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Peer-to-peer (P2P)  computing  has attracted 
significant interest in recent years, originally sparked 
by the release of three influential systems in 1999: 
the Napster music-sharing system, the Freenet 
anonymous data store, and the SETI@home volunteer-
based scientific computing projects. Napster, for 
instance, allowed its users to download music 
directly from each other’s computers via the Internet. 
Because the bandwidth-intensive music downloads 
occurred directly between users’ computers, Napster 
avoided significant operating costs and was able to 
offer its service to millions of users for free. Though 
unresolved legal issues ultimately sealed Napster’s 
fate, the idea of cooperative resource sharing among 
peers found its way into many other applications.

More than a decade later, P2P technology has gone 
far beyond music sharing, anonymous data storage, 
or scientific computing; it now enjoys significant 
research attention and increasingly widespread use 
in open software communities and industry alike. 
Scientists, companies, and open-software 

organizations use BitTorrent to distrib-
ute bulk data such as software updates, 
data sets, and media files to many 
nodes;5 commercial P2P software al-
lows enterprises to distribute news 
and events to their employees and cus-
tomers;29 millions of people use Skype 
to make video and phone calls;1 and 
hundreds of TV channels are available 
using live streaming applications such 
as PPLive,17 CoolStreaming,38 and the 
BBC’s iPlayer.4

The term P2P has been defined in 
different ways, so we should clarify 
what exactly we mean by a P2P system. 
For the purposes of this article, a P2P 
system is a distributed system with the 
following properties:

High degree of decentralization. 
The peers implement both client and 
server functionality and most of the 
system’s state and tasks are dynami-
cally allocated among the peers. There 
are few if any dedicated nodes with 
centralized state. As a result, the bulk 
of the computation, bandwidth, and 
storage needed to operate the system 
are contributed by participating nodes.

Self-organization. Once a node is 
introduced into the system (typically 
by providing it with the IP address of a 
participating node and any necessary 
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Within a decade, P2P has proven to be  
a technology that enables innovative new 
services and is used by millions of people 
every day. 
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 key insights
 � �P2P leverages the computing resources 

of cooperating users to achieve 
scalability and organic growth, thus 
lowering the deployment barrier for 
innovative new services.

 � �Originally invented for music/data 
sharing and volunteer computing, 
P2P systems now enjoy widespread 
commercial and non-commercial use 
in content distribution, IPTV, and IP 
telephony.

 � �The strength of P2P—its independence 
of dedicated infrastructure and 
centralized control—is also its 
weakness, as it presents new technical, 
commercial, and legal challenges.

 � �P2P technology may turn out to be most 
valuable as a low-cost deployment 
vector for experimental, innovative 
services; those services that prove 
to be commercially viable can be 
subsequently combined with centralized, 
infrastructure-based components. Ill
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key material), little or no manual con-
figuration is needed to maintain the 
system.

Multiple administrative domains. 
The participating nodes are not owned 
and controlled by a single organiza-
tion. In general, each node is owned 
and operated by an independent indi-
vidual who voluntarily joins the system.

P2P systems have several distinctive 
characteristics that make them inter-
esting:

Low barrier to deployment. Be-
cause P2P systems require little or no 
dedicated infrastructure, the upfront 
investment needed to deploy a P2P ser-
vice tends to be low when compared to 
client-server systems.

Organic growth. Because the re-
sources are contributed by partici-
pating nodes, a P2P system can grow 
almost arbitrarily without requiring 
a “fork-lift upgrade” of existing infra-
structure, for example, the replace-
ment of a server with more powerful 
hardware.

Resilience to faults and attacks. P2P 
systems tend to be resilient to faults 
because there are few if any nodes that 
are critical to the system’s operation. 
To attack or shut down a P2P system, 
an attacker must target a large propor-
tion of the nodes simultaneously.

Abundance and diversity of re-
sources. Popular P2P systems have 
an abundance of resources that few 
organizations would be able to afford 
individually. The resources tend to be 
diverse in terms of their hardware and 
software architecture, network attach-
ment, power supply, geographic loca-
tion and jurisdiction. This diversity re-
duces their vulnerability to correlated 
failure, attack, and even censorship.

As with other technologies (for ex-
ample, cryptography), the properties of 
P2P systems lend themselves to desir-
able and undesirable use. For instance, 
P2P systems’ resilience may help citi-
zens avoid censorship by a totalitar-
ian regime; at the same time, it can be 
abused to try and hide criminal activity 
from law enforcement agencies. The 
scalability of a P2P system can be used 
to disseminate a critical software up-
date efficiently at a planetary scale, but 
can also be used to facilitate the illegal 
distribution of copyrighted content.

Despite having acquired a negative 
reputation for some of its initial pur-

poses, P2P technologies are increas-
ingly being used for legal applications 
with enormous business potential, and 
there is consensus about their ability to 
lower the barrier for the introduction of 
innovative technologies. Nevertheless, 
P2P technology faces many challenges. 
The decentralized nature of P2P sys-
tems raises concerns about manage-
ability, security, and law enforcement. 
Moreover, P2P applications are affect-
ing the traffic experienced by Internet 
service providers (ISPs) and threaten to 
disrupt the current Internet econom-
ics. In this article, we briefly sketch im-
portant highlights of the technology, 
its applications, and the challenges it 
faces.

