the trace in the

yz-plane has a relative minimum at (0, 0, 0). Thus, a bug walking on the surface may view

the origin as a highest point if traveling along one path, or may view the origin as a lowest

point if traveling along a different path. A point with this property is commonly called a

saddle point or a minimax point.

Figure 12.7.11 shows two computer-generated views of the hyperbolic paraboloid in

Example 6. The first view, which is much like our rough sketch in Figure 12.7.10, has cuts

at the top and bottom that are hyperbolic traces parallel to the xy-plane. In the second view

the top horizontal cut has been omitted; this helps to emphasize the parabolic traces parallel

to the xz-plane.

y

x

z

y

x

z

Figure 12.7.11

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

TRANSLATIONS OF QUADRIC
SURFACES

In Section 11.4 we saw that a conic in an xy-coordinate system can be translated by sub-

stituting x − h for x and y − k for y in its equation. To understand why this works, think

of the xy-axes as fixed, and think of the plane as a transparent sheet of plastic on which all

graphs are drawn. When the coordinates of points are modified by substituting (x−h, y−k)
for (x, y), the geometric effect is to translate the sheet of plastic (and hence all curves) so

that the point on the plastic that was initially at (0, 0) is moved to the point (h, k) (see

Figure 12.7.12a).

x

y

(0, 0)

(h, k)
y

z

x

(h, k, l )

(a) (b)

Figure 12.7.12

For the analog in three dimensions, think of the xyz-axes as fixed, and think of 3-space as

a transparent block of plastic in which all surfaces are embedded. When the coordinates of
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points are modified by substituting (x − h, y − k, z− ℓ) for (x, y, z), the geometric effect

is to translate the block of plastic (and hence all surfaces) so that the point in the plastic

block that was initially at (0, 0, 0) is moved to the point (h, k, ℓ) (see Figure 12.7.12b).

Example 7 Describe the surface z = (x − 1)2 + (y + 2)2 + 3.

Solution. The equation can be rewritten as

z− 3 = (x − 1)2 + (y + 2)2

This surface is the paraboloid that results by translating the paraboloid

z = x2 + y2

in Figure 12.7.3 so that the new “vertex” is at the point (1,−2, 3). A rough sketch of this

paraboloid is shown in Figure 12.7.13. ◭

Rough sketch

Figure 12.7.13

Example 8 Describe the surface

4x2 + 4y2 + z2 + 8y − 4z = −4

Solution. Completing the squares yields

4x2 + 4(y + 1)2 + (z− 2)2 = −4 + 4 + 4

or

x2 + (y + 1)2 +
(z− 2)2

4
= 1

Thus, the surface is the ellipsoid that results when the ellipsoid

x2 + y2 +
z2

4
= 1

is translated so that the new “center” is at the point (0,−1, 2). A rough sketch of this

ellipsoid is shown in Figure 12.7.14. ◭
Rough sketch

Figure 12.7.14
•
•
•
•
•
•
•
•

FOR THE READER. The ellipsoid in Figure 12.7.14 was sketched with its cross section in

the yz-plane tangent to the y- and z-axes. Confirm that this is correct.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

REFLECTIONS OF SURFACES IN
3-SPACE

Recall that in an xy-coordinate system a point (x, y) is reflected about the x-axis if y is

replaced by −y, and it is reflected about the y-axis if x is replaced by −x. In an xyz-

coordinate system, a point (x, y, z) is reflected about the xy-plane if z is replaced by −z, it

is reflected about the yz-plane if x is replaced by −x, and it is reflected about the xz-plane

if y is replaced by −y (Figure 12.7.15). It follows that replacing a variable by its negative

in the equation of a surface causes that surface to be reflected about a coordinate plane.

Recall also that in an xy-coordinate system a point (x, y) is reflected about the line y = x
if x and y are interchanged. However, in an xyz-coordinate system, interchanging x and y

reflects the point (x, y, z) about the plane y = x (Figure 12.7.16). Similarly, interchanging

y

x

z

(x, y, z)

(–x, y, z)

(x, –y, z)

(x, y, –z)

Figure 12.7.15

y

x

z

(x, y, z)

(y, x, z)

Plane

y = x

Figure 12.7.16
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x and z reflects the point about the plane x = z, and interchanging y and z reflects it about

the plane y = z. Thus, it follows that interchanging two variables in the equation of a

surface reflects that surface about a plane that makes a 45◦angle with two of the coordinate

planes.

Example 9 Describe the surfaces

(a) y2 = x2 + z2 (b) z = −(x2 + y2)

Solution (a). The graph of the equation y2 = x2 +z2 results from interchanging y and z in

the equation z2 = x2 +y2. Thus, the graph of the equation y2 = x2 + z2 can be obtained by

reflecting the graph of z2 = x2 +y2 about the plane y = z. Since the graph of z2 = x2 +y2

is a circular cone opening along the z-axis (see Table 12.7.1), it follows that the graph of

y2 = x2 + z2 is a circular cone opening along the y-axis (Figure 12.7.17).

Solution (b). The graph of the equation z = −(x2 + y2) can be written as −z = x2 + y2,

which can be obtained by replacing z with −z in the equation z = x2 + y2. Since the graph

of z = x2 +y2 is a circular paraboloid opening in the positive z-direction (see Table 12.7.1),

it follows that the graph of z = −(x2 + y2) is a circular paraboloid opening in the negative

z-direction (Figure 12.7.18). ◭

y

x

z

Figure 12.7.17

y
x

z

Figure 12.7.18

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

A TECHNIQUE FOR IDENTIFYING
QUADRIC SURFACES

The equations of the quadric surfaces in Table 12.7.1 have certain characteristics that make

it possible to identify quadric surfaces that are derived from these equations by reflections.

