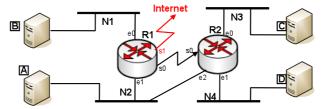


Mestrado em Engenharia Informática Teste de Redes de Computadores TCP/IP Ano lectivo: 2009-2010 – 16 de Dezembro de 2009

Teste com 6 páginas, 10 questões, 2h00 de duração e sem consulta. Pode responder a lápis. Não pode usar calculadora ou telemóvel, nem desagrafar o exame.


Alun	Nome:
1) N	rede indicada abaixo existe um fluxo intenso de nacotes de A nara D que segue o caminho mais curto

1) Na rede indicada abaixo existe um fluxo intenso de pacotes de A para D que segue o caminho mais curto {A,B,C,D} pois todos os canais têm o mesmo custo. A certa altura o canal {C,D} avaria e, naturalmente, o router C passa a encaminhar os pacotes que recebe dirigidos a D via B. No entanto, B só reconfigura o encaminhamento para tomar em consideração a indisponibilidade do canal {C,D} 200 mili segundos depois de C pois esse é o tempo de convergência medido na situação concreta. Indique dois problemas graves que têm lugar nesta rede durante a convergência no cenário descrito.

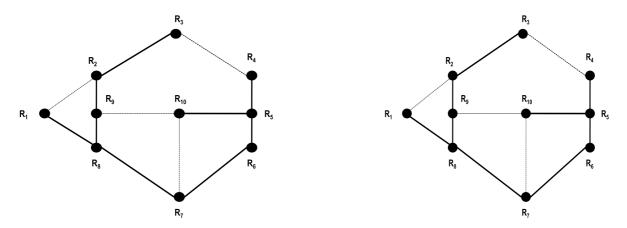
problema 1:			
problema 2:			

2) Considere a rede apresentada na figura:

a) Complete as tabelas indicando os endereços de rede, máscaras, e de broadcast para todas as redes N1, N2, N3, N4 e ligação série de modo a que não haja endereços em falta entre o menor endereço da rede e o maior endereço da rede (para efeitos de continuidade exclui-se as interfaces série). Note também nos endereços de default Gateway dos computares A, B, C e D.

Interf.	Endereço IP/Masc
R1-e0	66.66.136.66 / 24
R1-e1	66.66.138.66 / 24
R1-s0	66.66.139.1 /30
R2-e0	66.66.137.66 /25
R2-e1	
R2-s0	
R2-e2	

Endereços das redes			
Rede	Endereço Rede	Másc	End Broadcast
N1			
N2			
N3			
N4			
Série			


IP-A:	Másc-A:	GW-A:	
IP-B:	MáscB:	GW-B:	
IP-C:	MáscC:	GW-C:	
IP-D:	MáscD:	GW-D:	

b) Para a rede apresentada, e considerando os valores atribuídos nas alíneas anteriores, faça as tabelas de encaminhamento dos router R2 e da máquina A. Assuma que todos routers conhecem todas as redes.