Applications
Here, we discuss some of the most suc-
cessful P2P systems and also mention 
promising P2P systems that have not 
yet received as much attention. 

Sharing and distributing files. Pres-
ently, the most popular P2P applica-
tions are file sharing (for example, 
eDonkey) and bulk data distribution 
(for example, BitTorrent). 

Both types of systems can be viewed 
as successors of Napster. In Napster, 
users shared a subset of their disk 
files with other participants, who were 
able to search for keywords in the file 
names. Users would then download 
any of the files in the query results di-
rectly from the peer that shared it.

Much of the content shared by Nap-
ster users was music, which led to copy-
right infringement lawsuits. Napster 
was found guilty and had to shut down 
its services. Simultaneously, a series of 
similar P2P systems appeared, most 
notably Gnutella and FastTrack (better 
known by one of its client applications, 
Kazaa). Gnutella, unlike Napster, has 
no centralized components and is not 
operated by any single entity (perhaps 
in part to make it harder to prosecute).

The desire to reduce the download 
time for very large files lead to the de-
sign of BitTorrent,10 which enables a 
large set of users to download bulk data 
quickly and efficiently. The system uses 
spare upload bandwidth of concurrent 
downloaders and peers who already 
have the complete file (either because 
they are data sources or have finished 
the download) to assist other down-
loaders in the system. Unlike file-shar-

ing applications, BitTorrent and other 
P2P content distribution networks do 
not include a search component, and 
users downloading different content 
are unaware of each other, since they 
form separate networks. The protocol 
is widely used for disseminating data, 
software, or media content.

Streaming media. An increasingly 
popular P2P application is streaming 
media distribution and IPTV (deliver-
ing digital television service over the 
Internet). As in file sharing, the idea is 
to leverage the bandwidth of partici-
pating clients to avoid the bandwidth 
costs of server-based solutions.

Streaming media distribution has 
stricter timing requirements than 
downloading bulk data because data 
must be delivered before the playout 
deadline to be useful.

Example systems include academic 
efforts with widespread adoption such 
as PPLive17 and CoolStreaming,38 and 
commercial products such as BBC’s 
iPlayer4 and Skinkers LiveStation.29

Telephony. Another major use of 
P2P technology on the Internet is for 
making audio and video calls, popular-
ized by the Skype application. Skype 
exploits the resources of participating 
nodes to provide seamless audiovisual 
connectivity to its users, regardless 
of their current location or type of In-
ternet connection. Peers assist those 
without publicly routable IP addresses 
to establish connections, thus working 
around connectivity problems due to 
firewalls and network address transla-
tion, without requiring a centralized 
infrastructure that handles and for-
wards calls. Skype reported 520 million 
registered users at the end of 2009.

Volunteer computing. A fourth im-
portant P2P application is volunteer 
computing. In these systems, users do-
nate their spare CPU cycles to scientific 
computations, usually in fields such as 
astrophysics, biology, or climatology. 
The first system of this type was SETI@
home. Volunteers install a screen saver 
that runs the P2P application when 
the user is not active. This application 
downloads blocks containing obser-
vational data collected at the Arecibo 
radio telescope from the SETI@home 
server. Then the application analyzes 
this data, searching for possible radio 
transmissions, and sends the results 
back to the server.
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The success of SETI@home and 
similar projects led to the develop-
ment of the BOINC platform,3 which 
has been used to develop many cycle-
sharing P2P systems in use today. At 
the time of this writing, BOINC has 
more than half a million active peers 
computing on average 5.42 petaFLOPS 
(floating-point operations per sec-
ond). For comparison, a modern PC 
performs on the order of a few tens of 
GFLOPS (about five orders of magni-
tude fewer), and the world’s fastest su-
percomputer as of August 2010 has a 
performance of about 1.76 petaFLOPS.

Other applications. Other types of 
P2P applications have seen significant 
use, at least temporarily, but have not 
reached the same levels of adoption as 
the systems we describe here. Among 
them are applications that leverage 
peer-contributed disk space to pro-
vide distributed storage. Freenet9 aims 
to combine distributed storage with 
content distribution, censorship resis-
tance, and anonymity. It is still active, 
but the properties of the system make 
it difficult to estimate its actual use. 
MojoNation36 was a subsequent project 
for building a reliable P2P storage sys-
tem, but it was shut down after proving 
unable to ensure the availability of data 
due to unstable membership and other 
problems.

P2P Web content distribution net-
works (CDNs) such as CoralCDN16 and 
CoDeeN35 were deployed as research 
prototypes but gained widespread use. 
In these systems, a set of cooperating 
users form a network of Web caches 
and name servers that replicates Web 
content as users access it, thereby re-
ducing the load on servers hosting pop-
ular content. During its peak usage, 
CoralCDN received up to 25 million 
hits per day from one million unique 
IP addresses.

