
GUI App Development
in Java/Swing

Fernando Pedro Birra
Manuel Próspero dos Santos

Command line
application

• No user interaction

• linear execution

program:
main()
{
 code;
 code;
 code;
 code;
 code;
 code;
 code;
 code;
 code;
 code;
 code;
 code;
}

Interactive console
application

• User input

• non linear execution

• unpredictable order

• much idle time

program:
main()
{
 setup code;

 while(...)
 {
 get command;
 switch(command)
 {
 command1:
 code;
 command2:
 code;
 …
 }
 }
}

Interactive GUI
application

• User input

• non linear execution

• unpredictable order

• much idle time

• callback procedures (to
handle GUI events)

program:
main()
{

 setup code;
 create gui;
 register callbacks;

 while(...)
 {
 get event;
 dispatch event;
 }
}

callback1(...){...}
callback2(...){...}

GUI Programming
Model (C language)

Window
Procedure A1

Window
Procedure A2

Window
Procedure An

queue A

application A
event dispatcher

Event system event
dispatcher

System Application

Anatomy of a Java GUI

JPanel
JFrame

JButton

JLabel

Graphical User Interface Internal Structure

JButton JLabel

JFrame

Containers

JPanel

Anatomy of a Java GUI
Component

• GUI Components are modeled by classes
(ex: JButton, JFrame, JPanel, etc)

• Methods (configuration)

• Events (behavior)
JButton

Using a GUI
Component

1. Create it
b = new JButton();

2. Configure it
b.setText(“Click me!”);

3. Add it to a parent container (if not JFrame)
panel.add(b);

4. Listen to it
Use listeneres to listen to events generated by the
component.

Click me

Próspero
Cross-Out

Próspero
Replacement Text
listeners

Building the Hierarchy

• Create:
- frame
- panel
- components
- listeners

• Add (bottom up):
- listeners into components
- components into panels
- panel into frame

JPanel

Listener

JFrame

JButtonJLabel

JFrame frame = new JFrame(“Frame1”);
...
JPanel panel = new JPanel();
JButton button = new JButton("Click me!");
JLabel label = new JLabel("I'm a label!");
panel.add(button);
panel.add(label);
frame.setContentPane(panel);
...

Code sample

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JButton;
import javax.swing.JLabel;

public class Main {
	 public static void main(String[] args) {
	 	 JFrame frame = new JFrame("Frame1");
	 	 frame.setSize(100, 200);
	 	 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
	 	
	 	 JPanel panel = new JPanel();
	 	 JButton button = new JButton("Click me!");
	 	 JLabel label = new JLabel("I'm a label!");
	 	 panel.add(button);
	 	 panel.add(label);
	 	 frame.setContentPane(panel);
	 	 frame.setVisible(true);	 	
	 }
}

Full listing

Layout Management
A layout manager automates the placement
of components in a container:

none,
programmer
sets x,y,w,h

Left to right,
Top to bottom

null FlowLayout GridLayout

c

n

s

ew

BorderLayout

One at a time

CardLayout

JButton

GridBagLayout

Layout Combinations

JButton JButton

JTextArea

Layout Combinations

n

JPanel: BorderLayout

c

JFrame

JPanel: FlowLayout

JTextArea

JButtonJButton

Event handling with
Swing

Event handling

• Events require you to use listeners (or
adapters) and implement interfaces in
order to receive notification of their
occurence

• The listener object can be any, as long as
the corresponding interface is implemented

Listener API

• Listeners must inherit from Java Listener base
classes:

ActionListener, KeyListener, MouseListener,
WindowListener, ...

• MouseListener interface:

mouseClicked(), mouseEntered(),
mouseExited(), mousePressed(),
mouseReleased()

Listener: How To

1. Tell a component who’s willing to receive its events

• Provide a reference to a listener object

• btn1.addMouseListener(new MyMouseListener());

2. Receive events generated by the component

• component will call callback code on provided
listener

• MyMouseListener.mouseClicked(event);

 ...
 JButton button = new JButton("Click me!");

 ActionListener listener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 System.out.println(“Thank you!”);
 }

 };

 button.addActionListener(listener);
 ...

Simple button click
Example (I)

anonymous
inner class

 ...
 JButton button = new JButton("Click me!");
 lister = new MyListener();
 button.addActionListener(listener);

 class MyListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 System.out.println(“Thank You!”);
 }
};

 ...

Simple button click
Example (II)

implementing
the interface

Próspero
Cross-Out

Próspero
Replacement Text
listener

Próspero
Sticky Note
Accepted set by Próspero

Próspero
Sticky Note
Accepted set by Próspero

public class MyFrame extends JFrame, implements ActionListener
{
 ...
 JButton button = new JButton("Click me!");
 button.addActionListener(this);

 public void actionPerformed(ActionEvent e){
 System.out.println(“Thank You!”);

}
}

Simple button click
Example (III)implementing

the interface at
a top level class

public class MyFrame extends JFrame, implements ActionListener
{
 ...
 JButton button = new JButton("Click me!");
 button.addActionListener(this);

 public void actionPerformed(ActionEvent e){
 System.out.println(“Thank You!”);

}
}

Simple button click
Example (III)implementing

the interface at
a top level class

Why is this generally a bad idea?

public class MyFrame extends JFrame, implements ActionListener
{
 ...
 JButton button = new JButton("Click me!");
 button.addActionListener(this);

 public void actionPerformed(ActionEvent e){
 System.out.println(“Thank You!”);

}
}

Simple button click
Example (III)implementing

the interface at
a top level class

Why is this generally a bad idea?
Just imagine more buttons!

Design considerations

• For simpler/smaller interfaces it is easy to
implement their methods in our Listeners

• For larger interfaces, like MouseListener,
one must implement every method! Even if
we only needed one of them...

