Im‘ercchon Flow

Model-Driven Ul Engineering of Web
and Mobile Apps with I[FML

Marco Brambilla Piero Fraternal

g Foreword by Richard Soley

M(L‘””[ﬂ L OMG Chairman and CEO

$S3Ud DWO/MIA 241

Interaction Flow
Modeling Language

This page intentionally left blank

Interaction Flow
Modeling Language
Model-Driven Ul Engineering
of Web and Mobile Apps
with IFML

Marco Brambilla
Professor of Software Engineering,
Politecnico di Milano, Milano, Italy

Piero Fraternali
Professor of Web Technologies,
Politecnico di Milano, Milano, Italy

AMSTERDAM ¢ BOSTON « HEIDELBERG * LONDON
NEW YORK ¢ OXFORD ¢ PARIS ¢ SAN DIEGO
SAN FRANCISCO * SYDNEY * TOKYO

ELSEVIER Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Elliot
Editorial Project Manager: Kaitlin Herbert
Project Manager: Priya Kumaraguruparan
Cover Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage
and retrieval system, without permission in writing from the publisher. Details on how to
seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge

in evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-800108-0

For information on all MK publications
visit our website at www.mkp.com

aa Working together
| | A8 (o grow libraries in
mseviek | Book 84 developing countries

www.elsevier.com ¢ www.bookaid.org

http://www.elsevier.com/permissions
http://www.mkp.com

Contents

FOTEWOT ..ottt e Xiii
CHAPTER 1 INtroduction........ccocceeriiemminseemisnsmnsse s essssessne s 1
1.1 What IFML iS ADOUL ...c..cueviiiiiieieieieieieieeieeeeeeie e 2
1.2 The IFML Design Principles..........ccoovivievievievieieieierieeeeeereeveenenns 3
3 How to Read this BOOKccccveivieirieirieicieceeeeeeeee e 5
1.3.1 Structure of the BoOK........cccccoceriiiniiiiniiiinieieceeee 6
1.4 On-1ine RESOUICESvoviuieviieiiieeieieieteieteie et 6
1.5 BacKgroundc.ccoevevirieinieieieieieieteeeeieeste e 7
1.6 ACKNOWIEAZMENL........cceeievieiiriiiiieiieiecieieiet ettt 8
CHAPTER 2 IFML in @ Nutshell.........ccccoommriineeee e 9
2.1 Scope and Perspectives........ccueveverereererierenieerieesieeeieeeseneeseeeseneens 9
2.2 Overview of IFML Main CONnCeptscovevevvererveereeenreenreernenes 11
2.3 Role of IFML in the Development Process...........cceeevevevrverennene. 15
2.4 A Complete EXAMPIEovoveeirireeieeiiieieieiesseeieieceeeieieeeeeeie s 19
2.5 Summary of the Chapter..........ccocoeivirieriinieieieieeeee e 23
2.6 Bibliographic NOLES.......ccoevveirirrierieriitertenieresiesiessesseseeseeee e erenas 24
CHAPTER 3 Domain Modeling...........ccuvsemrsemmssnnmnssnensssnenssnnnas 25
3T CIaSSES ettt 26
3.2 ATIIDULES ...ttt 26
3.3 Identification and Primary Keycccccvevveeieinieinieieiiecne 27
3.4 Attribute Type and VisiDilitycocvervrerirenieiieiieeeese e 29
3.5 OPErationsceueveviieriieiiieiirieeieietete ettt eses s se e esens 30
3.6 Generalization Hierarchi€socecvvveveveeererierinieinieisieesieenenes 31
3.7 ASSOCIALIONS ...coveneviniiiietiietetei sttt ettt saens 32
3.8 N-ary Associations and Associations with Attributes................... 34
3.9 Derived Information and the Object Constraint
Language (OCL).....cooeeiiriiiiiiiienieeeeiteeeieee et 36
3.10 Domain Modeling Patterns and Practicesccoceevrrerverereerennne 38
3.11 The Process of Domain Modeling............ccccoeeeirieueroenirineeninennas 39
3.11.1 Designing the Core Subschema...........cccceevuerveerienneennen. 40
3.11.2 Designing an Interconnection Subschema......................... 41
3.11.3 Designing an Access Subschema...........c.cceeceveeneniencnnens 41

