
March 8, 2016

Computação de Alto
Desempenho

(High Performance Computing)

 MIEI 2015/16

 March 8, 2016 / 2 Computação de Alto Desempenho (High Performance Computing)

§  Course description

§  Workload and grading

§  Bibliography

§  Course goals

Overview

 March 8, 2016 / 3 Computação de Alto Desempenho (High Performance Computing) 3

Course administrative details

§  6 credits (ECTS)

§  1 credit = 28 hours of work

§  Contact hours
§  Lectures (2h weekly)
§  Labs (2h + 1 weekly)

§  Self-study
§  Preparation of tests, exams and programming

assignments

 March 8, 2016 / 4 Computação de Alto Desempenho (High Performance Computing) 4

Workload

167 hours = 11 hours / week = 7 h outside the classes

Contact hours

Self study

 March 8, 2016 / 5 Computação de Alto Desempenho (High Performance Computing) 5

Prerequisites

§  1st cycle level courses

§  Computer architecture

§  Operating systems

§  Computer networks

§  Programming languages

§  C / C++ (, Java)

 March 8, 2016 / 6 Computação de Alto Desempenho (High Performance Computing) 6

Grading

§  Tests/Exam grade TG
§  Two tests (NT1 and NT2), or
§  Written exame NR (only “Recurso”)
§  Grade TG = 0.5*NT1+0.5*NT2 or TG = NR
§  Minimum grade: 8.5 points (out of 20)

§  Labs grade LG
§  3 programming assignments, delivered with source code

and a small report
§  LG = (NP1+NP2+NP3)/3

§  Final grade 0.6*TG+0.4*LG

 March 8, 2016 / 7 Computação de Alto Desempenho (High Performance Computing) 7

Evaluation dates (to be confirmed)

§  Tests
§  Week of 2016-04-12
§  Week of 2016-06-7

§  Assignments/Labs
§  TP1: 2016-04-10, Sunday
§  TP2: 2016-05-8, Sunday
§  TP3: 2016-05-26, Thursday

 March 8, 2016 / 8 Computação de Alto Desempenho (High Performance Computing)

Bibliography

§  Main:
P. Pacheco, " An Introduction to Parallel
Programming", Morgan Kauffman, 2011

§  Complementary:
§  Norm Matloff, "Programming on Parallel Machines:

GPU, Multicore, Clusters and More", University of
California, Davis, http://heather.cs.udavis.edu/
~matloff/158/PLN/ParBook.pdf

§  Bibliography on CUDA

§  CLIP (activate the notifications option)

 March 8, 2016 / 9 Computação de Alto Desempenho (High Performance Computing)

CAD/HPC goal

§  The main goal is to give competences in the area of
High Performance Computing; i.e. to the
methodologies and techniques that allow the
exploitation of hardware architectures with multiple
processors, in order to reduce the execution times of
programs that need high computational resources.

9

 March 8, 2016 / 10 Computação de Alto Desempenho (High Performance Computing)

Topics

1.  Parallel computing: hardware, software, applications
and performance theory. (2 weeks)

2.  Programming shared-memory multiprocessors.
OpenMP. Application examples. (3 weeks)

3.  GPU computing. CUDA. (3 weeks)

4.  Programming distributed-memory multiprocessors.
MPI. Application examples. (3 weeks)

5.  Structured Parallel Programming -- structured
models and abstractions for parallel programming.
(1 week)

 March 8, 2016 / 11 Computação de Alto Desempenho (High Performance Computing)

Parallel Computing

 March 8, 2016 / 12 Computação de Alto Desempenho (High Performance Computing)

§  Why we need ever-increasing performance.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 March 8, 2016 / 13 Computação de Alto Desempenho (High Performance Computing)

Parallelism is a familiar concept

§  House construction – several workers can perform
separate tasks simultaneously

§  Manufacturing (e.g. cars) – it is performed in parallel
using an assembly line, or pipeline à many units of
the product under construction at the same time

§  Call center – many employees service customers at
the same time

§  Etc.

13

 March 8, 2016 / 14 Computação de Alto Desempenho (High Performance Computing)

Need for increasing performance

§  Complex problems, e.g.
§  Climate modeling
§  Drug discovery
§  Energy Research
§  Intelligent Transport Systems
§  The Big Data problem

14

 March 8, 2016 / 15 Computação de Alto Desempenho (High Performance Computing)

The Big Data problem

 Data management dimensions:
§  Data acquisition (e.g. sensors everywhere)
§  Data archiving / mining (e.g. databases, search

engines)
§  Data processing (online/streaming and offline

data)
§  Data access / dissemination (e.g. large-scale

applications with high number of users)

15

 March 8, 2016 / 16 Computação de Alto Desempenho (High Performance Computing)

§  Why we need ever-increasing performance.
§  More complex problems

§  Why we are building parallel systems.
Up to now, performance increases have been attributable to
increasing density of transistors.

