
Computação de Alto
Desempenho

(High Performance Computing)

Slides adapted from “An Introduction to Parallel Programming”,
Peter Pacheco

 March 22, 2016 / 2 Computação de Alto Desempenho (High Performance Computing)

Shared Memory Programming with OpenMP
(Chapter 5) -- Roadmap

§  Writing programs that use OpenMP.

§  Using OpenMP to parallelize many serial for loops
with only small changes to the source code.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 3 Computação de Alto Desempenho (High Performance Computing)

OpenMP

§  An API for shared-memory parallel programming.

§  MP = multiprocessing

§  Designed for systems in which each thread or
process can potentially have access to all available
memory.

§  System is viewed as a collection of cores or CPUs,
all of which have access to main memory.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 4 Computação de Alto Desempenho (High Performance Computing)

A shared memory system

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 5 Computação de Alto Desempenho (High Performance Computing)

OpenMP

§  Allows incremental modification of serial
programs (contrary to MPI programs)

 March 22, 2016 / 6 Computação de Alto Desempenho (High Performance Computing)

Pragmas

§  Special preprocessor instructions.

§  Typically added to a system to allow behaviors
that are not part of the basic C specification.

§  Compilers that do not support the pragmas
ignore them.

#pragma

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 7 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 8 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 9 Computação de Alto Desempenho (High Performance Computing)

gcc −g −Wall −fopenmp −o omp_hello omp_hello . c

. / omp_hello 4
compiling

running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4 Hello from thread 1 of 4

Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

possible
outcomes

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 10 Computação de Alto Desempenho (High Performance Computing)

OpenMp pragmas

§  # pragma omp parallel

§  Most basic parallel directive.
§  The number of threads that run

the following structured block of code
is determined by the run-time system.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 11 Computação de Alto Desempenho (High Performance Computing)

A process forking and joining two threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 12 Computação de Alto Desempenho (High Performance Computing)

clause

§  Text that modifies a directive.

§  The num_threads clause can be added to a parallel
directive.

§  It allows the programmer to specify the number of
threads that should execute the following block.

pragma omp parallel num_threads
(thread_count)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 13 Computação de Alto Desempenho (High Performance Computing)

Of note…

§  There may be system-defined limitations on the
number of threads that a program can start.

§  The OpenMP standard does not guarantee that this
will actually start thread_count threads.

§  Most current systems can start hundreds or even
thousands of threads.

§  Unless we are trying to start a lot of threads, we will
almost always get the desired number of threads.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 14 Computação de Alto Desempenho (High Performance Computing)

Some terminology

§  In OpenMP parlance
§  the collection of threads executing the parallel block —

the original thread and the new threads — is called a
team,

§  the original thread is called the master, and
§  the additional threads are called slaves.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 15 Computação de Alto Desempenho (High Performance Computing)

In case the compiler does not support
OpenMP

include <omp.h>

#ifdef _OPENMP
include <omp.h>
#endif

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 16 Computação de Alto Desempenho (High Performance Computing)

In case the compiler does not support
OpenMP

ifdef _OPENMP
 int my_rank = omp_get_thread_num ();
 int thread_count =
omp_get_num_threads ();
e l s e
 int my_rank = 0;
 int thread_count = 1;
endif

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 17 Computação de Alto Desempenho (High Performance Computing)

THE TRAPEZOIDAL RULE

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 18 Computação de Alto Desempenho (High Performance Computing)

The trapezoidal rule

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 19 Computação de Alto Desempenho (High Performance Computing)

The Trapezoidal Rule

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 20 Computação de Alto Desempenho (High Performance Computing)

One trapezoid

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 21 Computação de Alto Desempenho (High Performance Computing)

The Trapezoidal Rule

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 22 Computação de Alto Desempenho (High Performance Computing)

Pseudo-code for a serial program

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 23 Computação de Alto Desempenho (High Performance Computing)

Parallelizing the Trapezoidal Rule
-- Foster’s methodology

1.  Partitioning
Divide the computation to be performed and the data operated on by the
computation into small tasks. The focus here should be on identifying
tasks that can be executed in parallel.

2.  Communication
Determine what communication needs to be carried out among the
tasks identified in the previous step.

3.  Agglomeration or aggregation
Combine tasks and communications identified in
the first step into larger tasks.

4.  Mapping
Assign the composite tasks identified in the previous step to processes/
threads.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 24 Computação de Alto Desempenho (High Performance Computing)

A First OpenMP Version

1) Two types of tasks:
a) computation of the areas of individual trapezoids, and
b) adding the areas of trapezoids.

2) There is no communication among the tasks in the
first collection, but each task in the first collection
communicates with task 1b.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 25 Computação de Alto Desempenho (High Performance Computing)

A First OpenMP Version

3) We assume that there are many more trapezoids
than cores.