3.11.4 Designing a Personalization Subschema............cc.cccceueee. 44

vi Contents
3.12 Running EXamPle......ccceeveirieririeiiieiiieisieesieesies s eseeeseneas 47
3.13 Summary of the Chapter..........cccoveivirueeeiririeieenireeieesseieeeeeeas 49
3.14 Bibliographic NOLES.......cceeieirrirriererreieieieieieeeereseesseeeeeeeseeseenas 49
CHAPTER 4 Modeling the Composition of the User Interface51
4.1 Interface Organizationccceceeeeereeirreesreeerereeeneeeseesesseseens 51
4.2 View Container NeStingccceverueerieirieririeieieneeeseeeseeeseeeeens 53
4.3 View Container Navigationcecceevirieririerinreriseneeesieessenenens 55
4.4 View Container Relevance and Visibilityc..cccocerrerireninenee 55
4.5 WINAOWS.....eiiiiieiiieiiieirietrie ettt 57
4.6 Context and VIEWPOINLcccceerierirrirrirriieieieeeieseeseessesseseeseene s 59
4.7 User Interaction Patternsecevueerveirieirieiereieeeeesieeseeneeene 62
4.8 Interface Organization Patterns and Practices........c..cocerveervenennen. 62
4.8.1 Desktop Interface Organization Patterns..........c.ccccceueeee. 62
4.8.2 Web Interface Organization Patterns...........ccccceveeverennenne. 63
4.8.3 Mobile Interface Organization Patterns..........c.ccceeeeeueenne. 70
4.9 Running EXamMPIE.........cccveviririninriniinriieieeeeessesseseessesseseeseene s 71
4.10 Summary of the Chapter.........cccocevveirieirieinieieeieeeeeee e 76
4.11 Bibliographic NOLES........ccoverirverieeiieiiieisieeeeteeeee e 76
CHAPTER 5 Modeling Interface Content and
Navigation........cccceeeeccesmerer e rrs e 77
5.1 What ViewContainers Contain: ViewComponents....................... 78
5.2 Events and Navigation Flows with ViewComponents.................. 79
5.3 Content Dependencies: Data Bindingccccovveivieinieenieennne. 81
5.4 Input-Output Dependencies: Parameter Bindingcccceuen.... 83
5.5 Extending IFML with Specialized ViewComponents

AN EVENLS ..oviiiiiiiiiiicietctcetcetecete et 85
5.5.1 Data Publishing EXtensions........c.ccoccevereenereeneneenennens 86
5.5.2 Data Entry EXtensionsccccevevvevierreneeeeeeneeeneneneenene &9
5.6 Content and Navigation Patterns and Practices..........cccccceveueunee. 91

5.6.1 PATTERN CN-MD: Master Detail and PATTERN
CN-MMD: Master Multidetailcccccoceeveneencnienennens 92
5.6.2 PATTERN CN-MLMD: Multilevel Master Detail............. 92
5.6.3 PATTERN CN-DEF: Default Selection...........ccccceceenuennene 92
5.7 Data Entry Patterns.cccoeeveineineriniincieceeeeecnieeneenes 93
5.7.1 PATTERN DE-FRM: Multifield Forms...........c..ccecvevnnenee. 93
5.7.2 PATTERN DE-PLDF: Preloaded Field.............ccccccueue. 94
5.7.3 PATTERN DE-PASF: Preassigned Selection Field........... 96
5.7.4 PATTERN DE-DLKP: Data LooKup.......cccceceeerererennenne. 97