Many more P2P systems have been 
designed and prototyped, but either 
were not deployed publicly or had 
small deployments. Examples include 
systems for distributed data monitor-
ing, management and mining,26,37 mas-
sively distributed query processing,19 
cooperative backup,11 bibliographic 
databases,33 serverless email,24 and ar-
chival storage.23

Technology developed for P2P ap-
plications has also been incorporated 
into other types of systems. For in-

stance, Dynamo,13 a storage substrate 
that Amazon uses internally for many 
of its services and applications, uses 
distributed hash tables (DHTs), which 
we will explain later. Akamai’s NetSes-
siona client uses P2P downloads to 
increase performance and reduce the 
cost of delivering streaming content. 
Even though these systems are con-
trolled by a single organization and 
thus do not strictly satisfy our defini-
tion of a P2P system, they are based on 
P2P technology. 

While P2P systems are a recent in-
vention, technical predecessors of P2P 
systems have existed for a long time. 
Early examples include the NNTP and 
SMTP news and mail distribution sys-
tems, and the Internet routing system. 
Like P2P systems, these are mostly 
decentralized systems that rely on re-
source contributions from their par-
ticipants. However, the peers in these 
systems are organizations and the pro-
tocols are not self-organizing.

While the earliest and most visible 
P2P systems were mainly file-sharing 
applications, current uses of P2P tech-
nology are much more diverse and 
include the distribution of data, soft-
ware, media content, as well as Inter-
net telephony and scientific comput-
ing. Moreover, an increasing number 
of commercial services and products 
rely on P2P technology.

How Do P2P Systems Work?
Here, we sketch some of the most im-
portant techniques that make P2P sys-
tems work. We discuss fundamental 
architectural choices like the degree of 
centralization and the structure of the 
overlay network. As you will see, one of 
the key challenges is to build an over-
lay with a routing capability that works 
well in the presence of a high mem-
bership turnover (usually referred to 
as churn), which is typical of deployed 
P2P system.28 We then present solu-
tions to specific problems addressed in 
the context of P2P systems: application 
state maintenance, application-level 
node coordination, and content distri-
bution.

Note that our intention in this pre-
sentation is to provide representative 

a	 See Akamai NetSession Interface Overview at 
http://www.akamai.com/html/misc/akamai_
client/netsession_interface.html/.

While the earliest 
and most visible 
P2P systems were 
mainly file-sharing 
applications, 
current uses of 
P2P technology are 
much more diverse 
and include the 
distribution of data, 
software, media 
content, as well as 
Internet telephony 
and scientific 
computing. 
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examples of the most interesting tech-
niques rather than try to be exhaustive 
or precise about a particular system or 
protocol.

Degree of centralization. We can 
broadly categorize the architecture of 
P2P systems according to the presence 
or absence of centralized components 
in the system design.

Partly centralized P2P systems have 
a dedicated controller node that main-
tains the set of participating nodes and 
controls the system. For instance, Nap-
ster had a Web site that maintained the 
membership and a content index; early 
versions of BitTorrent have a “tracker,” 
which is a node that keeps track of the 
set of nodes uploading and download-
ing the same content, and periodically 
provides nodes with a set of peers they 
can connect to;10 the BOINC platform 

for volunteer computing has a site that 
maintains the membership and as-
signs compute tasks;3 and Skype has 
a central site that provides log-in, ac-
count management, and payment.

Resource-intensive operations like 
transmitting content or computing ap-
plication functions do not involve the 
controller. Like general P2P systems, 
partly centralized P2P systems can 
provide organic growth and abundant 
resources. However, they do not neces-
sarily offer the same scalability and re-
silience because the controller forms a 
potential bottleneck and a single point 
of failure and attack. Partly centralized 
P2P systems are relatively simple and 
can be managed by a single organiza-
tion via the controller.

Decentralized P2P system. In a de-
centralized P2P system, there are no 

dedicated nodes that are critical for the 
operation of the system. Decentralized 
P2P systems have no inherent bottle-
necks and can potentially scale very 
well. Moreover, the lack of dedicated 
nodes makes them potentially resilient 
to failure, attack, and legal challenge.

In some decentralized P2P systems, 
nodes with plenty of resources, high 
availability and a publicly routable IP 
address act as supernodes. These su-
pernodes have additional responsi-
bilities, such as acting as a rendez-vous 
point for nodes behind firewalls, stor-
ing state or keeping an index of avail-
able content. Supernodes can increase 
the efficiency of a P2P system, but may 
also increase its vulnerability to node 
failure.

Overlay maintenance. P2P systems 
maintain an overlay network, which 
can be thought of as a directed graph G 
= (N,E), where N is the set of participat-
ing computers and E is a set of overlay 
links. A pair of nodes connected by a 
link in E is aware of each other’s IP ad-
dress and communicates directly via 
the Internet. Here, we discuss how dif-
ferent types of P2P systems maintain 
their overlay.

In partly centralized P2P systems, 
new nodes join the overlay by connect-
ing to the controller located at a well-
known domain name or IP address 
(which can be, for instance, hardcoded 
in the application). Thus, the overlay 
initially has a star-shaped topology 
with the controller at the center. Ad-
ditional overlay links may be formed 
dynamically among participants that 
have been introduced by the controller.

In decentralized overlays, newly 
joining nodes are expected to obtain, 
through an outside channel, the net-
work address (for example, IP address 
and port number) of some node that 
already participates in the system. The 
address of such a bootstrap node can 
be obtained, for instance, from a Web 
site. To join, the new node contacts the 
bootstrap node.