These identifying characteristics, which are shown in Table 12.7.2, are based on writing the

equation of the quadric surface so that all of the variable terms are on the left side of the

equation and there is a 1 or a 0 on the right side. When there is a 1 on the right side the

surface is an ellipsoid, hyperboloid of one sheet, or a hyperboloid of two sheets, and when

there is a 0 on the right side it is an elliptic cone, an elliptic paraboloid, or a hyperbolic

paraboloid. Within the group with a 1 on the right side, ellipsoids have no minus signs,

hyperboloids of one sheet have one minus sign, and hyperboloids of two sheets have two

minus signs. Within the group with a 0 on the right side, elliptic cones have no linear terms,

elliptic paraboloids have one linear term and two quadratic terms with the same sign, and

hyperbolic paraboloids have one linear term and two quadratic terms with opposite signs.

These characteristics do not change when the surface is reflected about a coordinate plane

or planes of the form x = y, x = z, or y = z, thereby making it possible to identify the

reflected quadric surface from the form of its equation.

Example 10 Identify the surfaces

(a) 3x2 − 4y2 + 12z2 + 12 = 0 (b) 4x2 − 4y + z2 = 0
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Table 12.7.2

equation characteristic classification

x2

a2

y2

b2

z2

c2
+ + = 1

x2

a2

y2

b2

z2

c2
+ – = 1

z2

c2

x2

a2

y2

b2
– – = 1

z2 x2

a2

y2

b2
– – = 0

z –
x2

a2

y2

b2
– = 0

z –
y2

b2

x2

a2
+ = 0

One linear term;

two quadratic terms

with opposite signs

One linear term;

two quadratic terms

with the same sign

No linear terms

Two minus signs

No minus signs

One minus sign

Hyperbolic paraboloid

Elliptic paraboloid

Elliptic cone

Hyperboloid of two sheets

Ellipsoid

Hyperboloid of one sheet

Solution (a). The equation can be rewritten as

y2

3
−
x2

4
− z2 = 1

This equation has a 1 on the right side and two negative terms on the left side, so its graph

is a hyperboloid of two sheets.

Solution (b). The equation has one linear term and two quadratic terms with the same

sign, so its graph is an elliptic paraboloid. ◭

EXERCISE SET 12.7
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, identify the quadric surface as an el-

lipsoid, hyperboloid of one sheet, hyperboloid of two sheets,

elliptic cone, elliptic paraboloid, or hyperbolic paraboloid by

matching the equation with one of the forms given in Ta-

ble 12.7.1. State the values of a, b, and c in each case.

1. (a) z =
x2

4
+
y2

9
(b) z =

y2

25
− x2

(c) x2 + y2 − z2 = 16 (d) x2 + y2 − z2 = 0

(e) 4z = x2 + 4y2 (f ) z2 − x2 − y2 = 1

2. (a) 6x2 + 3y2 + 4z2 = 12 (b) y2 − x2 − z = 0

(c) 9x2 + y2 − 9z2 = 9 (d) 4x2 + y2 − 4z2 = −4

(e) 2z− x2 − 4y2 = 0 (f ) 12z2 − 3x2 = 4y2

3. Find an equation for and sketch the surface that results when

the circular paraboloid z = x2 + y2 is reflected about the

plane

(a) z = 0 (b) x = 0 (c) y = 0

(d) y = x (e) x = z (f ) y = z.

4. Find an equation for and sketch the surface that results when

the hyperboloid of one sheet x2 + y2 − z2 = 1 is reflected

about the plane

(a) z = 0 (b) x = 0 (c) y = 0

(d) y = x (e) x = z (f ) y = z.

5. The given equations represent quadric surfaces whose ori-

entations are different from those in Table 12.7.1. In each

part, identify the quadric surface, and give a verbal de-

scription of its orientation (e.g., an elliptic cone opening

along the z-axis or a hyperbolic paraboloid straddling the

y-axis).

(a)
z2

c2
−
y2

b2
+
x2

a2
= 1 (b)

x2

a2
−
y2

b2
−
z2

c2
= 1

(c) x =
y2

b2
+
z2

c2
(d) x2 =

y2

b2
+
z2

c2

(e) y =
z2

c2
−
x2

a2
(f ) y = −

(

x2

a2
+
z2

c2

)
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6. For each of the surfaces in Exercise 5, find the equation of

the surface that results if the given surface is reflected about

the xz-plane and that surface is then reflected about the plane

z = 0.

In Exercises 7 and 8, find equations of the traces in the co-

ordinate planes, and sketch the traces in an xyz-coordinate

system. [Suggestion: If you have trouble sketching a trace

directly in three dimensions, start with a sketch in two di-

mensions by placing the coordinate plane in the plane of the

paper; then transfer that sketch to three dimensions.]

7. (a)
x2

9
+
y2

25
+
z2

4
= 1 (b) z = x2 + 4y2

(c)
x2

9
+
y2

16
−
z2

4
= 1

8. (a) y2 + 9z2 = x (b) 4x2 − y2 + 4z2 = 4

(c) z2 = x2 +
y2

4

In Exercises 9 and 10, the traces of the surfaces in the planes

are conic sections. In each part, find an equation of the trace,

and state whether it is an ellipse, a parabola, or a hyperbola.

9. (a) 4x2 + y2 + z2 = 4; y = 1

(b) 4x2 + y2 + z2 = 4; x = 1
2

(c) 9x2 − y2 − z2 = 16; x = 2

(d) 9x2 − y2 − z2 = 16; z = 2

(e) z = 9x2 + 4y2; y = 2

(f ) z = 9x2 + 4y2; z = 4

10. (a) 9x2 − y2 + 4z2 = 9; x = 2

(b) 9x2 − y2 + 4z2 = 9; y = 4

(c) x2 + 4y2 − 9z2 = 0; y = 1

(d) x2 + 4y2 − 9z2 = 0; z = 1

(e) z = x2 − 4y2; x = 1

(f ) z = x2 − 4y2; z = 4

In Exercises 11–22, identify and sketch the quadric surface.