Contents
5.7.5 PATTERN DE-CSF: Cascade Selection Fields................. 98
5.7.6 PATTERN DE-WIZ: Wizardccccoovevvvveveeeirireeeeeene. 99
5.8 Search Patternsc.ccveevieueeerieieeieeeeeteeeeete et ve v 99
5.8.1 PATTERN CS-SRC: Basic Searchcccccceevvieeenirennee. 99
5.8.2 PATTERN CS-MCS: Multicriteria Search...................... 101
5.8.3 PATTERN CS-FSR: Faceted Searchccccoceuee. 101
5.9 Running EXample........cccccvvveirieinieinieinieieieeeieeeresereeeesnevenes 103
5.10 Summary of the Chapter.........cccoovrurueueiririeeeerieeeeeeeeeeeeseeenas 113
5.11 Bibliographic NOLES........ccccveiririirririerierieieiesieseeeaeeeseseneseas 113
CHAPTER 6 Modeling Business Actionscccceereennnnnnnnne 115
B.1 ACHONS .eeevvieieeiicteeee ettt ettt ettt e v e ere e ere s 116
6.2 NOHTICAON.....cvieviiriceeeetieeeeteee ettt 119
6.3 Business Action Patternscccoovevveeveeveierieerieeeereeeeeeeeee e 119
6.3.1 Content Management Patterns...........coccoevveeveveeeerenncnn 119
6.3.2 PATTERN A-OCR: Object Creationc..ccccceevveruennne. 120

6.3.3 PATTERN A-OACR: Object and Association
CIEALION ...eeeevieeeiiieeeiee ettt ettt et ae e e eeree e e e e e eaens 120
6.3.4 PATTERN A-ODL: Object Deletionc..ccccceeeuenneene. 122
6.3.5 PATTERN A-CODL: Cascaded Deletion........................ 123
6.3.6 PATTERN A-OM: Object Modification...........c.cccceuenee. 125
6.3.7 PATTERN A-AM: Association Management.................. 128
6.3.8 PATTERN A-NOTIF: Notification...........cccceeeeevveeennreenns 130
6.4 Running EXample........cccocovveinieinieinieinieieeceieeeeieeeseeie e 131
6.5 Summary of the Chapter..........ccovvveirieirieirieieieieeteeeeseee e 136
6.6 Bibliographic NOLES......c.ccerveverieririeririeeisteeereeeteeetesereaeressesenes 136
CHAPTER 7 IFML EXteNSiONS......ccccverereeeeeiiiieeissssscsssssssnsnnnnnnes 137
7.1 Desktop EXIENSIONScveviieeiieeiieiisieiieieeeieeeieeeieseeeaesesseeeees 138
7.1.1 Event EXtENSIONSccoveeieuieieiiiieeeieeeeiee e e e eeiaee e 138
7.1.2 Component EXtensions.......c..ccceeceveruenrenenieneenveneeenennenn. 140
7.1.3 ComponentPart EXtensions.........ccccceeeveeveenieersieeneenneeenne 144
7.2 WeD EXEENSIONS ..veovieeeerieeeeeteeeeeteeete ettt eteeere e ere e ereeeeereennes 145
7.2.1 Container Extensions: Pages, Areas, and Site Views........... 145
7.2.2 Event and Interaction Flow Extensions.............c..ccc....... 147
7.2.3 Component EXteNnsions........ccoceeeeererreenersieneenieseeeeneenne 148
7.3 MODbile EXEENSIONScvvivieeeieieieceeeeeceeeeeeeeeeete et 152
7.3.1 Context EXteNnSionsccceevcvieeeeiiieeiieeenreeeeieeeeeeree v 153
7.3.2 Containers EXtensionsccccceevveeeeieeenieeenireeeciee e 154