We distinguish between systems 
that maintain an unstructured or a 
structured overlay network.

Unstructured overlays. In an unstruc-
tured P2P system, there are no con-
straints on the links between different 
nodes, and therefore the overlay graph 
does not have any particular structure. 
In a typical unstructured P2P system, 

Figure 1. An example KBR implementation. 
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Node 65a1fc invokes 
KBR with the key 
d46a1c, producing 
a route to the 
responsible node 
d462ba via a sequence 
of nodes whose ids 
share increasingly 
longer prefixes with 
the key.
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Figure 2. Locating objects in unstructured overlays.
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overlay. When the 
query reaches node 
R, R returns the 
address of I.
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a newly joining node forms its initial 
links by repeatedly performing a ran-
dom walk through the overlay starting 
at the bootstrap node and requesting a 
link to the node where the walk termi-
nates. Nodes acquire additional links 
(for example, by performing more ran-
dom walks) whenever their degree falls 
below the desired minimum; they re-
fuse link requests when their current 
degree is at its maximum.

The minimum node degree is typi-
cally chosen to maintain connectiv-
ity in the overlay despite node failures 
and membership churn. A maximum 
degree is maintained to bound the 
overhead associated with maintaining 
overlay links.

Structured overlays. In a structured 
overlay, each node has a unique identi-
fier in a large numeric key space, for ex-
ample, the set of 160-bit integers. Iden-
tifiers are chosen in a way that makes 
them uniformly distributed in that 
space. The overlay graph has a specific 
structure; a node’s identifier deter-
mines its position within that structure 
and constrains its set of overlay links.

Keys are also used when assign-
ing responsibilities to nodes. The 
key space is divided among the par-
ticipating nodes, such that each key is 
mapped to exactly one of the current 
overlay nodes via a simple function. 
For instance, a key may be mapped to 
the node whose identifier is the key’s 
closest counterclockwise successor in 
the key space. In this technique the key 
space is considered to be circular (that 
is, the id zero succeeds the highest id 
value) to account for the fact that there 
may exist keys greater than all node 
identifiers.

The overlay graph structure is cho-
sen to enable efficient key-based rout-
ing. Key-based routing implements 
the primitive KBR(n0, k). Given a start-
ing node n0 and a key k, KBR produces 
a path, that is, a sequence of overlay 
nodes that ends in the node respon-
sible for k. As will become clear in sub-
sequent sections, KBR is a powerful 
primitive.

Many implementations of key-
based routing exist.18,27,32 In general, 
they strike a balance between the 
amount of routing state required at 
each node and the number of forward-
ing hops required to deliver a message. 
Typical implementations require an 

amount of per-node state and a num-
ber of forwarding hops that are both 
logarithmic in the size of the network.

Figure 1 illustrates an example of 
a key-based routing scheme. Node 
65a1fc invokes KBR with the key 
d46a1c, producing a route via a se-
quence of nodes whose ids share in-
creasingly longer prefixes with the key. 
Eventually the message reaches the 
node with id d462ba, which has suffi-
cient knowledge about its neighboring 
nodes to determine that it is respon-
sible for the target key. Though not 
depicted, the reply can be forwarded 
directly to the invoking node.

Summary. We have seen how the 
overlay network is formed and main-
tained in different types of P2P sys-
tems. In partly centralized P2P sys-
tems, the controller facilitates the 
overlay formation.

In other P2P systems, overlay main-
tenance is fully decentralized. Com-
pared to an unstructured overlay net-
work, a structured overlay network 
invests additional resources to main-
tain a specific graph structure. In re-
turn, structured overlays are able to 
perform key-based routing efficiently.

The choice between an unstructured 
and a structured overlay depends on 
how useful key-based routing is for the 
application, and also on the frequency 
of overlay membership events. As we 
will discuss, key-based routing can re-
liably and efficiently locate uniquely 
identified data items and maintain 
spanning trees among member nodes. 
However, maintaining a structured 
overlay in a high-churn environment 
has an associated cost, which may not 
be worth paying if the application does 
not require the functionality provided 
by key-based routing.

Some P2P systems use both struc-
tured and unstructured overlays. A 
recent (“trackerless”) version of Bit-
Torrent, for instance, uses key-based 
routing to choose tracker nodes, but 
builds an unstructured overlay to dis-
seminate the content.

Distributed state. Most P2P systems 
maintain some application-specific 
distributed state. Without loss of gen-
erality, we consider that state as a col-
lection of objects with unique keys. 
Maintaining this collection of state 
objects in a distributed manner, that 
is, providing mechanisms for object 

placement and locating objects, are 
key tasks in such systems.

Partly centralized systems. In partly 
centralized P2P systems, an object is 
typically stored at the node that insert-
ed the object, as well as any nodes that 
have subsequently downloaded the ob-
ject. The controller node maintains in-
formation about which objects exist in 
the system, their keys, names and oth-
er attributes, and which nodes are cur-
rently storing those objects. Queries 
for a given key, or a set of keywords that 
match an object’s name or attributes, 
are directed to the controller, which re-
sponds with a set of nodes from which 
the corresponding object(s) can be 
downloaded.

