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<l ¢ Objectives

I'he Universily ol New Mexico

* Introduce the elements of geometry

Scalars
Vectors
Points

* Develop mathematical operations among
them in a coordinate-free manner

» Define basic primitives
Line segments
Polygons
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<~ Basic Elements

miversily ol New Mexico

- Geometry is the study of the relationships among
objects in an n-dimensional space

In computer graphics, we are interested in
objects that exist in three dimensions

» Want a minimum set of primitives from which we
can build more sophisticated objects

- We will need three basic elements
Scalars
Vectors
Points
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<" Coordinate-Free Geometry

- When we learned simple geometry, most of us started
with a Cartesian approach

Points were at locations in space p=(x,y,z)

We derived results by algebraic manipulations
Involving these coordinates

* This approach was nonphysical

Physically, points exist regardless of the location of
an arbitrary coordinate system

Most geometric results are independent of the
coordinate system

Example Euclidean geometry: two triangles are
identical if two corresponding sides and the angle
between them are identical
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<~ Scalars
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* Need three basic elements in geometry
Scalars, Vectors, Points

» Scalars can be defined as members of sets
which can be combined by two operations
(addition and multiplication) obeying some
fundamental axioms (associativity, commutivity,
inverses)

- Examples include the real and complex number
systems under the ordinary rules with which we
are familiar

- Scalars alone have no geometric properties
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~l. Vectors
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 Physical definition: a vector is a quantity
with two attributes
Direction
Magnitude

» Examples include
Force
Velocity "

Directed line segments
Most important example for graphics
Can map to other types

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015



~ Vector Operations
* Every vector has an inverse
Same magnitude but points in opposite direction
* Every vector can be multiplied by a scalar
* There is a zero vector
Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
Use head-to-tail axiom

~
~
Vv W
V Y (0AY
u

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015



- Linear Vector Spaces
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- Mathematical system for manipulating vectors
 Operations

Scalar-vector multiplication u=ov

Vector-vector addition: w=u+v
* EXpressions such as

v=u+2w-3r

Make sense in a vector space
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*l. Vectors Lack Position

* These vectors are identical
Same length and magnitude

E
i

* Vectors spaces insufficient for geometry
Need points
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~l. Points
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» Location in space

- Operations allowed between points and
vectors
Point-point subtraction yields a vector
Equivalent to point-vector addition

P
v=P-Q

P=v+Q
Q
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- Affine Spaces
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* Point + a vector space

 Operations
Vector-vector addition
Scalar-vector multiplication
Point-vector addition
Scalar-scalar operations

* For any point define
leP=P
0 e P=0 (zero vector)
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- Lines
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- Consider all points of the form
P(a)=P,+ o d

Set of all points that pass through P, in the

direction of the vectord
P}

o
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*l. Parametric Form
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* This form is known as the parametric form
of the line
More robust and general than other forms
Extends to curves and surfaces
- Two-dimensional forms
Explicit: y = mx +h
Implicit: ax + by +c¢ =0
Parametric:
x(o) = ax, + (1-a)x,

y(o) = ay, + (I-a)y,

14
Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015



~#" Rays and Line Segments

- If o >= 0, then P(a) is the ray leaving P, in
the direction d
If we use two points to define v, then
P(a) =Q + a (R-Q)=Q+av L /,ﬁa)
=oR + (1-0)Q R
For O<=a<=1 we get all the
points on the line segment ,_,
joining R and Q o
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- Convexity
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* An object is convex iff for any two points in
the object all points on the line segment
between these points are also in the object

not convex

convex
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*l. Affine Sums
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- Consider the “sum”
P=a,P,+a,P+....4+a P

Can show by induction that this sum makes
sense |ff

In which case we have the affine sum of the
points P ,P,,....P_

- If, in addition, a.>=0, we have the convex
hull of P ,P,,.....P_
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*l.' Convex Hull
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- Smallest convex object containing P,,P,......

* Formed by “shrink wrapping” points
-
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- Curves and Surfaces

 Curves are one parameter entities of the
form P(a) where the function is nonlinear

- Surfaces are formed from two-parameter
functions P(a., pB)

Linear functions give planes and polygons

L

P(a)

P(a, p)
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«l. Planes
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* A plane can be defined by a point and two

vectors or by three points >

o

R u R

P(0t,B)=R+au+pv P(ct,8)=R+(Q-R)+B(P-R)
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~ Triangles
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-

convex sum of P and Q 5

A T(a,8)e

P S{ox) Q

for O<=a,p<=1, we get all points in triangle
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~&" Barycentric Coordinates
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Triangle is convex so any point inside can
be represented as an affine sum

P(a, a, as)=0,P+0,Q+0;R
where

o, +0o, +0; =1

o.>=0

The representation 1s called the barycentric
coordinate representation of P
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= K Normals

* In three dimensional spaces, every plane has a vector
n perpendicular or orthogonal to it called the normal
vector

« From the two-point vector form P(o.,f)=P+au+pv, we
know we can use the cross productto findn=u xv

and the equivalent form :

(P(a, p)-P) - n=0

u

P

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

23