11. x2 +
y2

4
+
z2

9
= 1 12. x2 + 4y2 + 9z2 = 36

13.
x2

4
+
y2

9
−
z2

16
= 1 14. x2 + y2 − z2 = 9

15. 4z2 = x2 + 4y2 16. 9x2 + 4y2 − 36z2 = 0

17. 9z2 − 4y2 − 9x2 = 36 18. y2 −
x2

4
−
z2

9
= 1

19. z = y2 − x2 20. 16z = y2 − x2

21. 4z = x2 + 2y2 22. z− 3x2 − 3y2 = 0

In Exercises 23–28, the given equations represent quadric

surfaces whose orientations are different from those in Ta-

ble 12.7.1. Identify and sketch the surface.

23. x2 − 3y2 − 3z2 = 0 24. x − y2 − 4z2 = 0

25. 2y2 − x2 + 2z2 = 8 26. x2 − 3y2 − 3z2 = 9

27. z =
x2

4
−
y2

9
28. 4x2 − y2 + 4z2 = 16

In Exercises 29–32, sketch the surface.

29. z =
√

x2 + y2 30. z =
√

1 − x2 − y2

31. z =
√

x2 + y2 − 1 32. z =
√

1 + x2 + y2

In Exercises 33–36, identify the surface, and make a rough

sketch that shows its position and orientation.

33. z = (x + 2)2 + (y − 3)2 − 9

34. 4x2 − y2 + 16(z− 2)2 = 100

35. 9x2 + y2 + 4z2 − 18x + 2y + 16z = 10

36. z2 = 4x2 + y2 + 8x − 2y + 4z

Exercises 37 and 38 are concerned with the ellipsoid

4x2 + 9y2 + 18z2 = 72.

37. (a) Find an equation of the elliptical trace in the plane

z =
√

2.

(b) Find the lengths of the major and minor axes of the

ellipse in part (a).

(c) Find the coordinates of the foci of the ellipse in part (a).

(d) Describe the orientation of the focal axis of the ellipse

in part (a) relative to the coordinate axes.

38. (a) Find an equation of the elliptical trace in the plane

x = 3.

(b) Find the lengths of the major and minor axes of the

ellipse in part (a).

(c) Find the coordinates of the foci of the ellipse in part (a).

(d) Describe the orientation of the focal axis of the ellipse

in part (a) relative to the coordinate axes.

Exercises 39–42 refer to the hyperbolic paraboloid

z = y2 − x2.

39. (a) Find an equation of the hyperbolic trace in the plane

z = 4.

(b) Find the vertices of the hyperbola in part (a).

(c) Find the foci of the hyperbola in part (a).

(d) Describe the orientation of the focal axis of the hyper-

bola in part (a) relative to the coordinate axes.

40. (a) Find an equation of the hyperbolic trace in the plane

z = −4.

(b) Find the vertices of the hyperbola in part (a).

(c) Find the foci of the hyperbola in part (a).

(d) Describe the orientation of the focal axis of the hyper-

bola in part (a) relative to the coordinate axes.
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41. (a) Find an equation of the parabolic trace in the plane

x = 2.

(b) Find the vertex of the parabola in part (a).

(c) Find the focus of the parabola in part (a).

(d) Describe the orientation of the focal axis of the parabola

in part (a) relative to the coordinate axes.

42. (a) Find an equation of the parabolic trace in the plane

y = 2.

(b) Find the vertex of the parabola in part (a).

(c) Find the focus of the parabola in part (a).

(d) Describe the orientation of the focal axis of the parabola

in part (a) relative to the coordinate axes.

In Exercises 43 and 44, sketch the region enclosed between

the surfaces and describe their curve of intersection.

43. The paraboloids z = x2 + y2 and z = 4 − x2 − y2

44. The hyperbolic paraboloid x2 = y2 + z and the ellipsoid

x2 = 4 − 2y2 − 2z

In Exercises 45 and 46, find an equation for the surface gen-

erated by revolving the curve about the axis.

45. y = 4x2 (z = 0) about the y-axis

46. y = 2x (z = 0) about the y-axis

47. Find an equation of the surface consisting of all points

P(x, y, z) that are equidistant from the point (0, 0, 1) and

the plane z = −1. Identify the surface.

48. Find an equation of the surface consisting of all points

P(x, y, z) that are twice as far from the plane z = −1

as from the point (0, 0, 1). Identify the surface.

49. If a sphere

x2

a2
+
y2

a2
+
z2

a2
= 1

of radius a is compressed in the z-direction, then the result-

ing surface, called an oblate spheroid, has an equation of

the form

x2

a2
+
y2

a2
+
z2

c2
= 1

where c < a. Show that the oblate spheroid has a circular

trace of radius a in the xy-plane and an elliptical trace in the

xz-plane with major axis of length 2a along the x-axis and

minor axis of length 2c along the z-axis.

50. The Earth’s rotation causes a flattening at the poles, so its

shape is often modeled as an oblate spheroid rather than a

sphere (see Exercise 49 for terminology). One of the models

used by global positioning satellites is the World Geodetic

System of 1984 (WGS-84), which treats the Earth as an

oblate spheroid whose equatorial radius is 6378.1370 km

and whose polar radius (the distance from the Earth’s cen-

ter to the poles) is 6356.5231 km. Use the WGS-84 model

to find an equation for the surface of the Earth relative to

the coordinate system shown in the accompanying figure.

z

Equator

North Pole

y

x

Figure Ex-50

51. Use the method of slicing to show that the volume of the

ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

is 4
3
πabc.