7.3.3 Component and Event EXtensions.........ccccceceeeveveevienneee 155

I
vii

viii Contents

7.3.4 Cameras and Sensors..........cceveeeereeriereerienieeeeeeeneeeneene 155
7.3.5 COMMUNICAION ...eevveriiieiieeiieniieeieesiteeiee st eree s 156
T.3.6 POSIION ..cueeuiiiieiiiiciceicececteeetc et 157
T.3.7 MAPS ettt ettt e 160
7.3.8 GESLUIES ...cvvenvieuieiieniinieete ettt 161
7.4 Multiscreen EXIENSIONScceeeriruiriirierienieiesieeeeeeceieeeee e 161
7.5 Summary of the Chapter...........c.cceceeiiiriireieieeeeeeeeee 164
7.6 Bibliographic NOLES.........eveueiririeeeiieieieeeieieeeeeeeeie e 164
CHAPTER 8 Modeling Patternsccceeviiiieiiicccicccnsnnnnnneees 167
8.1 Interface Organizationccecveeeeserrisresieriesiesieeeeesseseneenens 167
8.1.1 Reusable Modulesc..coceverienenieninienenicnceicneenee. 167
8.1.2 Master Pages......c.cceverieieiiinieiieieeeeeeeeeeee e 169
8.2 Navigation and Orientationcceeevrveererecerrerieesieesseessenenes 173
8.2.1 Toolbars and Menus.........ccecceevueeruerneeniernieenienieeseeeenn 174
8.2.2 PATTERN CN-UP AND CN-BACK: Up and Back
INAVIZALION ..eeeniiieiieriiieieeete ettt sttt siee e 186
8.2.3 PATTERN CN-BREAD: Breadcrumbs...........ccccccuenneeee. 187
8.3 Content Publishing, Scrolling, and Previewing..........c..cccoeveuen.. 190
8.3.1 PATTERN CN-MMD: Master Multidetail 190
8.3.2 PATTERN CN-PG: Paging.......cccccceeeruievieneeierieeeenee. 192
8.3.3 PATTERN CN-PR: Collection Previewc..ccceueee. 192
8.3.4 PATTERN CN-Alpha: Alphabetical Filter 196
8.4 Data ENtrY....cooveieiiieiiieiiieieeeeestee et 197
8.4.1 PATTERN DE-TDFP: Type-Dependent Field
PIOPEITIES ...cveeeiieiiierierieet ettt 197
8.4.2 PATTERN DE-RTE: Rich Text Editing.............cccueuenne.. 197
8.4.3 PATTERN DE-AUTO: Input
AUto-Completion.......coceerveriienieenieniieneeeieenee e 198
8.4.4 PATTER DE-DYN: Dynamic Selection Fields 201
8.4.5 PATTERN DE-INPL: In-Place Editingccccccceeueunee. 201
8.4.6 PATTERN DE-VAL: Input Data Validation 203
8.5 SEAICh ...ooiiiieeicieeee et 204
8.5.1 PATTERN CS-RSRC: Restricted Search 204
8.5.2 PATTERN CS-SRCS: Search Suggestions..........c........... 204
8.6 Content Managementcccueerueerieerieerierieieeeieieeeeereneesennes 205
8.6.1 PATTERN CM-CBCM: Class-Based Content
ManNAeMENLTccueeiiriieieniieieeiteieetenie ettt 205
8.6.2 PATTERN CM-PBCM: Page-Based Content
Managementc..cocvevuerienenieniieeee e 208

