
72 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

Peer-to-peer (P2P) computing has attracted
significant interest in recent years, originally sparked
by the release of three influential systems in 1999:
the Napster music-sharing system, the Freenet
anonymous data store, and the SETI@home volunteer-
based scientific computing projects. Napster, for
instance, allowed its users to download music
directly from each other’s computers via the Internet.
Because the bandwidth-intensive music downloads
occurred directly between users’ computers, Napster
avoided significant operating costs and was able to
offer its service to millions of users for free. Though
unresolved legal issues ultimately sealed Napster’s
fate, the idea of cooperative resource sharing among
peers found its way into many other applications.

More than a decade later, P2P technology has gone
far beyond music sharing, anonymous data storage,
or scientific computing; it now enjoys significant
research attention and increasingly widespread use
in open software communities and industry alike.
Scientists, companies, and open-software

organizations use BitTorrent to distrib-
ute bulk data such as software updates,
data sets, and media files to many
nodes;5 commercial P2P software al-
lows enterprises to distribute news
and events to their employees and cus-
tomers;29 millions of people use Skype
to make video and phone calls;1 and
hundreds of TV channels are available
using live streaming applications such
as PPLive,17 CoolStreaming,38 and the
BBC’s iPlayer.4

The term P2P has been defined in
different ways, so we should clarify
what exactly we mean by a P2P system.
For the purposes of this article, a P2P
system is a distributed system with the
following properties:

High degree of decentralization.
The peers implement both client and
server functionality and most of the
system’s state and tasks are dynami-
cally allocated among the peers. There
are few if any dedicated nodes with
centralized state. As a result, the bulk
of the computation, bandwidth, and
storage needed to operate the system
are contributed by participating nodes.

Self-organization. Once a node is
introduced into the system (typically
by providing it with the IP address of a
participating node and any necessary

Peer-to-Peer
Systems

doi:10.1145/1831407.1831427

Within a decade, P2P has proven to be
a technology that enables innovative new
services and is used by millions of people
every day.

by Rodrigo Rodrigues and Peter Druschel

 key insights
 � �P2P leverages the computing resources

of cooperating users to achieve
scalability and organic growth, thus
lowering the deployment barrier for
innovative new services.

 � �Originally invented for music/data
sharing and volunteer computing,
P2P systems now enjoy widespread
commercial and non-commercial use
in content distribution, IPTV, and IP
telephony.

 � �The strength of P2P—its independence
of dedicated infrastructure and
centralized control—is also its
weakness, as it presents new technical,
commercial, and legal challenges.

 � �P2P technology may turn out to be most
valuable as a low-cost deployment
vector for experimental, innovative
services; those services that prove
to be commercially viable can be
subsequently combined with centralized,
infrastructure-based components. Ill

u
s

t
r

a
t

i
o

n
 b

y
 m

a
r

i
u

s
 w

a
t

z

c
r

e
d

i
t

 t
k

october 2010 | vol. 53 | no. 10 | communications of the acm 73

74 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

key material), little or no manual con-
figuration is needed to maintain the
system.

Multiple administrative domains.
The participating nodes are not owned
and controlled by a single organiza-
tion. In general, each node is owned
and operated by an independent indi-
vidual who voluntarily joins the system.

P2P systems have several distinctive
characteristics that make them inter-
esting:

Low barrier to deployment. Be-
cause P2P systems require little or no
dedicated infrastructure, the upfront
investment needed to deploy a P2P ser-
vice tends to be low when compared to
client-server systems.

Organic growth. Because the re-
sources are contributed by partici-
pating nodes, a P2P system can grow
almost arbitrarily without requiring
a “fork-lift upgrade” of existing infra-
structure, for example, the replace-
ment of a server with more powerful
hardware.

Resilience to faults and attacks. P2P
systems tend to be resilient to faults
because there are few if any nodes that
are critical to the system’s operation.
To attack or shut down a P2P system,
an attacker must target a large propor-
tion of the nodes simultaneously.

Abundance and diversity of re-
sources. Popular P2P systems have
an abundance of resources that few
organizations would be able to afford
individually. The resources tend to be
diverse in terms of their hardware and
software architecture, network attach-
ment, power supply, geographic loca-
tion and jurisdiction. This diversity re-
duces their vulnerability to correlated
failure, attack, and even censorship.

As with other technologies (for ex-
ample, cryptography), the properties of
P2P systems lend themselves to desir-
able and undesirable use. For instance,
P2P systems’ resilience may help citi-
zens avoid censorship by a totalitar-
ian regime; at the same time, it can be
abused to try and hide criminal activity
from law enforcement agencies. The
scalability of a P2P system can be used
to disseminate a critical software up-
date efficiently at a planetary scale, but
can also be used to facilitate the illegal
distribution of copyrighted content.

Despite having acquired a negative
reputation for some of its initial pur-

poses, P2P technologies are increas-
ingly being used for legal applications
with enormous business potential, and
there is consensus about their ability to
lower the barrier for the introduction of
innovative technologies. Nevertheless,
P2P technology faces many challenges.
The decentralized nature of P2P sys-
tems raises concerns about manage-
ability, security, and law enforcement.
Moreover, P2P applications are affect-
ing the traffic experienced by Internet
service providers (ISPs) and threaten to
disrupt the current Internet econom-
ics. In this article, we briefly sketch im-
portant highlights of the technology,
its applications, and the challenges it
faces.

Applications
Here, we discuss some of the most suc-
cessful P2P systems and also mention
promising P2P systems that have not
yet received as much attention.

Sharing and distributing files. Pres-
ently, the most popular P2P applica-
tions are file sharing (for example,
eDonkey) and bulk data distribution
(for example, BitTorrent).

Both types of systems can be viewed
as successors of Napster. In Napster,
users shared a subset of their disk
files with other participants, who were
able to search for keywords in the file
names. Users would then download
any of the files in the query results di-
rectly from the peer that shared it.