12.8 CYLINDRICAL AND SPHERICAL COORDINATES

In this section we will discuss two new types of coordinate systems in 3-space that are

often more useful than rectangular coordinate systems for studying surfaces with sym-

metries. These new coordinate systems also have important applications in navigation,

astronomy, and the study of rotational motion about an axis.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CYLINDRICAL AND SPHERICAL
COORDINATE SYSTEMS

Three coordinates are required to establish the location of a point in 3-space. We have

already done this using rectangular coordinates. However, Figure 12.8.1 shows two other

possibilities: part (a) of the figure shows the rectangular coordinates (x, y, z) of a point P ,

part (b) shows the cylindrical coordinates (r, θ, z) of P , and part (c) shows the spherical

coordinates (ρ, θ, φ) of P . In a rectangular coordinate system the coordinates can be any

real numbers, but in cylindrical and spherical coordinate systems there are restrictions on

the allowable values of the coordinates (as indicated in Figure 12.8.1).
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y

y

x

x

z

z

P(x, y, z)

y

x

z

z

r

P(r, u, z)

u

y

x

z

f

r

P(r, u, f)

u

Rectangular coordinates

(x, y, z)

Cylindrical coordinates

(r, u, z)

(r ≥ 0, 0 ≤ u < 2p)

Spherical coordinates

(r, u, f)

(r ≥ 0, 0 ≤ u < 2p, 0 ≤ f ≤ p)

(c)(b)(a)

Figure 12.8.1

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONSTANT SURFACES
In rectangular coordinates the surfaces represented by equations of the form

x = x0, y = y0, and z = z0

where x0, y0, and z0 are constants, are planes parallel to the yz-plane, xz-plane, and xy-

plane, respectively (Figure 12.8.2a). In cylindrical coordinates the surfaces represented by

equations of the form

r = r0, θ = θ0, and z = z0

where r0, θ0, and z0 are constants, are shown in Figure 12.8.2b:

• The surface r = r0 is a right circular cylinder of radius r0 centered on the z-axis. At each

point (r, θ, z) on this cylinder, r has the value r0, but θ and z are unrestricted except for

our general restriction that 0 ≤ θ < 2π.

• The surface θ = θ0 is a half-plane attached along the z-axis and making an angle θ0

with the positive x-axis. At each point (r, θ, z) on this surface, θ has the value θ0, but

r and z are unrestricted except for our general restriction that r ≥ 0.

• The surface z = z0 is a horizontal plane. At each point (r, θ, z) on this plane, z has the

value z0, but r and θ are unrestricted except for the general restrictions.

y

z

x

y

z

x

y = y0

x = x0

z = z0

z = z0

r = r0

y0

x0

z0

u = u0

u = u0

f = f0

r = r0

u0

r0

z0

y

z

x

u0

r0

f0

(a) (b) (c)

Figure 12.8.2

In spherical coordinates the surfaces represented by equations of the form

ρ = ρ0, θ = θ0, and φ = φ0

where ρ0, θ0, and φ0 are constants, are shown in Figure 12.8.2c:
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• The surface ρ = ρ0 consists of all points whose distance ρ from the origin is ρ0.

Assuming ρ0 to be nonnegative, this is a sphere of radius ρ0 centered at the origin.

• As in cylindrical coordinates, the surface θ = θ0 is a half-plane attached along the

z-axis, making an angle of θ0 with the positive x-axis.

• The surface φ = φ0 consists of all points from which a line segment to the origin

makes an angle of φ0 with the positive z-axis. Depending on whether 0 < φ0 < π/2

or π/2 < φ0 < π, this will be the nappe of a cone opening up or opening down. (If

φ0 = π/2, then the cone is flat, and the surface is the xy-plane.)

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

CONVERTING COORDINATES
Just as we needed to convert between rectangular and polar coordinates in 2-space, so we

will need to be able to convert between rectangular, cylindrical, and spherical coordinates

in 3-space. Table 12.8.1 provides formulas for making these conversions.

Table 12.8.1

conversion formulas restrictions

Cylindrical to rectangular

Rectangular to cylindrical

(r, u, z) → (x, y, z)

(x, y, z) → (r, u, z)

x = r cos u,

r = √x2 + y2,

y = r sin u,

tan u = y/x, 

z = z

r ≥  0, r ≥ 0

0 ≤  u < 2p

0 ≤  f ≤  p

z = z

Spherical to cylindrical

Cylindrical to spherical

(r, u, f) →  (r, u, z)

(r, u, z) → (r, u, f)

r = r sin f,

r = √r2 + z2,

u = u,

u = u, 

z = r cos f

tan f = r/z

Spherical to rectangular

Rectangular to spherical

(r, u, f) → (x, y, z)

(x, y, z) →  (r, u, f)

x = r sin f cos u,

r = √x2 + y2 + z2,

y = r sin f sin u,

tan u = y/x,

z = r cos f

cos f = z/√x2 + y2 + z2

The diagrams in Figure 12.8.3 will help you to understand how the formulas in Ta-

ble 12.8.1 are derived. For example, part (a) of the figure shows that in converting between

rectangular coordinates (x, y, z) and cylindrical coordinates (r, θ, z), we can interpret (r, θ)

as polar coordinates of (x, y). Thus, the polar-to-rectangular and rectangular-to-polar con-

version formulas (1) and (2) of Section 11.1 provide the conversion formulas between

rectangular and cylindrical coordinates in the table.

P

y

z

x

(x, y, z)

(r, u, z)

(r, u, 0)

r

y

z

x
u

P

y

z

x

(r, u, f)

(r, u, z)

r

z

u

(a)

(b)

f

r f

Figure 12.8.3

Part (b) of Figure 12.8.3 suggests that the spherical coordinates (ρ, θ, φ) of a point P

can be converted to cylindrical coordinates (r, θ, z) by the conversion formulas

r = ρ sinφ, θ = θ, z = ρ cosφ (1)

Moreover, since the cylindrical coordinates (r, θ, z) of P can be converted to rectangular

coordinates (x, y, z) by the conversion formulas

x = r cos θ, y = r sin θ, z = z (2)

we can obtain direct conversion formulas from spherical coordinates to rectangular coordi-

nates by substituting (1) in (2). This yields

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ (3)

The other conversion formulas in Table 12.8.1 are left as exercises.

