Computacao de Alto Desempenho 2014/15
2nd Test-5/6/2015
Duration: 2h00

Closed book test; possible doubts about the contents should be solved by the
student; please include in your answers the assumptions you made.

1. Assume an application taking too long to execute that is to be executed in a
GPU platform. Write, and justify, which are the performance optimisation
strategies to be considered to adapt that application in order to take the best
advantage of a GPU execution.

2. The “bi-segmentation” algorithm is extensively used in image processing, e.g.
it is one of the steps of object identification in Materials Science’s images. For
instance, starting from a 2D tomographic image of a composite material with
two materials A and B that have to be differentiated, the algorithm uses two
values between 0 and 255 (0- black colour; 255- white colour), L1 and L2,
which represent the colour of those two materials. Based on the two values,
the algorithm applies the following operation to all the pixels in the 2D
image:

if (pixel_color < L1)

pixel_color = 0; //pixel gets the black color (material A)
else if (pixel_color > L2) {

pixel color = 255; //the pixel gets the white color (material B)
else

pixel color = 128; //the pixel gets the grey color (indetermined)

Implement this algorithm using Cuda C assuming that the 2D image occupies
N*N bytes and each byte contains the pixel’s colour at that position. Thus fill
in the following C code with your code in Cuda C assuming there is enough
space in the device for at least two images:

#include <stdio.h>
#include <stdlib.h>

#define N ...
unsigned char material[N][N]; // material’s initial image
unsigned char *pt_img; // pointer to the processed image

// your Rernel function

int main (int argc, char *argv[])
{
FILE *f;
// Image’s input
f = fopen(“input.bin”, “r”);
fread(material, sizeof(unsigned char), N*N, f);
fclose(f);

// your CUDA C code

// Writing the processed image

f= fopen(“simulation.bin”, “w”);
fwrite(pt_img, sizeof(float), N*N, f);

return 0;

}

3. Consider a computational platform composed of N personal computers
connected by an 1 Gbps local network where the MPI is installed. Explain
how the following functionalities may be implemented in this setting,
specifically which MPI collective communication functions can be used in each
case:

a) Processing a vector V of integer numbers with dimension d (d is much
bigger than N) to count how many elements in the vector have the same value
as val; the result must be available at all nodes (and not only at the node with
rank 0).

b) Implementing a pipeline with k stages (k < N) to process a stream of data
values; at each pipeline’s stage i, the function f{int stage) is applied with
argument i to transform the data, as shown in the following figure:

0 -0—@

stage 1 stage 2 stage k-1 stage k
f(1) f(2) f(k-1) f(k)

Assume that the rank 0 node is continuously receiving the data from a
channel f in and the data processed by the pipeline is written to the channel
f out. The command line of the program might be:

mpiexec -np k_stage -hostfilename stream_processing f_in f_out

4. The problem of calculating the Mandelbrot’s figure use the following function
as basis:

#define max_iterations 255
int compute_point(double ci, double cr) {
int iterations = 0;
double zi = 9;
double zr = 9;
while ((zr*zr + zi*zi < 4) && (iterations < max_iterations))

{
double nr, ni;
nr = zr*zr - zi*zi + cr; ni = 2*zr*zi + ci;
zi = ni; zr = nr;
iterations ++;
}

return iterations;

This function identifies if a point belongs or not to the Mandelbrot’s figure
and it may be applied in parallel to all points in an image; the returned value
may be subsequently used to identify the pixel’s colour.

The goal of the program in this question is to use the above function to
calculate the Mandelbrot’s histogram, i.e. to calculate for how many points the
returned number of iterations is equal to 1, for how many points is returned
the value of 2 iterations, and so on, until the returned value of 255. The
calculation of the histogram is to be parallelised using the functions of the
MPI assuming a cluster of 16 personal computers connected by a 1Gbps
network where the MPI was installed.

Assume that the command line could be:
mpiexec -np 16 -hostfilename mandelbrot_histogram x1 y1 x2 y2 L H

where
* x1, y1 are the coordinates of the left corner on top of the rectangular
area defining the image to be built;
* x2, y2 are the coordinates of the right corner on bottom of the
rectangular area defining the image to be built;
* Listhe number of pixels in the horizontal dimension (width);
* His the number of pixels in the vertical dimension (height).

Describe how to apply the Foster’s methodology to develop a parallel
solution in the described conditions. Justify, for each phase of this
methodology, the options you make.

. Identify in which situations a hybrid implementation with OpenMP+MPI to
parallelise a problem is better than its implementation in CUDA. You may
consider as example the problem of applying a function to all elements in a
matrix of bytes like the example in question 2 above.