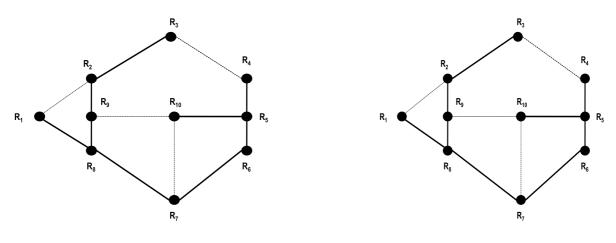
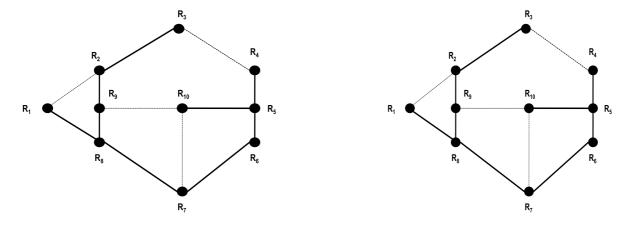
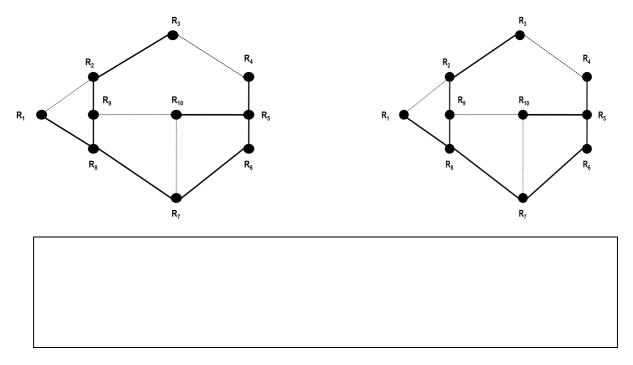
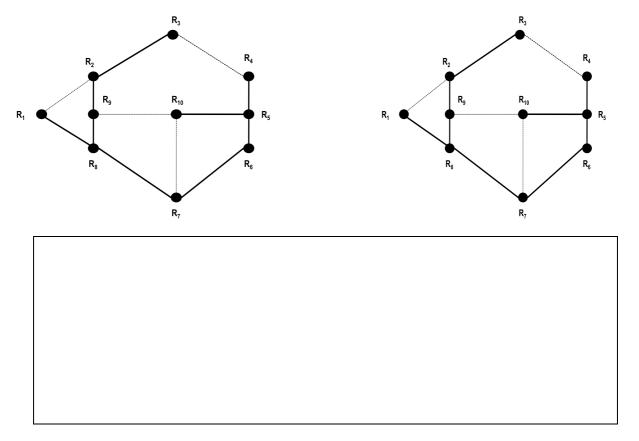

Tabela Encaminhamento router R2				
Rede Másc Gateway Interface			Interface	

Tabela Encaminhamento Máquina A			
Rede	Másc	Gateway	Interface


3) Considere que a rede abaixo é uma rede *switched* baseada em *switches* Ethernet cujos endereços MAC estão ordenados de forma crescente de R₁ para R₁₀. Os canais a tracejado têm a capacidade de 10 Mbps e os outros canais a cheio têm a capacidade de 100 Mbps. Desenhe sobre a figura da direita uma árvore de cobertura que esses *switches* utilizariam para fazer o encaminhamento dos *frames* Ethernet.


4) Considere agora que a rede abaixo é uma rede IP com os *routers* R₁ a R₁₀. Os canais a tracejado têm a capacidade de 10 Mbps e os outros canais a cheio têm a capacidade de 100 Mbps. Nessa rede o encaminhamento é assegurado pelo protocolo RIP. O *router* R₁ funciona como *rendez-vous* do protocolo PIM-SM. Desenhe sobre a figura da direita uma árvore de difusão de pacotes IP *multicast* com origem no *router* R₁ dirigido a um grupo que todos os outros *routers* subscreveram.


5) Situação idêntica à da pergunta anterior mas em que o protocolo de encaminhamento utilizado é o protocolo OSPF. A métrica utilizada é COST=10⁸/débito.

- 6) Estamos novamente perante uma situação em que se trata de uma rede IP gerida pelo protocolo OSPF para o encaminhamento *unicast*. O *router* R₁₀ é a origem de uma emissão IPTV suportada em IP *multicasting*.
 - a) Que router escolheria para *rendez-vous* da rede sabendo que o encaminhamento IP *multicast* se baseia no protocolo PIM-SM e existem subscritores dos grupos em todos os outros *routers*. Justifique.

c) Considere agora que na mesma rede os routers R₂ e R₇ são (os únicos) emissores IP multicast para um grupo subscrito por todos os outros routers. Que router da rede escolheria para rendez-vous sabendo que só pode ter um e que os protocolos de encaminhamento são OSPF e PIM-SM e indique a árvore ou árvores usadas para distribuir o tráfego. Justifique a sua opção.