Design considerations

• Most Listener interfaces come hand-in-
hand with stub classes called Adapters:

MouseListener/MouseAdapter

KeyListener/KeyAdapter

MouseMotionListener/MouseMotionAdapter

• The adapter already provides stubs for
each interface method. We only modify the
ones we need

 ...
 MouseMotionListener listener = new MouseMotionListener() {
 public void mouseMoved(MouseEvent e) {
 System.out.println(“mouse moved: “ + e);
 }
 public void mouseDragged(MouseEvent e) {
 }
 };

 panel.addMouseMotionListener(listener);
 ...

 ...
 MouseMotionListener listener = new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e) {
 System.out.println(“mouse moved: “ + e);
 }
 };

 panel.addMouseMotionListener(listener);
 ...

Mouse move example
Using an
Adapter

Using a
Listener

Accessing event data

Each Listener type has an associated event
type.

ex: MouseListener/MouseEvent

xxxxListener - Listener interface
xxxxAdapter - stubbed class
xxxxEvent - event type
Component.addxxxxListener()

Rule of
thumb

 ...
 MouseMotionListener listener = new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent e) {
 System.out.print(“mouse moved to “);
 System.out.println(“x=“ + e.getX());
 System.out.println(“y=“ + e.getY());
 }
 };

Find the mouse!

mouse
position

Drawing and Painting

• A window is like a
painter’s canvas

• Applications are
responsible for painting
its windows contents

• GUI componentes
already know how to
paint themselves

JButton

Drawing and Painting
How to Paint?

Painting: Basics

A window is a rectangular area of pixels

Painting: Coordinates
Pixels inside a component are referenced by
their coordinates

(0,0) (w-1,0)

(w-1,h-1)(0,h-1)

Painting: Coordinates

Each component has:

• its own sub-window
(a rectangular area
within parent
component)

• its own coordinate
system

JPanel

JButton

(0,0)

(0,0)

(wp-1,hp-1)

(wb-1,hb-1)

Painting: Clipping

Due to clipping, each
component:

• can’t paint outside its
subwindow

• can’t paint over child
components

Painting: Where in the
code?

• Althouh we can paint inside all component types,
the most suitable is probably a JPanel.

• Painting is handled by the method:

paintComponent(Graphics g)
{
 ...
}

• interfacing with the device and
invoking graphics operations

• maintaining the current state
information (context), such as
color, font, line style, etc.

The parameter g is an
object reference that is
used for:

paintComponent(Graphics g)
{
 ...
}

Painting: Contexts

import java.awt.Graphics;
import java.awt.Graphics2D;

paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;
 ...
 // use either g or g2 methods to draw
 g2.drawLine(x1, y1, x2, y2);
}

Painting: How To

Added in Java2 to
provide advanced

funcionality

Offers more
limitied
drawing

Painting: Primitives
Type Draw Fill
Point
Line

PolyLine
Arc
Oval

Rectangle/RoundRectangle
Polygon
Image
Text Sample

Blended

Painting: Attributes

Attributes Sample
Color

Font aaaaa
Stroke

(line width, dash, end caps, join, etc.)

Paint
(color, gradient, texture)

Composite
Transformations

(translate, rotate, scale, etc.)

Transformed

Painting: Color

• Each color is a unique combination of three
primary colors: red, green and blue

• Each color component lies in the range 0..255

new Color(100, 20, 180);

Painting: Stroke
The current stroke determines how the outline of a
specific shape or text is drawn

...
Stroke stroke = new BasicStroke(5.0f , // Width of stroke

 BasicStroke.CAP_ROUND, // End cap style
 BasicStroke.JOIN_MITER, // Join style
 15.0f, // Miter limit
 new float[] {10.0,10.0} // Dash pattern
 5.0);

g2.setStroke(stroke);
...

Join and End
cap styles:

Drawing and Painting
When to Paint?

Painting: Repainting

• All windows draw on the same surface
(screen or painter’s canvas)

• Windows don’t remember what’s under
them

• Drawing is triggered upon request, when
needed: Repainting

Painting: Repainting
Examples of when (re)painting is needed:

• A window becomes visible for the first
time or is “brought to front”

• A window is restored after being
minimized

• A window is partially exposed due to
other windows on top of it closing, being
dragged, etc.

Painting
Frame1 is visible

Painting
Open Terminal

Painting
Close Terminal

Repaint events are sent to Desktop and Frame1

Painting
Desktop gets repainted

Painting
Panel gets repainted

Painting
Panel forwards repaint to button

Painting: Repainting

• Java Swing components catch repaint event
and call their paintComponent() method

• Default paintComponent() implementation
paints the component:

e.g. panel erases background, button
draws its shape and label, etc.

Painting: Repainting
Recipe for our classes
• Subclass component (typically JPanel)

• Override paintComponent()

• when needed, invoke repaint() to get repaint
events instead of calling paintComponent()
directly.

Painting: Repainting
Code sample

public class MyPanel extends JPanel {

	 public void paintComponent(Graphics g){
 super.paintComponent(g);	 // erases background
 Graphics2D g2 = (Graphics2D)g; //cast for java2

 // my graphics:
 g2.setColor(new Color(255,0,0));
 g2.fillRect(10,10,200,50);
 g2.setColor(new Color(0,0,0));
 g2.drawString("Hello World", 10, 10);
 }
}

Hello World

Painting: Repainting
Typical framework

• Store data structure of window contents

• E.g. user drawn picture in paint program

• Repaint event:

• Erase window (draw background color)

• Draw window contents using data structure

• Other event that alters window contents:

• modify the data structure

• send repaint event