Much of the content shared by Nap-
ster users was music, which led to copy-
right infringement lawsuits. Napster
was found guilty and had to shut down
its services. Simultaneously, a series of
similar P2P systems appeared, most
notably Gnutella and FastTrack (better
known by one of its client applications,
Kazaa). Gnutella, unlike Napster, has
no centralized components and is not
operated by any single entity (perhaps
in part to make it harder to prosecute).

The desire to reduce the download
time for very large files lead to the de-
sign of BitTorrent,10 which enables a
large set of users to download bulk data
quickly and efficiently. The system uses
spare upload bandwidth of concurrent
downloaders and peers who already
have the complete file (either because
they are data sources or have finished
the download) to assist other down-
loaders in the system. Unlike file-shar-

ing applications, BitTorrent and other
P2P content distribution networks do
not include a search component, and
users downloading different content
are unaware of each other, since they
form separate networks. The protocol
is widely used for disseminating data,
software, or media content.

Streaming media. An increasingly
popular P2P application is streaming
media distribution and IPTV (deliver-
ing digital television service over the
Internet). As in file sharing, the idea is
to leverage the bandwidth of partici-
pating clients to avoid the bandwidth
costs of server-based solutions.

Streaming media distribution has
stricter timing requirements than
downloading bulk data because data
must be delivered before the playout
deadline to be useful.

Example systems include academic
efforts with widespread adoption such
as PPLive17 and CoolStreaming,38 and
commercial products such as BBC’s
iPlayer4 and Skinkers LiveStation.29

Telephony. Another major use of
P2P technology on the Internet is for
making audio and video calls, popular-
ized by the Skype application. Skype
exploits the resources of participating
nodes to provide seamless audiovisual
connectivity to its users, regardless
of their current location or type of In-
ternet connection. Peers assist those
without publicly routable IP addresses
to establish connections, thus working
around connectivity problems due to
firewalls and network address transla-
tion, without requiring a centralized
infrastructure that handles and for-
wards calls. Skype reported 520 million
registered users at the end of 2009.

Volunteer computing. A fourth im-
portant P2P application is volunteer
computing. In these systems, users do-
nate their spare CPU cycles to scientific
computations, usually in fields such as
astrophysics, biology, or climatology.
The first system of this type was SETI@
home. Volunteers install a screen saver
that runs the P2P application when
the user is not active. This application
downloads blocks containing obser-
vational data collected at the Arecibo
radio telescope from the SETI@home
server. Then the application analyzes
this data, searching for possible radio
transmissions, and sends the results
back to the server.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 75

The success of SETI@home and
similar projects led to the develop-
ment of the BOINC platform,3 which
has been used to develop many cycle-
sharing P2P systems in use today. At
the time of this writing, BOINC has
more than half a million active peers
computing on average 5.42 petaFLOPS
(floating-point operations per sec-
ond). For comparison, a modern PC
performs on the order of a few tens of
GFLOPS (about five orders of magni-
tude fewer), and the world’s fastest su-
percomputer as of August 2010 has a
performance of about 1.76 petaFLOPS.

Other applications. Other types of
P2P applications have seen significant
use, at least temporarily, but have not
reached the same levels of adoption as
the systems we describe here. Among
them are applications that leverage
peer-contributed disk space to pro-
vide distributed storage. Freenet9 aims
to combine distributed storage with
content distribution, censorship resis-
tance, and anonymity. It is still active,
but the properties of the system make
it difficult to estimate its actual use.
MojoNation36 was a subsequent project
for building a reliable P2P storage sys-
tem, but it was shut down after proving
unable to ensure the availability of data
due to unstable membership and other
problems.

P2P Web content distribution net-
works (CDNs) such as CoralCDN16 and
CoDeeN35 were deployed as research
prototypes but gained widespread use.
In these systems, a set of cooperating
users form a network of Web caches
and name servers that replicates Web
content as users access it, thereby re-
ducing the load on servers hosting pop-
ular content. During its peak usage,
CoralCDN received up to 25 million
hits per day from one million unique
IP addresses.

Many more P2P systems have been
designed and prototyped, but either
were not deployed publicly or had
small deployments. Examples include
systems for distributed data monitor-
ing, management and mining,26,37 mas-
sively distributed query processing,19
cooperative backup,11 bibliographic
databases,33 serverless email,24 and ar-
chival storage.23

Technology developed for P2P ap-
plications has also been incorporated
into other types of systems. For in-

stance, Dynamo,13 a storage substrate
that Amazon uses internally for many
of its services and applications, uses
distributed hash tables (DHTs), which
we will explain later. Akamai’s NetSes-
siona client uses P2P downloads to
increase performance and reduce the
cost of delivering streaming content.
Even though these systems are con-
trolled by a single organization and
thus do not strictly satisfy our defini-
tion of a P2P system, they are based on
P2P technology.

While P2P systems are a recent in-
vention, technical predecessors of P2P
systems have existed for a long time.
Early examples include the NNTP and
SMTP news and mail distribution sys-
tems, and the Internet routing system.
Like P2P systems, these are mostly
decentralized systems that rely on re-
source contributions from their par-
ticipants. However, the peers in these
systems are organizations and the pro-
tocols are not self-organizing.

While the earliest and most visible
P2P systems were mainly file-sharing
applications, current uses of P2P tech-
nology are much more diverse and
include the distribution of data, soft-
ware, media content, as well as Inter-
net telephony and scientific comput-
ing. Moreover, an increasing number
of commercial services and products
rely on P2P technology.

How Do P2P Systems Work?
Here, we sketch some of the most im-
portant techniques that make P2P sys-
tems work. We discuss fundamental
architectural choices like the degree of
centralization and the structure of the
overlay network. As you will see, one of
the key challenges is to build an over-
lay with a routing capability that works
well in the presence of a high mem-
bership turnover (usually referred to
as churn), which is typical of deployed
P2P system.28 We then present solu-
tions to specific problems addressed in
the context of P2P systems: application
state maintenance, application-level
node coordination, and content distri-
bution.