7)	Um dos princípios da gestão da qualidade de serviço do tráfego numa rede IP consiste em separar os pacotes dos diferentes fluxos de forma a poder dar-lhes um tratamento diferenciado pelos diferentes routers. Uma das formas de diferenciar os pacotes consiste em tentar identificar dinamicamente a que fluxo pertencem, através de listas de controlo de acesso que guiam algoritmos de análise dos cabeçalhos (por exemplo analisando os endereços, portas, protocolos, etc.). Tal pode tornar-se demasiado pesado nos routers centrais dos backbones de alta velocidade do core da Internet, mas menos pesado nos routers da periferia. A aproximação à gestão do tráfego "differentiated services" para efeitos de qualidade de serviço contorna este problema de desempenho de que forma ?
8)	Por uma linha série com a capacidade de 100 Kbps efectuaram-se testes de transferência de dados testando o funcionamento com um só fluxo UDP CBR (<i>Constant Bit Rate</i>), e tempo de trânsito desprezível, com o ritmo de 80 Kbps (incluindo cabeçalhos), e observou-se que o <i>jitter</i> era muito baixo. Em seguida testou-se a mesma linha através de um fluxo TCP tendo sido atingida uma velocidade de transferência também da mesma ordem de grandeza, mas observou-se um <i>jitter</i> não desprezável. Justifique o porquê desta diferença no comportamento dos dois protocolos na situação descrita.
9)	Por uma linha série com a capacidade de 256 Kbps de capacidade passam bastantes fluxos associados a conexões TCP/HTTP e alguns fluxos UDP/RTP associados a chamadas IP Phone usando fluxos CBR (Constant Bit Rate) ocupando 64 Kbps por cada conversa telefónica. O número máximo de conversas telefónicas simultâneas não ultrapassa 3, havendo situações raríssimas em que podem chegar a 4. As conexões TCP/HTTP são muitas e variáveis, havendo grande simultaneidade de conexões HTTP e chamadas IP Phone. Que politica de qualidade de serviço aplicaria nas interfaces associadas à linha? Justifique a sua opção.

10)	end poi	mo sabe, o modelo de segurança do nível IP da Internet não obriga a que um pacote P, com um dereço IP origem diferente do endereço IP do seu emissor, não deixe de ser encaminhado até ao destino is, com efeito, o modelo IP para o encaminhamento (<i>routing</i>) baseia-se estritamente no endereço de stino dos pacotes e aceita encaminhar pacotes com endereços IP origem falsos.
	a)	Dê um exemplo de um ataque que explora esta fragilidade do modelo IP.
1	b)	Suponha que você é o gestor de uma rede empresarial que utiliza internamente endereços públicos com o prefixo P ₁ e que você pretende impedir que pacotes vindos da Internet possam chegar até computadores internos à sua rede com endereços origem pertencentes a P ₁ . Qual o filtro que tem de colocar na interface de ligação à Internet dos routers da sua empresa? Justifique a sua resposta.
	c)	Suponha que numa rede só existe tráfego <i>unicast</i> , não existe encaminhamento multi-caminho, nem rotas assimétricas, isto é, cada router encaminha os pacotes destinados ao prefixo P ₁ sempre pela mesma interface (a menos de reconfigurações devidas a avarias) e os pacotes de A para B seguem exactamente o caminho inverso dos pacotes de B para A. Nessa rede, todos os endereços utilizados são públicos e únicos. Indique, neste cenário, uma forma de um router detectar com alta probabilidade que um pacote cujo endereço origem é Orig, não foi de facto enviado pelo computador com o endereço Orig. Justifique o método proposto.
-	d)	O protocolo BGP é o protocolo que tem de necessariamente ser utilizado para fazer encaminhamento na Internet global. Poderia a solução que propõe na alínea anterior ser usada para impedir o encaminhamento de pacotes com endereços IP origem falsos na Internet? Justifique a sua resposta.