Unstructured systems. As in partly 
centralized systems, content is typi-
cally stored at the node that introduced 
the content to the system, and repli-
cated at other downloaders. To make 
it easier to find content, some systems 
place copies of (or pointers to) an in-
serted object on additional nodes, for 
instance, along a random walk path 
through the overlay.

To locate an object, a querying 
node typically floods a request mes-
sage through the overlay. The query 
can specify the desired object by its 
key, metadata, or keywords. A node 
that receives a query and has a match-
ing object (or a pointer to a matching 
object), responds to the querying node. 
Figure 2 illustrates this process. In this 
case, node I inserts an object into the 
system and holds its only copy, but in-
serts pointers to the object on all nodes 
along a random walk that ends in node 
R. When node S tries to locate the ob-
ject, it floods a query, first, to all nodes 
that are at a distance of one hop, then 
to all nodes two hops away. In the last 
step the query reaches node R, which 
returns the address of I.

Often, the scope of the flood (that is, 
the maximal number of hops from the 
querying nodes that a flood message 
is forwarded) is limited to trade recall 
(the probability that an object that ex-
ists in the system is found) for overhead 
(the number of messages required by 
the flood). An alternative to flooding is 
for the querying node to send a request 
message along a random walk through 
the overlay.

Gnutella was the first example of a 
decentralized, unstructured network 
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that used flooding to locate content in 
a file sharing system.

Structured overlays. In structured 
overlays, distributed state is main-
tained using a distributed hash table 
(DHT) abstraction. The DHT has the 
same put/get interface as a convention-
al hash table. Inserted key/value pairs 
are distributed among the participat-
ing nodes in the structured overlay us-
ing a simple placement function. For 
instance, that function can position 
replicas of the key/value pair on the set 
of r nodes whose identifiers succeed 
the key in the circular key space. Note 
that in our terminology, the values 
correspond to the state objects main-

tained by the system.
Given this replica placement policy, 

the DHT’s put and get operations can 
be implemented using the KBR primi-
tive in a straightforward manner. To 
insert (put) a key/value pair, we use 
the KBR primitive to determine the re-
sponsible node for the key k and store 
the pair on that node, which then prop-
agates it to the set of replicas for k. To 
look up (get) a value, we use the KBR 
primitive to fetch the value associated 
with a given key. The responsible node 
can respond to the fetch request or for-
ward it to one of the nodes in the rep-
lica set. Figure 3 shows an example put 
operation, where the value is initially 

pushed to the node responsible for key 
k, which is discovered using KBR, and 
this node pushes the value to its three 
immediate successors.

When a DHT experiences churn, 
pairs have to be moved between nodes 
as the mapping of keys to nodes chang-
es. To minimize the required network 
communication, large data values are 
typically not inserted directly into a 
DHT; instead, an indirection pointer is 
inserted under the value’s key, which 
points to the node that actually stores 
the value.

DHTs are used, for instance, in file 
sharing networks such as eDonkey, 
and also in some versions of BitTor-
rent.

Summary. Unstructured overlays 
tend to be very efficient at locating 
widely replicated objects, while KBR-
based techniques can reliably and ef-
ficiently locate any object that exists 
in the system, no matter how rare it 
may be. Put another way, unstructured 
overlays are good at finding “hay” while 
structured overlays are good at find-
ing “needles.” On the other hand, un-
structured networks support arbitrary 
keyword-based queries, while KBR-
based systems directly support only 
key-based queries.

Distributed coordination. Frequent-
ly, a group of nodes in a P2P application 
must coordinate their actions without 
centralized control. For instance, the 
set of nodes that replicate a particu-
lar object must inform each other of 
updates to the object. In another ex-
ample, a node that is interested in re-
ceiving a particular streaming content 
channel may wish to find, among the 
nodes that currently receive that chan-
nel, one that is nearby and has available 
upstream network bandwidth. We will 
look at two distinct approaches to this 
problem: epidemic techniques where 
information spreads virally through 
the system, and tree-based techniques 
where distribution trees are formed to 
spread the information.

We focus only on decentralized 
overlays, since coordination can be ac-
complished by the controller node in 
partly centralized systems.

Unstructured overlays. In unstruc-
tured overlays, coordination typically 
relies on epidemic techniques. In 
these protocols, information is spread 
through the overlay in a manner simi-

Figure 4. An example KBR tree.

groupId

G

C

B

A

The KBR routes from group 
member nodes A, B, and C 
to G (the node responsible 
for the group key) form a 
spanning tree rooted at G.

Figure 3. Inserting a value into a DHT.

put (key, value)

The key/value pair is 
replicated on the node 
responsible for the key 
(reached via KBR) and 
its three successors.
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lar to the way an infection spreads in 
a population: the node that produced 
the information sends it to (some of) 
its overlay neighbors, who send it to 
(some of) their neighbors, and so on. 
This method of dissemination is very 
simple and robust. As in all epidemic 
techniques, there is a trade-off be-
tween the speed of information dis-
semination and overhead. Moreover, if 
a given piece of information is of inter-
est only to a subset of nodes and these 
nodes are widely dispersed within the 
overlay, then the information ends up 
being needlessly delivered to all nodes.