Note that our intention in this pre-
sentation is to provide representative

a	 See Akamai NetSession Interface Overview at
http://www.akamai.com/html/misc/akamai_
client/netsession_interface.html/.

While the earliest
and most visible
P2P systems were
mainly file-sharing
applications,
current uses of
P2P technology are
much more diverse
and include the
distribution of data,
software, media
content, as well as
Internet telephony
and scientific
computing.

76 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

examples of the most interesting tech-
niques rather than try to be exhaustive
or precise about a particular system or
protocol.

Degree of centralization. We can
broadly categorize the architecture of
P2P systems according to the presence
or absence of centralized components
in the system design.

Partly centralized P2P systems have
a dedicated controller node that main-
tains the set of participating nodes and
controls the system. For instance, Nap-
ster had a Web site that maintained the
membership and a content index; early
versions of BitTorrent have a “tracker,”
which is a node that keeps track of the
set of nodes uploading and download-
ing the same content, and periodically
provides nodes with a set of peers they
can connect to;10 the BOINC platform

for volunteer computing has a site that
maintains the membership and as-
signs compute tasks;3 and Skype has
a central site that provides log-in, ac-
count management, and payment.

Resource-intensive operations like
transmitting content or computing ap-
plication functions do not involve the
controller. Like general P2P systems,
partly centralized P2P systems can
provide organic growth and abundant
resources. However, they do not neces-
sarily offer the same scalability and re-
silience because the controller forms a
potential bottleneck and a single point
of failure and attack. Partly centralized
P2P systems are relatively simple and
can be managed by a single organiza-
tion via the controller.

Decentralized P2P system. In a de-
centralized P2P system, there are no

dedicated nodes that are critical for the
operation of the system. Decentralized
P2P systems have no inherent bottle-
necks and can potentially scale very
well. Moreover, the lack of dedicated
nodes makes them potentially resilient
to failure, attack, and legal challenge.

In some decentralized P2P systems,
nodes with plenty of resources, high
availability and a publicly routable IP
address act as supernodes. These su-
pernodes have additional responsi-
bilities, such as acting as a rendez-vous
point for nodes behind firewalls, stor-
ing state or keeping an index of avail-
able content. Supernodes can increase
the efficiency of a P2P system, but may
also increase its vulnerability to node
failure.

Overlay maintenance. P2P systems
maintain an overlay network, which
can be thought of as a directed graph G
= (N,E), where N is the set of participat-
ing computers and E is a set of overlay
links. A pair of nodes connected by a
link in E is aware of each other’s IP ad-
dress and communicates directly via
the Internet. Here, we discuss how dif-
ferent types of P2P systems maintain
their overlay.

In partly centralized P2P systems,
new nodes join the overlay by connect-
ing to the controller located at a well-
known domain name or IP address
(which can be, for instance, hardcoded
in the application). Thus, the overlay
initially has a star-shaped topology
with the controller at the center. Ad-
ditional overlay links may be formed
dynamically among participants that
have been introduced by the controller.

In decentralized overlays, newly
joining nodes are expected to obtain,
through an outside channel, the net-
work address (for example, IP address
and port number) of some node that
already participates in the system. The
address of such a bootstrap node can
be obtained, for instance, from a Web
site. To join, the new node contacts the
bootstrap node.

We distinguish between systems
that maintain an unstructured or a
structured overlay network.

Unstructured overlays. In an unstruc-
tured P2P system, there are no con-
straints on the links between different
nodes, and therefore the overlay graph
does not have any particular structure.
In a typical unstructured P2P system,

Figure 1. An example KBR implementation.

O | 2160 –1

Node 65a1fc invokes
KBR with the key
d46a1c, producing
a route to the
responsible node
d462ba via a sequence
of nodes whose ids
share increasingly
longer prefixes with
the key.

d462ba

d4213f

d13da3

65a1fc

Figure 2. Locating objects in unstructured overlays.

?S

R

I

 I nsertion path
  Flood

I = Inserting node
S = Querying node
R = Rendezvous node

Node I adds and
advertises the
green object by
inserting pointers
to the green object
on all nodes along
a random walk
through the overlay.
When node S tries
to locate the green
object, it floods a
query through the
overlay. When the
query reaches node
R, R returns the
address of I.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 77

a newly joining node forms its initial
links by repeatedly performing a ran-
dom walk through the overlay starting
at the bootstrap node and requesting a
link to the node where the walk termi-
nates. Nodes acquire additional links
(for example, by performing more ran-
dom walks) whenever their degree falls
below the desired minimum; they re-
fuse link requests when their current
degree is at its maximum.

The minimum node degree is typi-
cally chosen to maintain connectiv-
ity in the overlay despite node failures
and membership churn. A maximum
degree is maintained to bound the
overhead associated with maintaining
overlay links.

Structured overlays. In a structured
overlay, each node has a unique identi-
fier in a large numeric key space, for ex-
ample, the set of 160-bit integers. Iden-
tifiers are chosen in a way that makes
them uniformly distributed in that
space. The overlay graph has a specific
structure; a node’s identifier deter-
mines its position within that structure
and constrains its set of overlay links.

Keys are also used when assign-
ing responsibilities to nodes. The
key space is divided among the par-
ticipating nodes, such that each key is
mapped to exactly one of the current
overlay nodes via a simple function.
For instance, a key may be mapped to
the node whose identifier is the key’s
closest counterclockwise successor in
the key space. In this technique the key
space is considered to be circular (that
is, the id zero succeeds the highest id
value) to account for the fact that there
may exist keys greater than all node
identifiers.

The overlay graph structure is cho-
sen to enable efficient key-based rout-
ing. Key-based routing implements
the primitive KBR(n0, k). Given a start-
ing node n0 and a key k, KBR produces
a path, that is, a sequence of overlay
nodes that ends in the node respon-
sible for k. As will become clear in sub-
sequent sections, KBR is a powerful
primitive.

Many implementations of key-
based routing exist.18,27,32 In general,
they strike a balance between the
amount of routing state required at
each node and the number of forward-
ing hops required to deliver a message.
Typical implementations require an

amount of per-node state and a num-
ber of forwarding hops that are both
logarithmic in the size of the network.

