Computacao de Alto Desempenho 2015/16
1st Test-18/4/2016
Duration: 2h

Closed book test; possible doubts about the contents should be solved by the
student; please include the assumptions you made in your answers.

1. Based on the existing forms of parallel processing hardware,

a) define what are shared memory systems and message-passing systems,
and describe which kind of applications benefit most from each type
of system;

b) what are the differences between the MIMD (Multiple Instruction
Multiple Data) and SIMD (Single Instruction Multiple Data) systems?

2. A shared memory multiprocessor (UMA - uniform memory access) has 10
similar processors but only processor PO can execute input/output (I/0)
operations. A program is to be executed in this multiprocessor and when
executed only on PO it takes 100 seconds to complete. This time is divided
into 10 seconds for reading the program’s data and writing the results and 90
seconds for intensive calculation without I/O operations. Write which is the
execution time of this program when it is executed on the 10 processors
justifying your answer. Explain also which is the speedup that was possible to
achieve.

3. Consider the laws of Amdahl and Gustafson-Barsis:

a) explain why, when defining the speedup of a program, the Amdahl law
is based on a situation where the number of operations is constant;

b) justify how the Gustafson-Barsis’ law overcomes the speedup
limitations that are present in the Amdahl’s law;

c) compare both laws in terms of how they define a program’s scalability
(i.e. explain the way each one evaluates if a program is scalable or
not).

4. Itis necessary to implement a program to compare two large matrices A and
B of equal dimension to identify, at each position, which elements are
different, and also to calculate how many different elements were found. The
goal is to build a binary matrix C (with zeros and ones) with equal dimension,
identifying with the value one, at each corresponding position, if the values of
A and B are different (or zero otherwise), and also to write the total number
of different elements.

Assume that the space for the matrixes A, B, and C are already defined and
that the values of A and B are read from a file, as shown in the following code
fragment in C.

#include <stdio.h>
#include <stdlib.h>

#define N 50000
int matrix_A[N]J[N], matrix_B[N][N];
int matrix_C[N][N];

int num_diff; // contains the number of different elements
int num_threads;

// complete with your worker code

int main (int argc, char *argv[])

{
FILE *f;
// Matrices’ reading
f = fopen(“input.bin”, “r”);
fread(matrix_inl, sizeof(int), N*N, f);
fread(matrix_in2, sizeof(int), N*N, f);
fclose(f);
num_threads = atoi(argv[1]);

// complete with your code

// Writing the results

f= fopen(“result.bin”, “w”);

fwrite(matrix_C, sizeof(int), N*N, f);

fclose(f);

printf(“Number of different elements: %d\n”, num_diff);
return 0;

Implement a parallel version of this code by using the functions of the Pthreads
library to complete the code above, and in the most efficient way possible. You
may declare any variables you may find necessary, and you may assume that the
number of threads to launch is two. Discuss if your solution may have problems
of false sharing.

5. Consider the problem of calculating the Mandelbrot’s figure, and assume that
the following function is available:

#define max_iterations 255
int compute_point(double ci, double cr) {
int iterations = 0;
double zi = ©;
double zr = 9;
while ((zr*zr + zi*zi < 4) && (iterations < max_iterations))

{
double nr, ni;
nr = zr*zr - zi*zi + cr; ni = 2*zr*zi + ci;
zi = ni; zr = nr;
iterations ++;
}

return iterations;

It is necessary to build the so called Mandelbrot’s histogram, i.e. a program
that using the function above, determines how many points have a number of
iterations equal to one, how many points have a number of iterations equal to
two, and so on, until 255.

Assume that the size of the image to be generated, i.e. its number of points, is
defined as lines*columns. Assume that you have N threads, i.e. each thread
may run on its own CPU.

a) Apply the Foster methodology to the code above to define a parallel
solution and consider that the mapping is done to a shared memory
multiprocessor with N CPUs.

b) Implement your solution using the API C/OpenMP to be the most
efficient as possible. Justify your options.

Annex

A.

Some functions of the Pthreads library

int

pthread_create (pthread_t *thread, const pthread_attr_t *attr, void

*(*start_routine) (void *), void *arg)

int

pthread_join (pthread_t thread, void **retval)

int

pthread_mutex_init (pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)

int

pthread_mutex_lock (pthread_mutex_t *mutex)

int

pthread_mutex_unlock (pthread_mutex_t *mutex)

int

pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr)

int

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)

int

pthread_cond_signal(pthread_cond_t *cond)

