Computacao de Alto Desempenho 2015/16
2nd Test-9/6/2016
Duration: 2h00

Closed book test; possible doubts about the contents should be solved by the
student; please include the assumptions you made in your answers.

1. Consider the following parallel computing standards/libraries and their
programming models:

b)

i) OpenMP;
ii) CUDAG;
iii) MPI;

Describe the difficulties a programmer may have on developing programs
in CUDA C comparatively to OpenMP.

Assume a parallel programming hybrid approach consisting of OpenMP
and MPI. For which kind of applications would such an hybrid approach
be better than using OpenMP or MPI separately? Justify your answer.

And for which kind of applications would an hybrid approach consisting
of CUDA and MPI be better than using OpenMP and MPI? Justify your
anwer.

2. Describe the major characteristics of the tiling technique in CUDA and justify
why it is useful for Matrix multiplication.

3. An application to simulate a plague propagation in a pine tree forest needs to
be parallelised using CUDA C to improve its performance. The application
contains a function to simulate the plague propagation in a square area where
the pine trees are uniformly distributed. The inputs to this function are:

* amatrix representing the pine trees in a square area of the forest;

* the dimensions of the matrix, i.e. the number of pine trees per line (i.e.
the width), and the number of pine trees per column (i.e. the height);

* the probability of the plague spreading between all neighbouring
trees;

* the position of the pine tree where the plague begins, identified by the
number of the line, L, and the number of the column, C, in the matrix.

Initially, all pine trees in the forest are tagged with the value zero, i.e. the
trees are healthy. The function simulates the plague propagation in a
sequence of steps/iterations, and at each of these iterations, the function
calculates the new state of all pine trees in the following way:

¢ if a pine tree is already dead (its value is 2), the tree remains dead (its
value remains 2);

e if a tree is ill (its value is 1), the tree becomes dead (its value becomes
2);

* ifatree is still healthy (its value is 0), then



o if any of its neighbours is already ill and therefore contagious
(i.e. it has value 1), the tree becomes ill as well (i.e. its value
becomes 1);

o else, a random value is generated and compared with the
plague propagation probability received as input, and

= if the generated value is bigger than this probability, the
tree becomes ill (i.e. its value becomes 1);
= else, the tree’s remains healthy (i.e. its value remains 0).

The plague propagation function terminates the iterations when there is a
majority of dead trees or the illness propagation ends by itself (e.g. the trees
are resilient enough). The output of this function is one of two values:

* zero, if the plague propagation simulation has ended without a
majority of dead trees (i.e. the plague propagation disappears and the
number of healthy trees is equal or bigger than the number of dead
trees);

* an integer identifying the step/iteration number of the simulation
when the majority of trees became dead.

The prototype of the plague propagation function is:
int plague_propagation(char *pt_forest, int width, int height,
float plague_prob, int line, int column);

For instance, this function may be invoked in the following way:
#tdefine N 1024

unsigned char *forest = malloc(N*N);

niteration = plague_propagation(floresta, N, N, ©.55, 512, 512);

The goal of this question is to implement a parallel version of this application
using Cuda C, by filling in the following code skeleton in C with your Cuda C
code.

#include <stdio.h>
#include <stdlib.h>
#tdefine N 2048 // size of the side of the square matrix

/* Each forest’s pine tree occupies a position in the matrix named
forest; if its value is @, the tree is healthy; if it is 1, the tree 1is
ill; if it is 2, the tree is dead. Initially, all trees have to be
healthy.*/

unsigned char *forest = malloc(N*N);
// your Rernel function

int main (int argc, char *argv[])
{
FILE *f; int num_iteration;
float plague_propagation = atof(argv[1]); // propagation probability
int line = atoi(argv[2]); // line position of the first ill tree
int column = atoi(argv[3]); // column position of the first ill tree

// your CUDA C code



// Output of results

f= fopen(“result.bin”, “w”);

fwrite(forest, sizeof(unsigned char), N*N, f);

fclose(f);

printf(“Number of the simulation’s iteration: %d\n”, num_iteration);
return 0;

4. Consider a computational platform composed of N personal computers
connected by an 1 Gbps local network where the MPI is installed. A program
following the SPMD (Single Program Multiple Data) model is to be executed in
this architecture by N processes. These processes use an election model to
decide which one performs a particular function f{), at some point in time.
Hence the processes have to periodically coordinate among themselves to
select the process executing f(). This has to be preceded by the initialisation
of the necessary data and the execution should end after the function has
been invoked MAX CALL times. Use the suitable collective communication
functions to implement such an election model in order to satisfy the
following conditions:

a) Initially the rank 0 process generates N random numbers (e.g. between 0
and 1) filling a vector V with dimension N. This vector contains the seed
values to be distributed to the N processes, one value per each process, so
that each one may generate a sequence of pseudo-random numbers (i.e.
the generated number sequence at each process can be reproduced e.g.
for debug or validation purposes).

b) All processes subsequently execute a cycle where, periodically, a (pseudo-
Jrandom number is generated, and this value is compared to all the
(pseudo-)random numbers generated at the other processes. Namely, a
process only executes the function f{) if its local number is the bigger
than the average of all the other generated numbers.

c) In the end, all processes should have information about which processes
invoked the function f{) and how many times they did so. For this a vector
K with dimension N will contain the number of times each processes
invoked f() (e.g. for k[0]=3, k[1]=0, k[2]=1, etc, rank 0 process invoked f()
three times, rank 2 process invoked f{) one time, etc.).

5. Consider again the plague propagation problem in a pine tree forest that was
described in question 3. Portugal has an extensive area of pine tree forest to
be controlled against plagues and the simulation should use now a prediction
function for the plague propagation to be applied to the whole area under
observation. Namely, instead of using a fixed plague propagation probability
among neighbouring trees, the plague propagation() function uses a
prediction function named propagation_probability(), which is available from
a library.

The prototype of the plague_propagation function is now:
int plague_propagation(char *pt_forest, int width, int height,
int line, int column);



And the prototype of the propagation_probability function is:
float propagation_probability(int line, int column);

This function gets fresh values on the environment conditions (e.g. soil,
humidity, etc) that have to be collected from sensors or weather services, and
calculates and returns the plague propagation probability for the pine tree
located at point (line, column). Depending on the area where a tree is located
(e.g. its soil quality, local higher humidity near a river may facilitate
propagation etc), the calculation time and returned values may vary from
pine tree to pine tree.

Taking these conditions into account, the program should now be deployed
in a cluster of 16 personal computers connected by a local network working
at 1 Gbps, where the OpenMP and the MPI are installed.

a) Describe the application of the Foster methodology to the development of
a parallel solution in this architecture justifying, for each phase, the
options you make.

b) Write which MPI functions you would need to use to implement this code
and how you would divide the workload considering this hybrid OpenMP
and MPI architecture. Justify your answer.