However, there are inherent problems:

§  Smaller transistors = faster processors.
§  Faster processors = increased power consumption.
§  Increased power consumption = increased heat.
§  Increased heat = unreliable processors.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 March 8, 2016 / 17 Computação de Alto Desempenho (High Performance Computing)

Solution

§  Move away from single-core systems to multicore
processors.

§  “core” = central processing unit (CPU)

n  Introducing parallelism!!!

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 18 Computação de Alto Desempenho (High Performance Computing)

§  Why we need ever-increasing performance.
§  More complex problems

§  Why we are building parallel systems.

§  Why we need to write parallel programs.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 March 8, 2016 / 19 Computação de Alto Desempenho (High Performance Computing)

Why we need to write parallel programs

§  Running multiple instances of a serial program
often is not very useful.

§  Think of running multiple instances of your
favorite game.

§  What you really want is for
it to run faster.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 20 Computação de Alto Desempenho (High Performance Computing)

Approaches to the serial problem

§  Rewrite serial programs so that they are parallel.

§  Write translation programs that automatically convert
serial programs into parallel programs.
§  This is very difficult to do.
§  Success has been limited.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 21 Computação de Alto Desempenho (High Performance Computing)

More problems

§  Some coding constructs can be recognized by an
automatic program generator, and converted to a
parallel construct.

§  However, it is likely that the result will be a very
inefficient program.

§  Sometimes the best parallel solution is to step back
and devise an entirely new algorithm.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 22 Computação de Alto Desempenho (High Performance Computing)

Example

§  Compute n values and add them together.

§  Serial solution:

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 23 Computação de Alto Desempenho (High Performance Computing)

Example (cont.)

§  We have p cores, p much smaller than n.

§  Each core performs a partial sum of
approximately n/p values.

Each core uses its own private variables
and executes this block of code
independently of the other cores.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 24 Computação de Alto Desempenho (High Performance Computing)

Example (cont.)

§  After each core completes execution of the code,
a private variable my_sum contains the sum of
the values computed by its calls to
Compute_next_value.

§  Ex., 8 cores, n = 24, each element computes
three values, then the calls to
Compute_next_value return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 25 Computação de Alto Desempenho (High Performance Computing)

Example (cont.)

§  Once all the cores are done computing their
private my_sum, they form a global sum by
sending results to a designated “master” core
which adds the final result.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 26 Computação de Alto Desempenho (High Performance Computing)

Example (cont.)

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 27 Computação de Alto Desempenho (High Performance Computing)

Example (cont.)

Core 0 1 2 3 4 5 6 7
my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7
my_sum 95 19 7 15 7 13 12 14

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

Master core

 March 8, 2016 / 28 Computação de Alto Desempenho (High Performance Computing)

But wait!
There is a much better way
to compute the global sum.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 29 Computação de Alto Desempenho (High Performance Computing)

Better parallel algorithm

§  Do not make the master core do all the work.

§  Share it among the other cores.

1st level

§  Pair the cores so that core 0 adds its result with core
1’s result.

§  Core 2 adds its result with core 3’s result, etc.

§  Work with odd and even numbered pairs of cores.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 30 Computação de Alto Desempenho (High Performance Computing)

Better parallel algorithm (cont.)

§  Repeat the process now with only the evenly ranked
cores.

2nd level

§  Core 0 adds result from core 2.

§  Core 4 adds the result from core 6, etc.

3rd level

§  Now cores divisible by 4 repeat the process, and so
forth, until core 0 has the final result.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 31 Computação de Alto Desempenho (High Performance Computing)

Multiple cores forming a global sum

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

1st level

2nd level

3nd level

(…)

 March 8, 2016 / 32 Computação de Alto Desempenho (High Performance Computing)

Analysis

§  In the first example, the master core performs 7
receives and 7 additions.

Global sum:
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

§  In the second example, the master core performs
3 receives and 3 additions.

Global sum:
8 + 19 + 22 + 46 = 95

§  The improvement is more than a factor of 2!

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 33 Computação de Alto Desempenho (High Performance Computing)

Analysis (cont.)