A more efficient way to coordinate 
the actions among a group of nodes 
is to form a spanning tree among the 
nodes. The spanning tree is embedded 
in the overlay graph, using a decentral-
ized algorithm for spanning tree for-
mation. This tree can then be used to 
multicast messages to all members, or 
to compute summaries (for example, 
sums, averages, minima, or maxima) of 
state variables within the group. How-
ever, this added coordination efficien-
cy must be balanced against the over-
head of maintaining the spanning tree 
in the unstructured overlay network.

Structured overlays. In structured 
overlays, spanning trees among any 
group of overlay nodes can be formed 
and maintained very efficiently us-
ing the KBR primitive, making trees 
the preferred method of coordination 
in these overlays. To join a spanning 
tree, a node uses KBR to route to a 
unique key associated with the group. 
The resulting union of the paths from 
all group members form a spanning 
tree rooted at the node responsible for 
the group’s key. This KBR tree is then 
used to aggregate and disseminate 
state associated with the group, and to 
implement multicast and anycast. Fig-
ure 4 illustrates an example KBR tree 
formed by the union of the KBR routes 
from nodes A, B, and C to the key cor-
responding to the group id. This tree is 
rooted at node G, which is the respon-
sible node for that key.

Because a join message terminates 
as soon as it intercepts the tree, group 
membership maintenance is decen-
tralized, that is, the arrival or departure 
of a node is noted only by the node’s 
parent and children in the tree. As a 
result, the technique scales to large 
numbers of groups, as well as large and 

highly dynamic groups.
Summary. The epidemic techniques 

typically used for coordination in un-
structured overlays are simple and ro-
bust to overlay churn, but they may not 
scale to large overlays or large numbers 
of groups, and information tends to 
propagate slowly. Spanning trees can 
increase the efficiency of coordination, 
but maintaining a spanning tree in an 
unstructured overlay adds costs.

The additional overhead for main-
taining a structured overlay is propor-
tional to the churn in the total overlay 
membership. Once that overhead is 
paid, KBR trees enable efficient and 
fast coordination among potentially 
numerous, large and dynamic sub-
groups within the overlay.

Content Distribution
Another common task in P2P sys-
tems is the distribution of bulk data 
or streaming content to a set of inter-
ested nodes. P2P techniques for con-
tent distribution can be categorized 
as tree-based (where fixed distribution 
trees are formed either with the aid of 
a structured overlay or embedded in 
an unstructured overlay), or swarming 
protocols (which have no notion of a 
fixed tree for routing content and usu-
ally form an unstructured overlay). Due 
to space constraints, we focus on the 
swarming protocols popularized by the 
BitTorrent protocol.10

In swarming protocols, the content 
is divided into a sequence of blocks, 
and each block is individually multi-
cast to all overlay nodes such that dif-
ferent blocks are disseminated along 
different paths.

The basic operation of a swarming 
protocol is simple: once every swarm-
ing interval (say, one second), overlay 
neighbors exchange information indi-
cating which content blocks they have 
available. (In streaming content dis-
tribution, only the most recently pub-
lished blocks are normally of interest.) 
Each node intersects the availability in-
formation received from its neighbors, 
and then requests a block it does not 
already have from one of the neighbors 
who has it.

It is important that blocks are well 
distributed among the peers, to ensure 
neighboring peers tend to have blocks 
they can swap and that blocks remain 
available when some peers leave the 

Unstructured 
overlays are good at 
finding “hay,” while 
structured overlays 
are good at finding 
“needles.” 
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system. To achieve such a distribu-
tion, the system can randomize both 
the choice of block to download and 
the choice of a neighbor from whom 
to request the block. In one possible 
strategy, a node chooses to download 
the rarest block among all blocks held 
by its overlay neighbors.10

The best known and original 
swarming protocol for bulk content 
distribution is BitTorrent.10 Examples 
of swarming protocols used for stream-
ing content include PPLive17 and the 
original version of CoolStreaming.38

Challenges
Much of the promise of P2P systems 
stems from their independence of ded-
icated infrastructure and centralized 
control. However, these very proper-
ties also expose P2P systems to some 
unique challenges not faced by other 
types of distributed systems. Moreover, 
given the popularity of P2P systems, 
they become natural targets for misuse 
or attack. Here, we give an overview of 
challenges and attacks that P2P sys-
tems may face, and corresponding de-
fense techniques. As you will see, some 
of the issues have been addressed to 
varying degrees, and others remain 
open questions.

Controlling membership. Most P2P 
systems have open or loosely controlled 
membership. This lack of strong user 
identities allows an attacker to popu-
late a P2P system with nodes under 
his control, by creating many distinct 
identities (such action was termed a 
Sybil attack15). Once he controls a large 
number of “virtual” peers, an attacker 
can defeat many kinds of defenses 
against node failure or misbehavior, 
for example, those that rely on replica-
tion or voting. For instance, an attacker 
who wishes to suppress the value asso-
ciated with some key k from a DHT can 
add virtual nodes to the system until 
he controls all of the nodes that store 
replicas of the value. These nodes can 
then deny the existence of that key/
value pair when a get operation for key 
k is issued.