Figure 1 illustrates an example of
a key-based routing scheme. Node
65a1fc invokes KBR with the key
d46a1c, producing a route via a se-
quence of nodes whose ids share in-
creasingly longer prefixes with the key.
Eventually the message reaches the
node with id d462ba, which has suffi-
cient knowledge about its neighboring
nodes to determine that it is respon-
sible for the target key. Though not
depicted, the reply can be forwarded
directly to the invoking node.

Summary. We have seen how the
overlay network is formed and main-
tained in different types of P2P sys-
tems. In partly centralized P2P sys-
tems, the controller facilitates the
overlay formation.

In other P2P systems, overlay main-
tenance is fully decentralized. Com-
pared to an unstructured overlay net-
work, a structured overlay network
invests additional resources to main-
tain a specific graph structure. In re-
turn, structured overlays are able to
perform key-based routing efficiently.

The choice between an unstructured
and a structured overlay depends on
how useful key-based routing is for the
application, and also on the frequency
of overlay membership events. As we
will discuss, key-based routing can re-
liably and efficiently locate uniquely
identified data items and maintain
spanning trees among member nodes.
However, maintaining a structured
overlay in a high-churn environment
has an associated cost, which may not
be worth paying if the application does
not require the functionality provided
by key-based routing.

Some P2P systems use both struc-
tured and unstructured overlays. A
recent (“trackerless”) version of Bit-
Torrent, for instance, uses key-based
routing to choose tracker nodes, but
builds an unstructured overlay to dis-
seminate the content.

Distributed state. Most P2P systems
maintain some application-specific
distributed state. Without loss of gen-
erality, we consider that state as a col-
lection of objects with unique keys.
Maintaining this collection of state
objects in a distributed manner, that
is, providing mechanisms for object

placement and locating objects, are
key tasks in such systems.

Partly centralized systems. In partly
centralized P2P systems, an object is
typically stored at the node that insert-
ed the object, as well as any nodes that
have subsequently downloaded the ob-
ject. The controller node maintains in-
formation about which objects exist in
the system, their keys, names and oth-
er attributes, and which nodes are cur-
rently storing those objects. Queries
for a given key, or a set of keywords that
match an object’s name or attributes,
are directed to the controller, which re-
sponds with a set of nodes from which
the corresponding object(s) can be
downloaded.

Unstructured systems. As in partly
centralized systems, content is typi-
cally stored at the node that introduced
the content to the system, and repli-
cated at other downloaders. To make
it easier to find content, some systems
place copies of (or pointers to) an in-
serted object on additional nodes, for
instance, along a random walk path
through the overlay.

To locate an object, a querying
node typically floods a request mes-
sage through the overlay. The query
can specify the desired object by its
key, metadata, or keywords. A node
that receives a query and has a match-
ing object (or a pointer to a matching
object), responds to the querying node.
Figure 2 illustrates this process. In this
case, node I inserts an object into the
system and holds its only copy, but in-
serts pointers to the object on all nodes
along a random walk that ends in node
R. When node S tries to locate the ob-
ject, it floods a query, first, to all nodes
that are at a distance of one hop, then
to all nodes two hops away. In the last
step the query reaches node R, which
returns the address of I.

Often, the scope of the flood (that is,
the maximal number of hops from the
querying nodes that a flood message
is forwarded) is limited to trade recall
(the probability that an object that ex-
ists in the system is found) for overhead
(the number of messages required by
the flood). An alternative to flooding is
for the querying node to send a request
message along a random walk through
the overlay.

Gnutella was the first example of a
decentralized, unstructured network

78 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

that used flooding to locate content in
a file sharing system.

Structured overlays. In structured
overlays, distributed state is main-
tained using a distributed hash table
(DHT) abstraction. The DHT has the
same put/get interface as a convention-
al hash table. Inserted key/value pairs
are distributed among the participat-
ing nodes in the structured overlay us-
ing a simple placement function. For
instance, that function can position
replicas of the key/value pair on the set
of r nodes whose identifiers succeed
the key in the circular key space. Note
that in our terminology, the values
correspond to the state objects main-

tained by the system.
Given this replica placement policy,

the DHT’s put and get operations can
be implemented using the KBR primi-
tive in a straightforward manner. To
insert (put) a key/value pair, we use
the KBR primitive to determine the re-
sponsible node for the key k and store
the pair on that node, which then prop-
agates it to the set of replicas for k. To
look up (get) a value, we use the KBR
primitive to fetch the value associated
with a given key. The responsible node
can respond to the fetch request or for-
ward it to one of the nodes in the rep-
lica set. Figure 3 shows an example put
operation, where the value is initially

pushed to the node responsible for key
k, which is discovered using KBR, and
this node pushes the value to its three
immediate successors.

When a DHT experiences churn,
pairs have to be moved between nodes
as the mapping of keys to nodes chang-
es. To minimize the required network
communication, large data values are
typically not inserted directly into a
DHT; instead, an indirection pointer is
inserted under the value’s key, which
points to the node that actually stores
the value.

DHTs are used, for instance, in file
sharing networks such as eDonkey,
and also in some versions of BitTor-
rent.

Summary. Unstructured overlays
tend to be very efficient at locating
widely replicated objects, while KBR-
based techniques can reliably and ef-
ficiently locate any object that exists
in the system, no matter how rare it
may be. Put another way, unstructured
overlays are good at finding “hay” while
structured overlays are good at find-
ing “needles.” On the other hand, un-
structured networks support arbitrary
keyword-based queries, while KBR-
based systems directly support only
key-based queries.

Distributed coordination. Frequent-
ly, a group of nodes in a P2P application
must coordinate their actions without
centralized control. For instance, the
set of nodes that replicate a particu-
lar object must inform each other of
updates to the object. In another ex-
ample, a node that is interested in re-
ceiving a particular streaming content
channel may wish to find, among the
nodes that currently receive that chan-
nel, one that is nearby and has available
upstream network bandwidth. We will
look at two distinct approaches to this
problem: epidemic techniques where
information spreads virally through
the system, and tree-based techniques
where distribution trees are formed to
spread the information.