§  The difference is more dramatic with a larger
number of cores.

§  If we have 1000 cores:
§  The first example would require the master to perform

999 receives and 999 additions.
§  The second example would only require 10 receives and

10 additions.

§  That is an improvement of almost a factor of 100!

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 34 Computação de Alto Desempenho (High Performance Computing)

§  Why we need ever-increasing performance.
§  More complex problems

§  Why we are building parallel systems.

§  Why we need to write parallel programs.

§  How do we write parallel programs?

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 March 8, 2016 / 35 Computação de Alto Desempenho (High Performance Computing)

How do we write parallel programs?

§  Task parallelism
§  Partition various tasks carried out solving the problem

among the cores.

§  Data parallelism
§  Partition the data used in solving the problem among

the cores.
§  Each core carries out similar operations on its part of

the data.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 36 Computação de Alto Desempenho (High Performance Computing)

Professor P

15 questions
300 exams

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 37 Computação de Alto Desempenho (High Performance Computing)

Professor P’s grading assistants

TA#1
TA#2 TA#3

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 38 Computação de Alto Desempenho (High Performance Computing)

Division of work – data parallelism

TA#1

TA#2

TA#3

100 exams

100 exams

100 exams

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 39 Computação de Alto Desempenho (High Performance Computing)

Division of work – task parallelism

TA#1

TA#2

TA#3

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 40 Computação de Alto Desempenho (High Performance Computing)

Division of work – data parallelism

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 41 Computação de Alto Desempenho (High Performance Computing)

Division of work – task parallelism

Tasks
1)  Receiving
2)  Addition

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 42 Computação de Alto Desempenho (High Performance Computing)

Coordination

§  Cores usually need to coordinate their work.

§  Communication – one or more cores send their
current partial sums to another core.

§  Load balancing – share the work evenly among the
cores so that one is not heavily loaded.

§  Synchronization – because each core works at its
own pace, make sure cores do not get too far
ahead of the rest.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 43 Computação de Alto Desempenho (High Performance Computing)

Illustrating further…

§  Sequential computing

§  Parallel computing
§  Data parallelism
§  Task parallelism
§  Combining task and data parallelism

 March 8, 2016 / 44 Computação de Alto Desempenho (High Performance Computing)

Sequential computing

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

 March 8, 2016 / 45 Computação de Alto Desempenho (High Performance Computing)

Parallel computing

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

 March 8, 2016 / 46 Computação de Alto Desempenho (High Performance Computing)

Partitioning/Decomposition

One of the first steps in designing a parallel
program:

break the problem into discrete "chunks" of work
that can be distributed to multiple tasks.

 March 8, 2016 / 47 Computação de Alto Desempenho (High Performance Computing)

Data parallelism –
Domain decomposition

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

The data associated with a problem is decomposed.
Each parallel task then works on a portion of the data.

 March 8, 2016 / 48 Computação de Alto Desempenho (High Performance Computing)

Data parallelism –
Domain decomposition

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

There are different ways to partition data:

 March 8, 2016 / 49 Computação de Alto Desempenho (High Performance Computing)

Task parallelism – Functional
decomposition

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

The focus is on the computation that is to be performed rather
than on the data manipulated by the computation.

The problem is decomposed according to the work that must be
done. Each task then performs a portion of the overall work.

 March 8, 2016 / 50 Computação de Alto Desempenho (High Performance Computing)

Task parallelism – functional
decomposition

Functional decomposition lends itself well to problems that can be
split into different tasks.

Ecosystem Modeling - Each program calculates the population of a
given group, where each group's growth depends on that of its neighbors.
As time progresses, each process calculates its current state, then
exchanges information with the neighbor populations. All tasks then
progress to calculate the state at the next time step.

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

 March 8, 2016 / 51 Computação de Alto Desempenho (High Performance Computing)

Task parallelism – functional
decomposition

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

Signal Processing - An audio signal data set is passed through four
distinct computational filters. Each filter is a separate process. The first
segment of data must pass through the first filter before progressing to
the second. When it does, the second segment of data passes through the
first filter. By the time the fourth segment of data is in the first filter, all
four tasks are busy.

 March 8, 2016 / 52 Computação de Alto Desempenho (High Performance Computing)

Task parallelism – functional
decomposition

Blaise Barney, LLNL, https://computing.llnl.gov/tutorials/parallel_comp/

Climate Modeling- each model component can be thought of as a
separate task. Arrows represent exchanges of data between components
during computation: the atmosphere model generates wind velocity data
that are used by the ocean model; the ocean model generates sea surface
temperature data that are used by the atmosphere model; and so on.