Initial proposals to address Sybil 
attacks required proof of work (for ex-
ample, solving a cryptographic puzzle 
or downloading a large file) before a 
new node could join the overlay.15,34 

While these approaches limit the rate 
at which an attacker can obtain iden-

tities, they also make it more difficult 
for legitimate users to join. Moreover, 
an attacker with enough resources or 
access to a botnet can still mount Sybil 
attacks.

Another solution requires certified 
identities,7 where a trusted author-
ity vouches for the correspondence 
between a peer identity and the corre-
sponding real-world entity. The disad-
vantage of certified identities is that 
a trusted authority and the necessary 
registration process may be impracti-
cal or inappropriate in some applica-
tions.

Protecting data. Another aspect of 
P2P system robustness is the availabil-
ity, durability, integrity, and authentic-
ity of the data stored in the system or 
downloaded by a peer. Different types 
of P2P systems have devised different 
mechanisms to address these prob-
lems.

Integrity and authenticity. In the case 
of DHTs, data integrity is commonly 
verified using self-certifying named ob-
jects. DHTs take advantage of the fact 
that they have flexibility in the choice 
of the keys for values stored in the 
DHT. By setting key=hash(value) during 
the put operation, the downloader can 
verify the retrieved data is correct by 
applying the cryptographic hash func-
tion to the result of the get operation 
and comparing it to the original key. 
Systems that store mutable data and 
systems that allow users to choose ar-
bitrary names for inserted content can 
instead use cryptographic signatures 
to protect the integrity and authentic-
ity of the data. However, such systems 
require an infrastructure to manage 
the cryptographic keys.

Studies show that systems that do 
not protect the integrity of inserted 
data (including many file sharing sys-
tems) tend to be rife with mislabeled 
or corrupted content.8,22 One possible 
approach to counter the problem of 
content pollution is for peers to vote on 
the authenticity of data. For example, a 
voting system called Credence was de-
veloped by researchers and used by sev-
eral thousands of peers in the Gnutella 
file sharing network.34 However, the 
problem remains challenging given 
the possibility of Sybil attacks to defeat 
the voting.

Availability and durability. The next 
challenge is how to ensure the avail-

Much of the promise 
of P2P systems 
stems from their 
independence 
of dedicated 
infrastructure and 
centralized control. 
However, these 
very properties 
also expose P2P 
systems to some 
unique challenges 
not faced by other 
types of distributed 
systems.
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ability and durability of data stored in 
a P2P system. Even in the absence of 
attacks, ensuring availability can prove 
difficult due to churn. For a data object 
to be available, at least one node that 
stores a replica must be online at all 
times. To make sure an object remains 
available under churn, a system must 
constantly move replicas to live nodes, 
which can require significant network 
bandwidth. For this reason, a practical 
P2P storage system cannot simultane-
ously achieve all three goals of scalable 
storage, high availability, and resil-
ience to churn.6

Another challenge is that the long-
term membership of a P2P storage 
system (that is, the set of nodes that 
periodically come online) must be non-
decreasing to ensure the durability 
of stored data. Otherwise, the system 
may lose data permanently, since the 
storage space available among the re-
maining members may fall below that 
required to store all the data.

Incentives. Participants in a P2P 
system are expected to contribute re-
sources for the common good of all 
peers. However, users don’t necessarily 
have an incentive to contribute if they 
can access the service for free. Such us-
ers, called free riders, may wish to save 
their own disk space, bandwidth, and 
compute cycles, or they may prefer not 
to contribute any content in a file-shar-
ing system.

Free riding is reportedly widespread 
in many P2P systems. For instance, in 
2000 and 2001, studies of the Gnutella 
system found a large fraction of free 
riders.2,28 More recently, a study of a 
DHT used in the eMule file-sharing 
system found large clusters of peers 
(with more than 10,000 nodes) that 
had modified their client software to 
produce the same node identifier for 
all nodes, which means these nodes 
are not responsible for any keys.31

The presence of many free riders re-
duces the resources available to a P2P 
system, and can deteriorate the quality 
of the service the system is able to pro-
vide to its users. To address this issue, 
incentive schemes have been incorpo-
rated in the design of P2P systems.

BitTorrent uses a tit-for-tat strat-
egy, where to be able to download a file 
from a peer, a peer must upload anoth-
er part of the same file in return, or risk 
being disconnected from that peer.10 

This provides a strong incentive for us-
ers to share their upload bandwidth, 
since a peer that does not upload data 
will have poor download performance. 
A number of other incentive mecha-
nisms have been proposed, which all 
try to tie the quality of the service a peer 
receives to how much that peer con-
tributes.12,25

Managing P2P systems. Whether 
P2P systems are easier to manage than 
other distributed systems is an open 
question.