We focus only on decentralized
overlays, since coordination can be ac-
complished by the controller node in
partly centralized systems.

Unstructured overlays. In unstruc-
tured overlays, coordination typically
relies on epidemic techniques. In
these protocols, information is spread
through the overlay in a manner simi-

Figure 4. An example KBR tree.

groupId

G

C

B

A

The KBR routes from group
member nodes A, B, and C
to G (the node responsible
for the group key) form a
spanning tree rooted at G.

Figure 3. Inserting a value into a DHT.

put (key, value)

The key/value pair is
replicated on the node
responsible for the key
(reached via KBR) and
its three successors.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 79

lar to the way an infection spreads in
a population: the node that produced
the information sends it to (some of)
its overlay neighbors, who send it to
(some of) their neighbors, and so on.
This method of dissemination is very
simple and robust. As in all epidemic
techniques, there is a trade-off be-
tween the speed of information dis-
semination and overhead. Moreover, if
a given piece of information is of inter-
est only to a subset of nodes and these
nodes are widely dispersed within the
overlay, then the information ends up
being needlessly delivered to all nodes.

A more efficient way to coordinate
the actions among a group of nodes
is to form a spanning tree among the
nodes. The spanning tree is embedded
in the overlay graph, using a decentral-
ized algorithm for spanning tree for-
mation. This tree can then be used to
multicast messages to all members, or
to compute summaries (for example,
sums, averages, minima, or maxima) of
state variables within the group. How-
ever, this added coordination efficien-
cy must be balanced against the over-
head of maintaining the spanning tree
in the unstructured overlay network.

Structured overlays. In structured
overlays, spanning trees among any
group of overlay nodes can be formed
and maintained very efficiently us-
ing the KBR primitive, making trees
the preferred method of coordination
in these overlays. To join a spanning
tree, a node uses KBR to route to a
unique key associated with the group.
The resulting union of the paths from
all group members form a spanning
tree rooted at the node responsible for
the group’s key. This KBR tree is then
used to aggregate and disseminate
state associated with the group, and to
implement multicast and anycast. Fig-
ure 4 illustrates an example KBR tree
formed by the union of the KBR routes
from nodes A, B, and C to the key cor-
responding to the group id. This tree is
rooted at node G, which is the respon-
sible node for that key.

Because a join message terminates
as soon as it intercepts the tree, group
membership maintenance is decen-
tralized, that is, the arrival or departure
of a node is noted only by the node’s
parent and children in the tree. As a
result, the technique scales to large
numbers of groups, as well as large and

highly dynamic groups.
Summary. The epidemic techniques

typically used for coordination in un-
structured overlays are simple and ro-
bust to overlay churn, but they may not
scale to large overlays or large numbers
of groups, and information tends to
propagate slowly. Spanning trees can
increase the efficiency of coordination,
but maintaining a spanning tree in an
unstructured overlay adds costs.

The additional overhead for main-
taining a structured overlay is propor-
tional to the churn in the total overlay
membership. Once that overhead is
paid, KBR trees enable efficient and
fast coordination among potentially
numerous, large and dynamic sub-
groups within the overlay.

Content Distribution
Another common task in P2P sys-
tems is the distribution of bulk data
or streaming content to a set of inter-
ested nodes. P2P techniques for con-
tent distribution can be categorized
as tree-based (where fixed distribution
trees are formed either with the aid of
a structured overlay or embedded in
an unstructured overlay), or swarming
protocols (which have no notion of a
fixed tree for routing content and usu-
ally form an unstructured overlay). Due
to space constraints, we focus on the
swarming protocols popularized by the
BitTorrent protocol.10

In swarming protocols, the content
is divided into a sequence of blocks,
and each block is individually multi-
cast to all overlay nodes such that dif-
ferent blocks are disseminated along
different paths.

The basic operation of a swarming
protocol is simple: once every swarm-
ing interval (say, one second), overlay
neighbors exchange information indi-
cating which content blocks they have
available. (In streaming content dis-
tribution, only the most recently pub-
lished blocks are normally of interest.)
Each node intersects the availability in-
formation received from its neighbors,
and then requests a block it does not
already have from one of the neighbors
who has it.

It is important that blocks are well
distributed among the peers, to ensure
neighboring peers tend to have blocks
they can swap and that blocks remain
available when some peers leave the

Unstructured
overlays are good at
finding “hay,” while
structured overlays
are good at finding
“needles.”

80 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

system. To achieve such a distribu-
tion, the system can randomize both
the choice of block to download and
the choice of a neighbor from whom
to request the block. In one possible
strategy, a node chooses to download
the rarest block among all blocks held
by its overlay neighbors.10

The best known and original
swarming protocol for bulk content
distribution is BitTorrent.10 Examples
of swarming protocols used for stream-
ing content include PPLive17 and the
original version of CoolStreaming.38

Challenges
Much of the promise of P2P systems
stems from their independence of ded-
icated infrastructure and centralized
control. However, these very proper-
ties also expose P2P systems to some
unique challenges not faced by other
types of distributed systems. Moreover,
given the popularity of P2P systems,
they become natural targets for misuse
or attack. Here, we give an overview of
challenges and attacks that P2P sys-
tems may face, and corresponding de-
fense techniques. As you will see, some
of the issues have been addressed to
varying degrees, and others remain
open questions.

Controlling membership. Most P2P
systems have open or loosely controlled
membership. This lack of strong user
identities allows an attacker to popu-
late a P2P system with nodes under
his control, by creating many distinct
identities (such action was termed a
Sybil attack15). Once he controls a large
number of “virtual” peers, an attacker
can defeat many kinds of defenses
against node failure or misbehavior,
for example, those that rely on replica-
tion or voting. For instance, an attacker
who wishes to suppress the value asso-
ciated with some key k from a DHT can
add virtual nodes to the system until
he controls all of the nodes that store
replicas of the value. These nodes can
then deny the existence of that key/
value pair when a get operation for key
k is issued.