§  Tasks are aggregated by assigning a contiguous
block of trapezoids to each thread (and a single
thread to each core).

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 26 Computação de Alto Desempenho (High Performance Computing)

Assignment of trapezoids to threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 27 Computação de Alto Desempenho (High Performance Computing)

Serial algorithm àParallel

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Division of the following tasks among two (or more threads) :
a) computation of the areas of individual trapezoids, and
b) adding the areas of trapezoids.

 March 22, 2016 / 28 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 29 Computação de Alto Desempenho (High Performance Computing)

Parallel algorithm
int main(int argc, char* argv[]) {

 double global_result = 0.0; /* Store result in global_result */

 double a, b; /* Left and right endpoints */

 int n; /* Total number of trapezoids */

 int thread_count;

 if (argc != 2) Usage(argv[0]);

 thread_count = strtol(argv[1], NULL, 10);

 printf("Enter a, b, and n\n");

 scanf("%lf %lf %d", &a, &b, &n);

 if (n % thread_count != 0) Usage(argv[0]);

 # pragma omp parallel num_threads(thread_count)

 Trap(a, b, n, &global_result);

 printf("With n = %d trapezoids, our estimate\n", n);

 printf("of the integral from %f to %f = %.14e\n",

 a, b, global_result);

 return 0; } /* main */

 March 22, 2016 / 30 Computação de Alto Desempenho (High Performance Computing)

void Usage(char* prog_name) {

 fprintf(stderr, "usage: %s <number of threads>\n", prog_name);
 fprintf(stderr, " number of trapezoids must be evenly divisible by\n");
 fprintf(stderr, " number of threads\n");
 exit(0);
} /* Usage */

 March 22, 2016 / 31 Computação de Alto Desempenho (High Performance Computing)

void Trap(double a, double b, int n, double* global_result_p) {

 double h, x, my_result; double local_a, local_b; int i, local_n;

 int my_rank = omp_get_thread_num();

 int thread_count = omp_get_num_threads();

 h = (b-a)/n;

 local_n = n/thread_count;

 local_a = a + my_rank*local_n*h;

 local_b = local_a + local_n*h;

 my_result = (f(local_a) + f(local_b))/2.0;

 for (i = 1; i <= local_n-1; i++) {

 x = local_a + i*h;

 my_result += f(x); }

 my_result = my_result*h;

 *global_result_p += my_result; }

Assuming two threads

Problems?

 March 22, 2016 / 32 Computação de Alto Desempenho (High Performance Computing)

Unpredictable results when two (or more)
threads attempt to simultaneously execute:

 global_result += my_result ;

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Assuming two threads

 March 22, 2016 / 33 Computação de Alto Desempenho (High Performance Computing)

Mutual exclusion

pragma omp critical
 global_result += my_result ;

only one thread can execute
the following structured block at a
time

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 34 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 35 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

The directive critical defines a
critical section
-- tells the compiler that the system
needs to arrange for the threads to
have mutually exclusive access to
the following structured block of
code.

 March 22, 2016 / 36 Computação de Alto Desempenho (High Performance Computing)

SCOPE OF VARIABLES

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 37 Computação de Alto Desempenho (High Performance Computing)

Scope

§  In serial programming, the scope of a variable
consists of those parts of a program in which the
variable can be used.

§  In OpenMP, the scope of a variable refers to the set
of threads that can access the variable in a parallel
block.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 38 Computação de Alto Desempenho (High Performance Computing)

Scope in OpenMP

§  A variable that can be accessed by all the threads in the
team has shared scope.

§  A variable that can only be accessed by a single thread
has private scope.

§  The default scope for variables
declared before a parallel block
is shared.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 39 Computação de Alto Desempenho (High Performance Computing)

THE REDUCTION CLAUSE

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 40 Computação de Alto Desempenho (High Performance Computing)

We need this more complex version to add each
thread’s local calculation to get global_result.

Although we’d prefer this.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 41 Computação de Alto Desempenho (High Performance Computing)

If we use this, there is no critical section!

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 42 Computação de Alto Desempenho (High Performance Computing)

If we use this, there is no critical section!

If we fix it like this…

… we force the threads to execute sequentially.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 43 Computação de Alto Desempenho (High Performance Computing)

We can avoid this problem by declaring a
private variable inside the parallel block
and moving
the critical section after the function call.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 44 Computação de Alto Desempenho (High Performance Computing)

We can avoid this problem by declaring a
private variable inside the parallel block
and moving
the critical section after the function call.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 45 Computação de Alto Desempenho (High Performance Computing)

I don’t
like it.

Neither
do I.

I think we
can do
better.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 46 Computação de Alto Desempenho (High Performance Computing)

Reduction operators

§  A reduction operator is a binary operation (such as
addition or multiplication).