On the one hand, P2P systems adapt 
to a wide range of conditions with re-
spect to workload and resource avail-
ability, they automatically recover 
from most node failures, and partici-
pating users look after their hardware 
independently. As a result, the burden 
associated with the day-to-day opera-
tion of P2P systems appears to be low 
compared to server-based solutions, 
as evidenced by the fact that graduate 
students have been able to deploy and 
manage P2P systems that attract mil-
lions of users.16

On the other hand, there is evi-
dence that P2P systems can experience 
widespread disruptions that are diffi-
cult to manage. For instance, on Aug. 
16, 2007, the Skype overlay network 
collapsed and remained unavailable 
for several days. The problem was re-
portedly triggered by a Microsoft Win-
dows Update patch that caused many 
of the peers to reboot around the same 
time, causing a lack of resources that, 
combined with a software bug, pre-
vented the overlay from recovering.30 
This type of problem may indicate 
the lack of centralized control over 
available resources and participating 
nodes makes it difficult to manage 
systemwide disruptions when they 
occur. However, more research and 
long-term practical experience with 
deployed systems is needed to settle 
this question.

Some of the challenges P2P systems 
face (for example, data integrity and 
authenticity) are largely solved, while 
others (for example, membership con-
trol and incentives) have partial solu-
tions that are sufficient for important 
applications. However, some problems 
remain wide open (for example, data 
durability and management issues). 
Progress on these problems may be 
necessary to further expand the range 

of applications of P2P technology.

Peer-to-Peer and ISPs
Internet service providers have wit-
nessed the success of P2P applications 
with mixed feelings. On one hand, P2P 
is fueling demand for network band-
width. Indeed, P2P accounts for the 
majority of bytes transferred on the 
Internet.29 On the other hand, P2P traf-
fic patterns are challenging certain as-
sumptions that ISPs have made when 
engineering their networks and when 
pricing their services.

To understand this tension, we 
must consider the Internet’s structure 
and pricing. The Internet is a roughly 
hierarchical conglomeration of in-
dependent network providers. Local 
ISPs typically connect to regional ISPs, 
who in turn connect to (inter-)national 
backbone providers. ISPs at the same 
level of the hierarchy (so-called peer 
ISPs) may also exchange traffic directly. 
In particular, the backbone providers 
are fully interconnected.

Typically, peer ISPs do not charge 
each other for traffic they exchange di-
rectly, but customers pay for the bits 
they send to their providers. An excep-
tion is residential Internet connections 
that are usually offered at a flat rate by 
ISPs.

This pricing model originated at a 
time when client-server applications 
dominated the traffic in the Internet. 
Commercial server operators pay their 
ISPs for the bandwidth used, who in 
turn pay their respective providers. 
Since residential customers rarely op-
erate servers (in fact, their terms of 
use do not allow them to operate com-
mercial servers), it was reasonable to 
assume they generate little upstream 
traffic, keeping costs low for local ISPs 
and enabling them to offer flat-rate 
pricing.

With P2P content distribution ap-
plications, however, residential P2P 
nodes upload content to each other. 
Unless the P2P nodes happen to con-
nect to the same ISP or to two ISPs that 
peer directly with each other, the up-
loading node’s ISP must forward the 
data to its own provider. This incurs 
costs that the ISP cannot pass on to 
its flat-rate customers.20 As a result of 
this tension, some ISPs have started to 
traffic shape and even block BitTorrent 
traffic.14 Whether network operators 
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should be required to disclose such 
practices, and if they should be allowed 
at all to discriminate among different 
traffic types is the subject of an ongo-
ing debate.

Independent of the outcome of this 
debate, the tension will have to be re-
solved in a way that allows P2P applica-
tions to thrive while ensuring the prof-
itability of ISPs. A promising technical 
approach is to bias the peer selection 
in P2P applications toward nodes con-
nected to the same ISP or to ISPs that 
peer with each other.20 Another solu-
tion is for ISPs to change their pricing 
model.

A more fundamental tension is 
that some ISPs view many of the cur-
rently deployed P2P applications as 
competing with their own value-added 
services. For instance, ISPs that offer 
conventional telephone service may 
view P2P VoIP applications as competi-
tion, and cable ISP may view P2P IPTV 
applications as competing with their 
own IPTV services. In either case, such 
ISP’s market share in the more profit-
able value-added services is potentially 
diminished in favor of carrying more 
plain bits.

In the long term, however, ISPs will 
likely benefit, directly and indirectly, 
from the innovation and emergence of 
new services that P2P systems enable. 
Moreover, ISPs may find new revenue 
sources by offering infrastructure sup-
port for successful services that initial-
ly developed as P2P applications.

Conclusion
In this article, we have sketched the 
promise, technology, and challenges 
of P2P systems. As a disruptive technol-
ogy, P2P creates significant opportuni-
ties and challenges for the Internet, in-
dustry, and society. Arguably the most 
significant promise of P2P technology 
lies in its ability to significantly lower 
the barrier for innovation. But the great 
strength of P2P, its independence of 
dedicated infrastructure and central-
ized control, may also be its weakness, 
as it creates new challenges that must 
be dealt with through technical, com-
mercial, and legal means.

One possible outcome is that P2P 
will turn out to be especially valuable 
as a proving ground for new ideas and 
services, in addition to keeping its role 
as a platform for grassroots services 

that enable free speech and the unreg-
ulated exchange of information. Ser-
vices that turn out to be popular, legal, 
and commercially viable may then be 
transformed into more infrastructure-
based, commercial services. Here, 
ideas from P2P systems may be com-
bined with traditional, centralized ap-
proaches to build highly scalable and 
dependable systems.	
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