Initial proposals to address Sybil
attacks required proof of work (for ex-
ample, solving a cryptographic puzzle
or downloading a large file) before a
new node could join the overlay.15,34

While these approaches limit the rate
at which an attacker can obtain iden-

tities, they also make it more difficult
for legitimate users to join. Moreover,
an attacker with enough resources or
access to a botnet can still mount Sybil
attacks.

Another solution requires certified
identities,7 where a trusted author-
ity vouches for the correspondence
between a peer identity and the corre-
sponding real-world entity. The disad-
vantage of certified identities is that
a trusted authority and the necessary
registration process may be impracti-
cal or inappropriate in some applica-
tions.

Protecting data. Another aspect of
P2P system robustness is the availabil-
ity, durability, integrity, and authentic-
ity of the data stored in the system or
downloaded by a peer. Different types
of P2P systems have devised different
mechanisms to address these prob-
lems.

Integrity and authenticity. In the case
of DHTs, data integrity is commonly
verified using self-certifying named ob-
jects. DHTs take advantage of the fact
that they have flexibility in the choice
of the keys for values stored in the
DHT. By setting key=hash(value) during
the put operation, the downloader can
verify the retrieved data is correct by
applying the cryptographic hash func-
tion to the result of the get operation
and comparing it to the original key.
Systems that store mutable data and
systems that allow users to choose ar-
bitrary names for inserted content can
instead use cryptographic signatures
to protect the integrity and authentic-
ity of the data. However, such systems
require an infrastructure to manage
the cryptographic keys.

Studies show that systems that do
not protect the integrity of inserted
data (including many file sharing sys-
tems) tend to be rife with mislabeled
or corrupted content.8,22 One possible
approach to counter the problem of
content pollution is for peers to vote on
the authenticity of data. For example, a
voting system called Credence was de-
veloped by researchers and used by sev-
eral thousands of peers in the Gnutella
file sharing network.34 However, the
problem remains challenging given
the possibility of Sybil attacks to defeat
the voting.

Availability and durability. The next
challenge is how to ensure the avail-

Much of the promise
of P2P systems
stems from their
independence
of dedicated
infrastructure and
centralized control.
However, these
very properties
also expose P2P
systems to some
unique challenges
not faced by other
types of distributed
systems.

review articles

october 2010 | vol. 53 | no. 10 | communications of the acm 81

ability and durability of data stored in
a P2P system. Even in the absence of
attacks, ensuring availability can prove
difficult due to churn. For a data object
to be available, at least one node that
stores a replica must be online at all
times. To make sure an object remains
available under churn, a system must
constantly move replicas to live nodes,
which can require significant network
bandwidth. For this reason, a practical
P2P storage system cannot simultane-
ously achieve all three goals of scalable
storage, high availability, and resil-
ience to churn.6

Another challenge is that the long-
term membership of a P2P storage
system (that is, the set of nodes that
periodically come online) must be non-
decreasing to ensure the durability
of stored data. Otherwise, the system
may lose data permanently, since the
storage space available among the re-
maining members may fall below that
required to store all the data.

Incentives. Participants in a P2P
system are expected to contribute re-
sources for the common good of all
peers. However, users don’t necessarily
have an incentive to contribute if they
can access the service for free. Such us-
ers, called free riders, may wish to save
their own disk space, bandwidth, and
compute cycles, or they may prefer not
to contribute any content in a file-shar-
ing system.

Free riding is reportedly widespread
in many P2P systems. For instance, in
2000 and 2001, studies of the Gnutella
system found a large fraction of free
riders.2,28 More recently, a study of a
DHT used in the eMule file-sharing
system found large clusters of peers
(with more than 10,000 nodes) that
had modified their client software to
produce the same node identifier for
all nodes, which means these nodes
are not responsible for any keys.31

The presence of many free riders re-
duces the resources available to a P2P
system, and can deteriorate the quality
of the service the system is able to pro-
vide to its users. To address this issue,
incentive schemes have been incorpo-
rated in the design of P2P systems.

BitTorrent uses a tit-for-tat strat-
egy, where to be able to download a file
from a peer, a peer must upload anoth-
er part of the same file in return, or risk
being disconnected from that peer.10

This provides a strong incentive for us-
ers to share their upload bandwidth,
since a peer that does not upload data
will have poor download performance.
A number of other incentive mecha-
nisms have been proposed, which all
try to tie the quality of the service a peer
receives to how much that peer con-
tributes.12,25

Managing P2P systems. Whether
P2P systems are easier to manage than
other distributed systems is an open
question.

On the one hand, P2P systems adapt
to a wide range of conditions with re-
spect to workload and resource avail-
ability, they automatically recover
from most node failures, and partici-
pating users look after their hardware
independently. As a result, the burden
associated with the day-to-day opera-
tion of P2P systems appears to be low
compared to server-based solutions,
as evidenced by the fact that graduate
students have been able to deploy and
manage P2P systems that attract mil-
lions of users.16

On the other hand, there is evi-
dence that P2P systems can experience
widespread disruptions that are diffi-
cult to manage. For instance, on Aug.
16, 2007, the Skype overlay network
collapsed and remained unavailable
for several days. The problem was re-
portedly triggered by a Microsoft Win-
dows Update patch that caused many
of the peers to reboot around the same
time, causing a lack of resources that,
combined with a software bug, pre-
vented the overlay from recovering.30
This type of problem may indicate
the lack of centralized control over
available resources and participating
nodes makes it difficult to manage
systemwide disruptions when they
occur. However, more research and
long-term practical experience with
deployed systems is needed to settle
this question.

Some of the challenges P2P systems
face (for example, data integrity and
authenticity) are largely solved, while
others (for example, membership con-
trol and incentives) have partial solu-
tions that are sufficient for important
applications. However, some problems
remain wide open (for example, data
durability and management issues).
Progress on these problems may be
necessary to further expand the range

of applications of P2P technology.