§  A reduction is a computation that repeatedly applies
the same reduction operator to a sequence of
operands in order to get a single result.

§  All of the intermediate results of the operation should
be stored in the same variable: the reduction
variable.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 47 Computação de Alto Desempenho (High Performance Computing)

A reduction clause can be added to a
parallel directive.

+, *, -, &, |, ˆ, &&, ||

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

(a clause modifies
a directive)

 March 22, 2016 / 48 Computação de Alto Desempenho (High Performance Computing)

A reduction clause can be added to a
parallel directive.

+, *, -, &, |, ˆ, &&, ||

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

(a clause modifies
a directive)

 March 22, 2016 / 49 Computação de Alto Desempenho (High Performance Computing)

THE “PARALLEL FOR” DIRECTIVE

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 50 Computação de Alto Desempenho (High Performance Computing)

Parallel for

§  Forks a team of threads to execute the following
structured block.

§  However, the structured block following the parallel
for directive must be a for loop.

§  Furthermore, with the parallel for directive the
system parallelizes the for loop by dividing the
iterations of the loop among the threads
§  Usually block partitioning: m iterations and the first m/

thread count are assigned to thread 0, the next m/thread
count are assigned to thread 1, etc

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 51 Computação de Alto Desempenho (High Performance Computing)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

The varibles’ default scope is
private; i is private; there are
local variables being used to
add to the reduction
variable approx

 March 22, 2016 / 52 Computação de Alto Desempenho (High Performance Computing)

Legal forms for parallelizable for
statements

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 53 Computação de Alto Desempenho (High Performance Computing)

Caveats

§  The variable index must have integer or pointer type
(e.g., it can’t be a float).

§  The expressions start, end, and incr must have a
compatible type. For example, if index is a pointer,
then incr must have integer type.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 54 Computação de Alto Desempenho (High Performance Computing)

Caveats

§  The expressions start, end, and incr must not
change during execution of the loop.

§  During execution of the loop, the variable index can
only be modified by the “increment expression” in
the for statement.

§  However, the exit() call is valid inside a parallel for

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 55 Computação de Alto Desempenho (High Performance Computing)

Data dependencies
fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

 fibo[0] = fibo[1] = 1;
pragma omp parallel for num_threads(2)
 for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

note 2 threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 56 Computação de Alto Desempenho (High Performance Computing)

Data dependencies

1 1 2 3 5 8 13 21 34 55

this is correct

fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

 fibo[0] = fibo[1] = 1;
pragma omp parallel for num_threads(2)
 for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

note 2 threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 57 Computação de Alto Desempenho (High Performance Computing)

Data dependencies

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0 this is correct

but sometimes
we get this

fibo[0] = fibo[1] = 1;
for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

 fibo[0] = fibo[1] = 1;
pragma omp parallel for num_threads(2)
 for (i = 2; i < n; i++)
 fibo[i] = fibo[i – 1] + fibo[i – 2];

note 2 threads

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 58 Computação de Alto Desempenho (High Performance Computing)

What happened?

1.  OpenMP compilers don’t check
for dependences among
iterations in a loop that’s being
parallelized with a parallel for
directive.

2.  A loop in which the results of one
or more iterations depend on
other iterations cannot, in
general, be correctly parallelized
by OpenMP.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 59 Computação de Alto Desempenho (High Performance Computing)

Estimating π

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 60 Computação de Alto Desempenho (High Performance Computing)

OpenMP solution #1

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 61 Computação de Alto Desempenho (High Performance Computing)

OpenMP solution #1

loop dependency

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 62 Computação de Alto Desempenho (High Performance Computing)

OpenMP solution #2

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 63 Computação de Alto Desempenho (High Performance Computing)

OpenMP solution #2

What is the
problem here?

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 64 Computação de Alto Desempenho (High Performance Computing)

OpenMP solution #3

Insures factor has
private scope.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 65 Computação de Alto Desempenho (High Performance Computing)

The default clause

§  Lets the programmer specify the scope of each
variable in a block.

§  With this clause the compiler will require that we
specify the scope of each variable we use in the
block and that has been declared outside the block.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 66 Computação de Alto Desempenho (High Performance Computing)

The default clause

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 67 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (1)

§  OpenMP is a standard for programming shared-
memory systems.

§  OpenMP uses both special functions and
preprocessor directives called pragmas.

§  OpenMP programs start multiple threads rather than
multiple processes.

§  Many OpenMP directives can be modified by
clauses.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 22, 2016 / 68 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (2)

§  A major problem in the development of shared
memory programs is the possibility of race
conditions.

§  OpenMP provides several mechanisms for insuring
mutual exclusion in critical sections.
§  Critical directives
§  Named critical directives
§  Atomic directives
§  Simple locks

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

