Computacao de Alto Desempenho 2015/16
Solution Draft of the 2nd Test 2013 /14

a) The GPUs show high performance improvements in massively parallel
problems (i.e. without dependency restrictions among the tasks); the data
parallel problems, e.g. following the Single Program Multiple Data (SPMD)
model (i.e. based on a pattern of geometric data division where the same
function is applied to all data elements like in the map pattern), also benefit
from GPU execution.

b) Examples of the current GPU architectures’ characteristics that restrict

their performance potential [1] (3 characteristics would be enough):
-- The programmers need to know the details of a GPU’s architecture in
order to fully explore its capabilities. For instance, when moving a code to
be executed on a GPU it is frequently needed to re-design its algorithm or
its data organisation. Moreover, if more than one GPU is present, it is
necessary to explicitly select a device where the code will be run.
-- There is separation between host memory and device memory, and the
GPUs have limited memory. This forces an explicit management of the
device’s memory (explicit allocation and de-allocation of memory since
GPUs do not have “garbage collection”), and explicit data transfer between
host and device, and vice-versa. Therefore, a restrictive characteristic is a
device’s compute intensity, i.e. the ratio between the number of operations
and the data amount that is necessary to move; in this case, the biggest
limitation is the bandwidth between host and device and the data volume
to be transferred between them. Moreover, the program’s data needs to
be analysed to identify which data needs to be placed on the device and to
reserve this space, and also which data needs to be copied between host
and device (and vice-versa) and when.
-- It is necessary to identify a code region’s parallelism possibilities (e.g.
identification of execution cycles) and to optimise the data access
patterns, exploring the possible parallelism levels.
-- The code to be executed on a GPU has to be explicitly defined in a kernel
that is initialised and transferred to the device, being necessary to
subsequently wait for the end of its execution.
It is also necessary to prevent situations of “thread divergence” where
only some threads execute an instruction; it may happen that one thread
blocking (e.g. by invoking _ syncthreads()) may lead to all the other
threads in a block stalling as well.

2. SeeqZ.cu.

3.

/* All processes invoke the following collective communication functions
in the same order. */

a)

MPI_Comm_size (comm,&comm_sz);

int local_sz = vsize/comm_sz;

MPI_Scatter (V, local_sz, vtype, recvbuf, local_sz, vtype, @, comm)

// .. the processing is performed at each node ..

MPI_Gather (sendbuf, local_sz, vtype, R, local_sz, vtype, @, comm)

b)

MPI_Scatter (V, local_sz, vtype, recvbuf, local_sz, vtype, @, comm)
float local_sum, global_sum;

// each node sums all its local elements in recvbuf into local_sum
MPI_Allreduce (&local_sum, &global_sum, 1, MPI_FLOAT, MPI_SUM, comm);
int global_count;

MPI_Allreduce (&local_sz, &global_count, 1, MPI_INT, MPI_SUM, comm);
float average = global_sum/global_size;

int local_above, global_above;

// local_above = calculation of how many individuals have a salary above average
MPI_Allreduce (&local_above, &global_above, 1, MPI_INT, MPI_SUM, comm);

c) Scan pattern and the MPI_Scan operation.
MPI_Scan (V, V, vsize, MPI_INT, MPI_SUM, comm)

a) In case of a blocking MPI Send (and MPI_Recv) implementation, the
process communications in the figure lead to a deadlock situation. Even for a
buffered MPI _Send implementation and in case of a high data volume to be
sent, the MPI_Send will not return until the recipient starts receiving the data
leading also to a deadlock.

b) The MPI_Sendrecv primitive can be used.

The functions MPI_Isend and MPI_Irecv can also be used but this requires
additional code (e.g. using MPI_Test() and MPI_Wait()) in case it is necessary
to guarantee that the data was in fact sent/received (before the execution
may continue).

See code gb5.c.

Please see section 6.1.9 of the book cited in [2] and the code which was made
available online [3]. The following text is a simplified description of applying
the 4 phases of the Foster’s methodology:

- Partitioning: identification of all possible parallel tasks (for all the particles),
T1 - calculation of the forces over particle g;

T2 - calculation of the new position and velocity of g;

TI - input task - get the mass and initial position and velocity of all particles;
scatter/distribute that information to all existing MPI processes;

TO - output task - in case it is necessary to produce output information in the
current iteration (i.e. writing the current state of the simulation at the end of
this iteration), the positions and velocities of all particles have to be gathered
and printed.

- Communication: Tasks T1i (i:1.num_planets) depend on TO; each TZ2i
depends on the corresponding T1i (same i); all T1i need to communicate
among themselves (allgather), like all T2i; TO needs the results of all TZ2i.

- Aggregation: For the same i, T1i and T2i should be grouped in a task with
bigger granularity; to reduce the communication, several of these bigger
tasks should be processed in the same node.

- Mapping: division of the work among the nodes considering a static work
distribution (since the workload is similar among the tasks in the basic
algorithm); the total number of tasks is divided among the number of
available MPI processes; at each node/process the tasks are distributed
among the created threads (according to the architecture/number of cores in
the nodes). The rank 0 node executes the tasks T and TO (it is assumed that
the execution time of TO is small in comparison to the other tasks).

[1] More information available from, for instance,

NVIDIA, “CUDA C Best practices guide”, March 2015;

PRACE, “Best Practice mini-guide accelerated clusters, using general purpose GPUs”,
May 2013.

[2] Peter Pacheco, “An Introduction to Parallel Programming”, Elsevier, 2011.

[3] File mpi_nbody_basic.c in the archive named exs-ch6-PeterPacheco.zip in section
“Textos de Apoio” no clip.