Example 1

(a) Find the rectangular coordinates of the point with cylindrical coordinates

(r, θ, z) = (4, π/3,−3)

(b) Find the rectangular coordinates of the point with spherical coordinates

(ρ, θ, φ) = (4, π/3, π/4)
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Solution (a). Applying the cylindrical-to-rectangular conversion formulas in Table 12.8.1

yields

x = r cos θ = 4 cos
π

3
= 2, y = r sin θ = 4 sin

π

3
= 2

√
3, z = −3

Thus, the rectangular coordinates of the point are (x, y, z) = (2, 2
√

3,−3) (Figure 12.8.4).

y

x

z

4

3

p/3

(2, 2√3, –3)

(4, p/3, –3)

Figure 12.8.4

Solution (b). Applying the spherical-to-rectangular conversion formulas in Table 12.8.1

yields

x = ρ sinφ cos θ = 4 sin
π

4
cos

π

3
=

√
2

y = ρ sinφ sin θ = 4 sin
π

4
sin
π

3
=

√
6

z = ρ cosφ = 4 cos
π

4
= 2

√
2

Thus, the rectangular coordinates of the point are (x, y, z) = (
√

2,
√

6, 2
√

2) (Figure 12.8.5).

◭
y

x

z

4
p/4

p/3

√2

2√2

√6

Figure 12.8.5

Example 2 Find the spherical coordinates of the point that has rectangular coordinates

(x, y, z) = (4,−4, 4
√

6)

Solution. From the rectangular-to-spherical conversion formulas in Table 12.8.1 we obtain

ρ =
√

x2 + y2 + z2 =
√

16 + 16 + 96 =
√

128 = 8
√

2

tan θ =
y

x
= −1

cosφ =
z

√

x2 + y2 + z2
=

4
√

6

8
√

2
=

√
3

2

From the restriction 0 ≤ θ < 2π and the computed value of tan θ , the possibilities for θ

are θ = 3π/4 and θ = 7π/4. However, the given point has a negative y-coordinate, so we

must have θ = 7π/4. Moreover, from the restriction 0 ≤ φ ≤ π and the computed value

of cosφ, the only possibility for φ is φ = π/6. Thus, the spherical coordinates of the point

are (ρ, θ, φ) = (8
√

2, 7π/4, π/6) (Figure 12.8.6). ◭

y

x

z

4

4

4

7p/4

p/6

8√2

4√6

Figure 12.8.6

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

EQUATIONS OF SURFACES IN
CYLINDRICAL AND SPHERICAL
COORDINATES

Surfaces of revolution about the z-axis of a rectangular coordinate system usually have sim-

pler equations in cylindrical coordinates than in rectangular coordinates, and the equations

of surfaces with symmetry about the origin are usually simpler in spherical coordinates

than in rectangular coordinates. For example, consider the upper nappe of the circular cone

whose equation in rectangular coordinates is

z =
√

x2 + y2

(Table 12.8.2). The corresponding equation in cylindrical coordinates can be obtained from

the cylindrical-to-rectangular conversion formulas in Table 12.8.1. This yields

z =
√

(r cos θ)2 + (r sin θ)2 =
√
r2 = |r| = r

so the equation of the cone in cylindrical coordinates is z = r . Going a step further,

the equation of the cone in spherical coordinates can be obtained from the spherical-to-

cylindrical conversion formulas from Table 12.8.1. This yields

ρ cosφ = ρ sinφ

which, if ρ
�
= 0, can be rewritten as

tanφ = 1 or φ =
π

4

Geometrically, this tells us that the radial line from the origin to any point on the cone makes

an angle of π/4 with the z-axis.
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Table 12.8.2

cone cylinder sphere paraboloid hyperboloid 

rectangular

cylindrical

spherical

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

z = √x2 + y2

z = r

f = p/4

x2 + y2 = 1

r = 1

r = csc f

x2 + y2 + z2 = 1

z2 = 1 – r2

r = 1

x2 + y2 – z2 = 1

z2 = r2 – 1

r2 = –sec 2f

z = x2 + y2

z = r2

r = cos f csc2 f

Example 3 Find equations of the paraboloid z = x2 + y2 in cylindrical and spherical

coordinates.

Solution. The rectangular-to-cylindrical conversion formulas in Table 12.8.1 yield

z = r2 (4)

which is the equation in cylindrical coordinates. Now applying the spherical-to-cylindrical

conversion formulas to (4) yields

ρ cosφ = ρ2 sin2 φ

which we can rewrite as

ρ = cosφ csc2 φ

Alternatively, we could have obtained this equation directly from the equation in rectangular

coordinates by applying the spherical-to-rectangular conversion formulas (verify). ◭

•
•
•
•
•
•
•
•

FOR THE READER. Confirm that the equations for the cylinder and hyperboloid in cylin-

drical and spherical coordinates given in Table 12.8.2 are correct.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

SPHERICAL COORDINATES IN
NAVIGATION

Spherical coordinates are related to longitude and latitude coordinates used in navigation.

To see why this is so, let us construct a right-hand rectangular coordinate system with its

origin at the center of the Earth, its positive z-axis passing through the North Pole, and

its positive x-axis passing through the prime meridian (Figure 12.8.7). If we assume the

Earth to be a sphere of radius ρ = 4000 miles, then each point on the Earth has spherical

coordinates of the form (4000, θ, φ), where φ and θ determine the latitude and longitude of

the point. It is common to specify longitudes in degrees east or west of the prime meridian

z

x

y

Prime meridian

New Orleans

Equator

East

West

Figure 12.8.7
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and latitudes in degrees north or south of the equator. However, the next example shows

that it is a simple matter to determine φ and θ from such data.