 March 8, 2016 / 53 Computação de Alto Desempenho (High Performance Computing)

Combining tasks and data
parallelism is common.

Raffaele Perego and Salvatore Orlando

 March 8, 2016 / 54 Computação de Alto Desempenho (High Performance Computing)

Reusing knowledge on parallel
programming

§  There is an extensive body of knowledge on how
to decompose a problem, e.g.
§  Data parallelism
§  Task parallelism

§  Decomposition schemes are recurrent across
several distinct problems

§  Reuse that knowledge of experts – e.g. parallel
patterns in textual descriptions
§  Build a common language and transfer knowledge in

small “chunks”

§  Make that knowledge easily reusable
§  E.g. Parametrisation of parallel abstractions like

algorithmic skeletons available in frameworks

 March 8, 2016 / 55 Computação de Alto Desempenho (High Performance Computing)

§  Why we need ever-increasing performance.
§  More complex problems

§  Why we’re building parallel systems.

§  Why we need to write parallel programs.

§  How do we write parallel programs?

§  What we will be doing.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

Roadmap

 March 8, 2016 / 56 Computação de Alto Desempenho (High Performance Computing)

What we’ll be doing

§  Learning to write programs that are explicitly
parallel.
§  C (C++) languages.

§  Using different extensions to C (C++).
§  Posix Threads (Pthreads)
§  OpenMP
§  CUDA (Compute Unified Device Architecture) – NVIDIA

GPUs
§  Message-Passing Interface (MPI)

§  Identification of common parallel patterns
Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 57 Computação de Alto Desempenho (High Performance Computing)

Type of parallel systems

§  Shared-memory
§  The cores can share access to the computer’s memory.
§  Coordinate the cores by having them examine and update

shared memory locations.

§  Distributed-memory
§  Each core has its own, private memory.
§  The cores must communicate explicitly by sending

messages across a network.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 58 Computação de Alto Desempenho (High Performance Computing)

Type of parallel systems

Shared-memory Distributed-memory

 March 8, 2016 / 59 Computação de Alto Desempenho (High Performance Computing)

Terminology

§  Concurrent computing – a program is one in which
multiple tasks can be in progress at any instant.

§  Parallel computing – a program is one in which
multiple tasks cooperate closely to solve a problem

§  Distributed computing – a program may need to
cooperate with other programs to solve a problem.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 60 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (1)

§  The laws of physics have brought us to the doorstep
of multicore technology.

§  Serial programs typically do not benefit from multiple
cores.

§  Automatic parallel program generation from serial
program code is not the most efficient approach to
get high performance from multicore computers.

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 61 Computação de Alto Desempenho (High Performance Computing)

Concluding Remarks (2)

§  Learning to write parallel programs involves learning
how to coordinate the cores.

§  Parallel programs are usually very complex and
therefore, require sound program techniques and
development
§  simplify programmers’ effort, whenever possible…

Peter Pacheco, Copyright © 2010, Elsevier Inc. All rights Reserved

 March 8, 2016 / 62 Computação de Alto Desempenho (High Performance Computing)

Topics

1.  Parallel computing: hardware, software, applications and
performance theory. (2 weeks)

2.  Programming shared-memory multiprocessors.
OpenMP. Application examples. (3 weeks)

62

Courtesy:
Alan Kaminsky

 March 8, 2016 / 63 Computação de Alto Desempenho (High Performance Computing)

Topics

3.  GPU computing. CUDA (3 weeks)

63

Courtesy:
Alan Kaminsky

 March 8, 2016 / 64 Computação de Alto Desempenho (High Performance Computing)

Topics

4.  Programming distributed-memory multiprocessors.
MPI. Application examples. (3 weeks)

64

Courtesy:
Alan Kaminsky

 March 8, 2016 / 65 Computação de Alto Desempenho (High Performance Computing)

Geometric
Decomposition

5.  Structured Parallel Programming. (1 weeks / included in
the other modules)

Topics

65

Courtesy: McCool, Robison, and Reinders

Map

Reduce

 March 8, 2016 / 66 Computação de Alto Desempenho (High Performance Computing)

References

§  Chapter 1 of Lin & Snyder, “Principles of Parallel
Programming”, Pearson Int Ed., 2009

§  Chapter 1 of P. Pacheco, " An Introduction to Parallel
Programming", Morgan Kauffman, 2011

66