Peer-to-Peer and ISPs
Internet service providers have wit-
nessed the success of P2P applications
with mixed feelings. On one hand, P2P
is fueling demand for network band-
width. Indeed, P2P accounts for the
majority of bytes transferred on the
Internet.29 On the other hand, P2P traf-
fic patterns are challenging certain as-
sumptions that ISPs have made when
engineering their networks and when
pricing their services.

To understand this tension, we
must consider the Internet’s structure
and pricing. The Internet is a roughly
hierarchical conglomeration of in-
dependent network providers. Local
ISPs typically connect to regional ISPs,
who in turn connect to (inter-)national
backbone providers. ISPs at the same
level of the hierarchy (so-called peer
ISPs) may also exchange traffic directly.
In particular, the backbone providers
are fully interconnected.

Typically, peer ISPs do not charge
each other for traffic they exchange di-
rectly, but customers pay for the bits
they send to their providers. An excep-
tion is residential Internet connections
that are usually offered at a flat rate by
ISPs.

This pricing model originated at a
time when client-server applications
dominated the traffic in the Internet.
Commercial server operators pay their
ISPs for the bandwidth used, who in
turn pay their respective providers.
Since residential customers rarely op-
erate servers (in fact, their terms of
use do not allow them to operate com-
mercial servers), it was reasonable to
assume they generate little upstream
traffic, keeping costs low for local ISPs
and enabling them to offer flat-rate
pricing.

With P2P content distribution ap-
plications, however, residential P2P
nodes upload content to each other.
Unless the P2P nodes happen to con-
nect to the same ISP or to two ISPs that
peer directly with each other, the up-
loading node’s ISP must forward the
data to its own provider. This incurs
costs that the ISP cannot pass on to
its flat-rate customers.20 As a result of
this tension, some ISPs have started to
traffic shape and even block BitTorrent
traffic.14 Whether network operators

82 communications of the acm | october 2010 | vol. 53 | no. 10

review articles

should be required to disclose such
practices, and if they should be allowed
at all to discriminate among different
traffic types is the subject of an ongo-
ing debate.

Independent of the outcome of this
debate, the tension will have to be re-
solved in a way that allows P2P applica-
tions to thrive while ensuring the prof-
itability of ISPs. A promising technical
approach is to bias the peer selection
in P2P applications toward nodes con-
nected to the same ISP or to ISPs that
peer with each other.20 Another solu-
tion is for ISPs to change their pricing
model.

A more fundamental tension is
that some ISPs view many of the cur-
rently deployed P2P applications as
competing with their own value-added
services. For instance, ISPs that offer
conventional telephone service may
view P2P VoIP applications as competi-
tion, and cable ISP may view P2P IPTV
applications as competing with their
own IPTV services. In either case, such
ISP’s market share in the more profit-
able value-added services is potentially
diminished in favor of carrying more
plain bits.

In the long term, however, ISPs will
likely benefit, directly and indirectly,
from the innovation and emergence of
new services that P2P systems enable.
Moreover, ISPs may find new revenue
sources by offering infrastructure sup-
port for successful services that initial-
ly developed as P2P applications.

Conclusion
In this article, we have sketched the
promise, technology, and challenges
of P2P systems. As a disruptive technol-
ogy, P2P creates significant opportuni-
ties and challenges for the Internet, in-
dustry, and society. Arguably the most
significant promise of P2P technology
lies in its ability to significantly lower
the barrier for innovation. But the great
strength of P2P, its independence of
dedicated infrastructure and central-
ized control, may also be its weakness,
as it creates new challenges that must
be dealt with through technical, com-
mercial, and legal means.

One possible outcome is that P2P
will turn out to be especially valuable
as a proving ground for new ideas and
services, in addition to keeping its role
as a platform for grassroots services

that enable free speech and the unreg-
ulated exchange of information. Ser-
vices that turn out to be popular, legal,
and commercially viable may then be
transformed into more infrastructure-
based, commercial services. Here,
ideas from P2P systems may be com-
bined with traditional, centralized ap-
proaches to build highly scalable and
dependable systems.	

References
1.	A bout Skype: 100 Billion Skype-to-Skype Minutes

Served; http://about.skype.com/2008/02/100_
billion_skypetoskype_minut.html.

2.	A dar, E. and Huberman, B.A. Free riding on Gnutella.
First Monday 5, 10 (Oct. 2000).

3.	A nderson, D.P. BOINC: A system for public-resource
computing and storage. In Proceedings of the
5th IEEE/ACM International Workshop on Grid
Computing (2004), 4–10.

4.	BBC News. One million viewers use iPlayer. http: //
news.bbc.co.uk/2/hi/technology/7187967.stm.

5.	B ittorrent (protocol). Wikipedia; http://en.wikipedia.
org/wiki/BitTorrent_(protocol)#Adoption.

6.	B lake, C. and Rodrigues, R. High availability, scalable
storage, dynamic peer networks: Pick two. In
Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (May 2003).

7.	C astro, M., Druschel, P., Ganesh, A., Rowstron, A.
and Wallach, D.S. Security for structured peer-
to-peer overlay networks. In Proceedings of the
5th Symposium on Operating Systems Design and
Implementation (Dec. 2002).

8.	C hristin, N., Weigend, A.S. and Chuang, J. Content
availability, pollution and poisoning in file sharing
peer-to-peer networks. In Proceedings of the 6th ACM
Conference on Electronic Commerce (June 2005).

9.	C larke, I., Sandberg, O., Wiley, B. and Hong, T.W.
Freenet: A distributed anonymous information
storage and retrieval system. In Proceedings of
the Designing Privacy Enhancing Technologies—
International Workshop on Design Issues in
Anonymity and Unobservability (July 2000).

10.	C ohen, B. Incentives build robustness in BitTorrent.
In Proceedings of the 1st International Workshop on
Economics of P2P Systems (June 2003).