Example 4 The city of New Orleans is located at 90◦ west longitude and 30◦ north lati-

tude. Find its spherical and rectangular coordinates relative to the coordinate axes of Fig-

ure 12.8.7. (Assume that distance is in miles.)

Solution. A longitude of 90◦ west corresponds to θ = 360◦ − 90◦ = 270◦ or θ = 3π/2

radians; and a latitude of 30◦ north corresponds to φ = 90◦ − 30◦ = 60◦ or φ = π/3

radians. Thus, the spherical coordinates (ρ, θ, φ) of New Orleans are (4000, 3π/2, π/3).

To find the rectangular coordinates we apply the spherical-to-rectangular conversion

formulas in Table 12.8.1. This yields

x = 4000 sin
π

3
cos

3π

2
= 4000

√
3

2
(0) = 0 mi

y = 4000 sin
π

3
sin

3π

2
= 4000

√
3

2
(−1) = −2000

√
3 mi

z = 4000 cos
π

3
= 4000

(

1

2

)

= 2000 mi ◭

EXERCISE SET 12.8 Graphing Utility C CAS
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

In Exercises 1 and 2, convert from rectangular to cylindrical

coordinates.

1. (a) (4
√

3, 4,−4) (b) (−5, 5, 6)

(c) (0, 2, 0) (d) (4,−4
√

3, 6)

2. (a) (
√

2,−
√

2, 1) (b) (0, 1, 1)

(c) (−4, 4,−7) (d) (2,−2,−2)

In Exercises 3 and 4, convert from cylindrical to rectangular

coordinates.

3. (a) (4, π/6, 3) (b) (8, 3π/4,−2)

(c) (5, 0, 4) (d) (7, π,−9)

4. (a) (6, 5π/3, 7) (b) (1, π/2, 0)

(c) (3, π/2, 5) (d) (4, π/2,−1)

In Exercises 5 and 6, convert from rectangular to spherical

coordinates.

5. (a) (1,
√

3,−2) (b) (1,−1,
√

2)

(c) (0, 3
√

3, 3) (d) (−5
√

3, 5, 0)

6. (a) (4, 4, 4
√

6) (b) (1,−
√

3,−2)

(c) (2, 0, 0) (d) (
√

3, 1, 2
√

3)

In Exercises 7 and 8, convert from spherical to rectangular

coordinates.

7. (a) (5, π/6, π/4) (b) (7, 0, π/2)

(c) (1, π, 0) (d) (2, 3π/2, π/2)

8. (a) (1, 2π/3, 3π/4) (b) (3, 7π/4, 5π/6)

(c) (8, π/6, π/4) (d) (4, π/2, π/3)

In Exercises 9 and 10, convert from cylindrical to spherical

coordinates.

9. (a) (
√

3, π/6, 3) (b) (1, π/4,−1)

(c) (2, 3π/4, 0) (d) (6, 1,−2
√

3)

10. (a) (4, 5π/6, 4) (b) (2, 0,−2)

(c) (4, π/2, 3) (d) (6, π, 2)

In Exercises 11 and 12, convert from spherical to cylindrical

coordinates.

11. (a) (5, π/4, 2π/3) (b) (1, 7π/6, π)

(c) (3, 0, 0) (d) (4, π/6, π/2)

12. (a) (5, π/2, 0) (b) (6, 0, 3π/4)

(c) (
√

2, 3π/4, π) (d) (5, 2π/3, 5π/6)

C 13. Use a CAS or a programmable calculating utility to set up

the conversion formulas in Table 12.8.1, and then use the

CAS or calculating utility to solve the problems in Exercises

1, 3, 5, 7, 9, and 11.

C 14. Use a CAS or a programmable calculating utility to set up

the conversion formulas in Table 12.8.1, and then use the

CAS or calculating utility to solve the problems in Exercises

2, 4, 6, 8, 10, and 12.
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In Exercises 15–22, an equation is given in cylindrical coor-

dinates. Express the equation in rectangular coordinates and

sketch the graph.

15. r = 3 16. θ = π/4 17. z = r2

18. z = r cos θ 19. r = 4 sin θ 20. r = 2 sec θ

21. r2 + z2 = 1 22. r2 cos 2θ = z

In Exercises 23–30, an equation is given in spherical coor-

dinates. Express the equation in rectangular coordinates and

sketch the graph.

23. ρ = 3 24. θ = π/3
25. φ = π/4 26. ρ = 2 secφ

27. ρ = 4 cosφ 28. ρ sinφ = 1

29. ρ sinφ = 2 cos θ 30. ρ − 2 sinφ cos θ = 0

In Exercises 31–42, an equation of a surface is given in rec-

tangular coordinates. Find an equation of the surface in (a)

cylindrical coordinates and (b) spherical coordinates.

31. z = 3 32. y = 2

33. z = 3x2 + 3y2 34. z =
√

3x2 + 3y2

35. x2 + y2 = 4 36. x2 + y2 − 6y = 0

37. x2 + y2 + z2 = 9 38. z2 = x2 − y2

39. 2x + 3y + 4z = 1 40. x2 + y2 − z2 = 1

41. x2 = 16 − z2 42. x2 + y2 + z2 = 2z

In Exercises 43–46, describe the region in 3-space that satis-

fies the given inequalities.

43. r2 ≤ z ≤ 4

44. 0 ≤ r ≤ 2 sin θ , 0 ≤ z ≤ 3

45. 1 ≤ ρ ≤ 3

46. 0 ≤ φ ≤ π/6, 0 ≤ ρ ≤ 2

47. St. Petersburg (Leningrad), Russia, is located at 30◦ east

longitude and 60◦ north latitude. Find its spherical and rect-

angular coordinates relative to the coordinate axes of Fig-

ure 12.8.7. Take miles as the unit of distance and assume

the Earth to be a sphere of radius 4000 miles.

48. (a) Show that the curve of intersection of the surfaces

z = sin θ and r = a (cylindrical coordinates) is an

ellipse.

(b) Sketch the surface z = sin θ for 0 ≤ θ ≤ π/2.

49. The accompanying figure shows a right circular cylinder of

radius 10 cm spinning at 3 revolutions per minute about the

z-axis. At time t = 0 s, a bug at the point (0, 10, 0) begins

walking straight up the face of the cylinder at the rate of

0.5 cm/min.

(a) Find the cylindrical coordinates of the bug after 2 min.

(b) Find the rectangular coordinates of the bug after 2 min.

(c) Find the spherical coordinates of the bug after 2 min.

(0, 10, 0)

y

x

z

3 rev/min

Figure Ex-49

50. Referring to Exercise 49, use a graphing utility to graph the

bug’s distance from the origin as a function of time.

51. A ship at sea is at pointA that is 60◦ west longitude and 40◦

north latitude. The ship travels to point B that is 40◦ west

longitude and 20◦ north latitude. Assuming that the Earth is

a sphere with radius 6370 kilometers, find the shortest dis-

tance the ship can travel in going fromA toB, given that the

shortest distance between two points on a sphere is along

the arc of the great circle joining the points. [Suggestion:

Introduce an xyz-coordinate system as in Figure 12.8.7, and

consider the angle between the vectors from the center of

the Earth to the points A and B. If you are not familiar with

the term “great circle,” consult a dictionary.]

SUPPLEMENTARY EXERCISES

1. (a) What is the difference between a vector and a scalar?

Give a physical example of each.

(b) How can you determine whether or not two vectors are

orthogonal?

(c) How can you determine whether or not two vectors are

parallel?

(d) How can you determine whether or not three vectors

with a common initial point lie in the same plane in

3-space?

2. (a) Sketch vectors u and v for which u + v and u − v are

orthogonal.

(b) How can you use vectors to determine whether four

points in 3-space lie in the same plane?

(c) If forces F1 = i and F2 = j are applied at a point in

2-space, what force would you apply at that point to

cancel the combined effect of F1 and F2?

(d) Write an equation of the sphere with center (1,−2, 2)

that passes through the origin.
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3. (a) Draw a picture that shows the direction angles α, β, and

γ of a vector.

(b) What are the components of a unit vector in 2-space that

makes an angle of 120◦ with the positive x-axis (two

answers)?

(c) How can you use vectors to determine whether a trian-

gle with known vertices P1, P2, and P3 has an obtuse

angle?

(d) True or false: The cross product of orthogonal unit vec-

tors is a unit vector. Explain your reasoning.

4. (a) Make a table that shows all possible cross products of

the vectors i, j, and k.

(b) Give a geometric interpretation of�u × v�.
(c) Give a geometric interpretation of |u · (v × w)|.
(d) Write an equation of the plane that passes through the

origin and is perpendicular to the line x = t , y = 2t ,

z = −t .
5. (a) List the six basic types of quadric surfaces, and describe

their traces in planes parallel to the coordinate planes.

(b) Give the coordinates of the points that result when the

point (x, y, z) is reflected about the plane y = x, the

plane y = z, and the plane x = z.
(c) Describe the intersection of the surfaces r = 5 and

z = 1 in cylindrical coordinates.

(d) Describe the intersection of the surfaces φ = π/4 and

θ = 0 in spherical coordinates.

6. In each part, find an equation of the sphere with center

(−3, 5,−4) and satisfying the given condition.

(a) Tangent to the xy-plane

(b) Tangent to the xz-plane

(c) Tangent to the yz-plane

7. (a) Find the area of the triangle with vertices A(1, 0, 1),

B(0, 2, 3), and C(2, 1, 0).

(b) Use the result in part (a) to find the length of the altitude

from vertex C to side AB.

8. Find the largest and smallest distances between the point

P(1, 1, 1) and the sphere

x2 + y2 + z2 − 2y + 6z− 6 = 0

9. Let a = ci + j and b = 4i + 3 j. Find c so that

(a) a and b are orthogonal

(b) the angle between a and b is π/4

(c) the angle between a and b is π/6

(d) a and b are parallel.

10. Given the points P(3, 4), Q(1, 1), and R(5, 2), use vector

methods to find the coordinates of the fourth vertex of the

parallelogram whose adjacent sides are
−→
PQ and

−→
QR.

11. Let r0=�x0, y0, z0�and r=�x, y, z�. Describe the set of

all points (x, y, z) for which

(a) r · r0 = 0 (b) (r − r0) · r0 = 0.

12. What condition must the constants satisfy for the planes

a1x + b1y + c1z = d1 and a2x + b2y + c2z = d2

to be perpendicular?

13. LetA,B,C, andD be four distinct points in 3-space. Explain

why the line throughA andB must intersect the line through

C and D if
−→
AB ×

−→
CD �= 0 and

−→
AC · (

−→
AB ×

−→
CD) = 0.

14. Let A, B, and C be three distinct noncollinear points in 3-

space. Describe the set of all points P that satisfy the vector

equation
−→
AP · (

−→
AB ×

−→
AC) = 0.

15. True or false? Explain your reasoning.

(a) If u · v = 0, then u = 0 or v = 0.

(b) If u × v = 0, then u = 0 or v = 0.

(c) If u · v = 0 and u × v = 0, then u = 0 or v = 0.

16. In each part, use the result in Exercise 39 of Section 12.4 to

prove the vector identity.