11.	C ox, L.P. Murray, C.D. and Noble, B.D. Pastiche:
Making backup cheap and easy. In Proceedings of
the 5th Symposium on Operating Systems Design
and Implementation (Dec. 2002).

12.	C ox, L.P. and Noble, B.D. Samsara: honor among
thieves in peer-to-peer storage. In Proceedings of
the 19th ACM Symposium on Operating Systems
Principles (Oct. 2003).

13.	D eCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P. and Vogels, W. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(Oct. 2007).

14.	D ischinger, M., Mislove, A. Haeberlen, A. and
Gummadi, K.P. Detecting BitTorrent blocking. In
Proceedings of the 8th Internet Measurement
Conference (Oct. 2008).

15.	D ouceur, J. The Sybil attack. In Proceedings of
the First International Workshop on Peer-to-Peer
Systems (Mar. 2002).

16.	 Freedman, M.J., Freudenthal, E. and Mazières, D.
Democratizing content publication with Coral. In
Proceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation
(Mar. 2004).

17.	H ei, X., Liang, C., Liang, J., Liu, Y. and Ross, K.W.
Insights into PPLive: A measurement study of a
large-scale P2P IPTV system. In Proceedings of
the 15th International World Wide Web Conference,
IPTV Workshop (May 2006).

18.	H ildrum, K., Kubiatowicz, J.D., Rao, S. and Zhao, B.Y.
Distributed object location in a dynamic network. In
Proceedings of the 14th Annual ACM Symposium on
Parallel Algorithms and Architectures (2002), 41–52.

19.	H uebsch, R., Hellerstein, J.M., Lanham, N., Loo, B.T,
Shenker, S. and Stoica, I. Querying the Internet
with PIER. In Proceedings of the 29th International

Conference on Very Large Data Bases (Sept. 2003).
20.	Karagiannis, T., Rodriguez, P., and Papagiannaki, K.

Should Internet service providers fear peer-assisted
content distribution? In Proceedings of the Internet
Measurement Conference (Oct. 2005).

21.	 Li, B., Xie, S., Qu, Y., Keung, G., Lin, C., Liu, J. and
Zhang, X. Inside the new coolstreaming: Principles,
measurements and performance implications. In
Proceedings of INFOCOM (2008).

22.	 Liang, J., Kumar, R., Xi, Y. and Ross, K.W. Pollution
in P2P file sharing systems. In Proceedings of
INFOCOM (Mar. 2005).

23.	 Maniatis, P., Roussopoulos, M., Giuli, T.J., Rosenthal,
D.S.H. and Baker, M. The LOCKSS peer-to-peer
digital preservation system. ACM Transactions on
Computer Systems 23, 1 (2005), 2–50.

24.	Mislove, A. Post, A. Haeberlen, A. and Druschel,
P. Experiences in building and operating ePOST, a
reliable peer-to-peer application. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems (Apr. 2006).

25.	N andi, A., Ngan, T-W.J, Singh, A., Druschel, P.
and Wallach, D.S. Scrivener: Providing incentives
in cooperative content distribution systems.
In Proceedings of the ACM/IFIP/USENIX 6th
International Middleware Conference (Nov. 2005).

26.	R enesse, R.V, Birman, K.P. and Vogels, W. Astrolabe:
A robust and scalable technology for distributed
system monitoring, management, and data mining.
ACM Transactions on Computer Systems 21, 2
(2003), 164–206.

27.	R owstron, A. and Druschel, P. Pastry: Scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms (Nov. 2001).

28.	S aroiu, S., Gummadi, P.K., and Gribble, S.D.
A measurement study of peer-to-peer file
sharing systems. In Proceedings of the SPIE/
ACM Conference on Multimedia Computing and
Networking (Jan. 2002).

29.	S kinkers: Enterprise communication management;
http://www.skinkers.com/About_us/About_Skinkers.

30.	Skype: What happened on August 16; http://
heartbeat.skype.com/2007/08/what_happened_on_
august_16.html.

31.	S teiner, M., Biersack, E.W. and Ennajjary, T. Actively
monitoring peers in KAD. In Proceedings of the 6th
International Workshop on Peer-to-Peer Systems
(Feb. 2007).

32.	S toica, I., Morris, R., Karger, D., Kaashoek, M.F.
and Balakrishnan, H. Chord: A scalable peer-to-
peer lookup service for Internet applications. In
Proceedings of SIGCOMM ’01, (Aug. 2001).

33.	S tribling, J. Li, J., Councill, I.G., Kaashoek, M.F.
and Morris, R. Overcite: A distributed, cooperative
citeseer. In Proceedings of the 3rd Symposium on
Networked Systems Design and Implementation
(May 2006).

34.	Walsh, K. and Sirer, E.G. Experience with an object
reputation system for peer-to-peer filesharing. In
Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (May 2006).

35.	Wang, L., Park, K., Pang, R., Pai, V.S., and Peterson,
L. Reliability and security in the CoDeeN content
distribution network. In Proceedings of the
USENIX 2004 Annual Technical Conference (June
2004).

36.	Wilcox-O’Hearn, B. Experiences deploying a large-
scale emergent network. In Proceedings of the 1st
International Workshop on Peer-to-Peer Systems
(Mar. 2002).

37.	Y alagandula, P. and Dahlin, M. A scalable distributed
information management system. In Proceedings of
SIGCOMM ’04 (2004).

38.	 Zhang, X., Liu, J., Li, B. and Yum, T-S.P.
CoolStreaming/DONet: A data-driven overlay
network for peer-to-peer live media streaming. In
Proceedings of INFOCOM ’05 (2005).

Rodrigo Rodrigues (rodrigo@mpi-sws.org) is a tenure-
track faculty member at the Max Planck Institute for
Software Systems (MPI-SWS), where he heads the
dependable systems group.

Peter Druschel (druschel@mpi-sws.org) is the founding
director of the Max Planck Institute for Software
Systems (MPI-SWS), where he heads the distributed
systems group.

© 2010 ACM 0001-0782/10/1000 $10.00