(a) (a × b)× (c × d) = (a × b · d)c − (a × b · c)d

(b) (a × b)× c + (b × c)× a + (c × a)× b = 0

17. Show that if u and v are unit vectors and θ is the angle

between them, then�u − v�=2 sin 1
2
θ .

18. Consider the points

A(1,−1, 2), B(2,−3, 0), C(−1,−2, 0),D(2, 1,−1)

(a) Find the volume of the parallelepiped that has the vec-

tors
−→
AB,

−→
AC,

−→
AD as adjacent edges.

(b) Find the distance fromD to the plane containing A, B,

and C.

19. (a) Find parametric equations for the intersection of the

planes 2x + y − z = 3 and x + 2y + z = 3.

(b) Find the acute angle between the two planes.

20. A diagonal of a box makes angles of 50◦ and 70◦ with two

of its edges. Find to the nearest degree the angle that it makes

with the third edge.

21. Find the vector with length 5 and direction angles α = 60◦ ,

β = 120◦ , γ = 135◦ .

22. The accompanying figure shows a cube.

(a) Find the angle between the vectors d and u to the nearest

degree.

(b) Make a conjecture about the angle between the vectors

d and v, and confirm your conjecture by computing the

angle.

y

z

x

d

u

v

Figure Ex-22

23. In each part, identify the surface by completing the squares.

(a) x2 + 4y2 − z2 − 6x + 8y + 4z = 0

(b) x2 + y2 + z2 + 6x − 4y + 12z = 0

(c) x2 + y2 − z2 − 2x + 4y + 5 = 0
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24. In Exercise 42 of Section 12.5 we defined the symmetric

equations of a line in 3-space. Consider the lines L1 and L2

whose symmetric equations are

L1 :
x − 1

2
=
y + 3

2

1
=
z+ 1

2

L2 :
x − 4

−1
=
y − 3

−2
=
z+ 4

2

(a) Are L1 and L2 parallel? Perpendicular?

(b) Find parametric equations for L1 and L2.

(c) Do L1 and L2 intersect? If so, where?

25. In each part, express the equation in cylindrical and spheri-

cal coordinates.

(a) x2 + y2 = z (b) x2 − y2 − z2 = 0

26. In each part, express the equation in rectangular coordinates.

(a) z = r2 cos 2θ (b) ρ2 sinφ cosφ cos θ = 1

In Exercises 27 and 28, sketch the solid in 3-space that is

described in spherical coordinates by the stated inequalities.

27. (a) 0 ≤ ρ ≤ 2 (b) 0 ≤ φ ≤ π/6
(c) 0 ≤ ρ ≤ 2 and 0 ≤ φ ≤ π/6

28. (a) 0 ≤ ρ ≤ 5, 0 ≤ φ ≤ π/2, and 0 ≤ θ ≤ π/2
(b) 0 ≤ φ ≤ π/3 and 0 ≤ ρ ≤ 2 secφ

(c) 0 ≤ ρ ≤ 2 and π/6 ≤ φ ≤ π/3

In Exercises 29 and 30, sketch the solid in 3-space that is de-

scribed in cylindrical coordinates by the stated inequalities.

29. (a) 1 ≤ r ≤ 2 (b) 2 ≤ z ≤ 3 (c) π/6 ≤ θ ≤ π/3
(d) 1 ≤ r ≤ 2, 2 ≤ z ≤ 3, and π/6 ≤ θ ≤ π/3

30. (a) r2 + z2 ≤ 4 (b) r ≤ 1 (c) r2 + z2 ≤ 4 and r > 1

31. (a) The accompanying figure shows a surface of revolution

that is generated by revolving the curve y = f(x) in

the xy-plane about the x-axis. Show that the equation of

this surface is y2 + z2 = [f(x)]2. [Hint: Each point on

the curve traces a circle as it revolves about the x-axis.]

(b) Find an equation of the surface of revolution that is gen-

erated by revolving the curve y = ex in the xy-plane

about the x-axis.

(c) Show that the ellipsoid 3x2 + 4y2 + 4z2 = 16 is a sur-

face of revolution about the x-axis by finding a curve

y = f(x) in the xy-plane that generates it.

y

x

z

y = f (x)

Figure Ex-31

32. In each part, use the idea in Exercise 31(a) to derive a for-

mula for the stated surface of revolution.

(a) The surface generated by revolving the curve x = f(y)
in the xy-plane about the y-axis.

(b) The surface generated by revolving the curve y = f(z)
in the yz-plane about the z-axis.

(c) The surface generated by revolving the curve z = f(x)
in the xz-plane about the x-axis.

33. Sketch the surface whose equation in spherical coordinates

is ρ = a(1 − cosφ). [Hint: The surface is shaped like a

familiar fruit.]

34. Assuming that force is in pounds and distance is in feet, find

the work done by a constant force F = 3i − 4 j + k acting

on a particle that moves on a straight line from P(5, 7, 0)

toQ(6, 6, 6).

35. Assuming that force is in newtons and distance is in meters,

find the work done by the resultant of the constant forces

F1 = i−3 j+k and F2 = i+2 j+2k acting on a particle that

moves on a straight line from P(−1,−2, 3) toQ(0, 2, 0).

36. As shown in the accompanying figure, a force of 250 N is

applied to a boat at an angle of 38◦ with the positive x-axis.

What force F should be applied to the boat to produce a

resultant force of 1000 N acting in the positive x-direction?

State your answer by giving the magnitude of the force and

its angle with the positive x-axis to the nearest degree.

x

y

38°

250 N

F Figure Ex-36

37. Suppose that a force F with a magnitude of 9 lb is applied to

the lever–shaft assembly shown in the accompanying figure.

(a) Express the force F in component form.

(b) Find the vector moment of F about the origin.

y

x

z

2 in

5 in

3 in

1 in

A

B

F

Figure Ex-37