Contents iX
8.7 Personalization, Identification, and Authorization...................... 208
8.7.1 PATTERN TA-LOGIN: LOgincccecevrvreierreiereeeenenee. 209
8.7.2 PATTERN IA-LOGOUT: LOgOULcovvrrreeierieeeennen. 210
8.7.3 PATTERN IA-CEX: Context Expiration Notification.....210
8.7.4 PATTERN IA-SPLOG: Login to a Specific
VIeWCONTAINETeenveiieieeiieieeietcee e 213
8.7.5 PATTERN IA-ROLE: User Role Display and
SWILCHING c..evviiieiiic e 213
8.7.6 PATTERN IA-RBP: Role-Based Permissions for View
EIEMENtS .c..eoveeiiriieiinieicniccctcetceeceee e 215
8.7.7 PATTERN IA-NRBP: Negative Role-Based
Permissions for View Elementsccccovceevencenencnee. 216
8.7.8 PATTERN IA-OBP: Object-Based Permissions 217
8.7.9 PATTERN IA-PRO: User Profile Display and
ManagemMeNLtcovvieviierieiiienieete sttt 217
8.7.10 PATTERN IA-IPSI: In-Place Sign-In........ccccccoevvrvueennnene 220
8.8 SeSSION DAta......cueevieieiiieiiieiieieee e 220
8.8.1 PATTERN SES-CR: Creating Session Data from
Persistent Data.........coevveeiiiiieeieeie et 222
8.8.2 PATTERN SES-PER: Persisting Session Data................ 223
8.8.3 PATTERN SES-EXC: Session Data Expiration
CatCRING...couvieiieeiieeie ettt 224
8.9 S0cial FUNCHONSc.vevinieiiieiiieeiieitetetetee et 225
8.9.1 PATTERN SOC-AW: Activity Wallcccceeeevienenenee. 225
8.9.2 PATTERN SOC-SH: Sharing, Liking, and
COMMENTINGooeiienririieieiieieeeee et 226
8.9.3 PATTERN SOC-FR: Friendship Management................ 228
8.10 GEO PAtternSc.veveeeeeienieieieeieeeietetete ettt 228
8.10.1 PATTERN GEO-LAS: Location-Aware Search.............. 228
8.11 Summary of the Chapter.........ccccecerieerieerieenieeree e, 230
8.12 BibliographiC NOLES.......cceeveeereriereiereiererieteseeresseeesseeeeseseeseseenens 230
CHAPTER 9 IFML by EXamplescccummmemeemmmmmnnsssssnsssssssnnnnnnns 233
9.1 Media Sharing ApPp.....ccoceereeereireerieerieere e 233
9.1.1 Domain Model........cccocevimiininniininiininieneeenecieeeenn 233
9.1.2 IFML Modelcoueieieieiiiiniieiieeneseee e 234
9.2 ONliNE AUCHONS ...cveuvevieietiietiietireeeesteeeeteteteeeteseeseseseaesessesennes 252
9.2.1 Domain Model.......ccccoceeriniininiiniiienieeneeeeeene 253
9.2.2 TFML MoOdeleoviiiiiiiiiieieeeeeee e 256

9.3 Summary Of the Chapter..........cceovevrireeueeririreeereeeeeee s 276

|
X

Contents

CHAPTER 10 Implementation of Applications

Specified With IFMLccccvviiiincceere e 279
10.1 Implementation of the Front End for URE-HTML Page
TeMPIALES.......ooiiiiiiiiieceeeee e e 282
10.1.1 Overview of the ViewContainer Computation Steps......282
10.1.2 Standalone ViewContainerc.cccccevevvevveieceiennnnn 284
10.1.3 Navigation Across ViewContainers..........c..ceceeeeevenneenn 287
10.1.4 Navigation Within the Same ViewContainer.................. 290
10.1.5 FOIMS...cuiiiiiiiiiiieeee ettt 293
10.1.6 Landmarks and Nested ViewContainers..................c...... 295
10.1.7 ACHONS ..ot 298
L0.1.8 CONLEXE ...vinviniiniciiiiiiieiiciiecrccee e 299
10.2 Implementation of the Front End for Presentation
Frameworkscccoevieiiiiininiiiieecsccccceeeeee 301
10.2.1 Model-View-Controller and its Adaptation to
the WED ..o 301
10.2.2 Mapping IFML to the Spring MVC Framework............ 305
10.2.3 Mapping ViewContainers to Spring MVC..................... 305
10.2.4 Mapping ViewComponents to Spring MVC 310
10.2.5 Mapping Forms to Spring MVCccccevinveninincnnens 312
10.2.6 Mapping Operations to the MVC Architecture............... 315
10.3 Implementation of the Front End for Rich Internet
APPICALIONS ..eoiiiiiiiriiieiieeieeite ettt et 316
10.3.1 Mapping IFML to the RIA Architecturec..ccc.c....... 317
10.4 Implementation of the Front End for Mobile Applications........ 321
10.4.1 The Android Development Environment 322
10.4.2 Mapping IFML to Native Android Code............cccoc....... 323
10.5 Summary of the Chapter.........ccccovrvrueueiririeieenireeeeeeeeieeeeseeas 333
10.6 Bibliographic NOLES........cveieirrirririirierieieiesieeeieaeeesseeaeenesneneas 333

CHAPTER 11 Tools for Model-Driven Development of

Interactive Applicationscccccceeeeeeieicececcsscennes 335
11.1 Introduction to Webratio..........cccecereeereeenieenieenieenecsecseeee 335
11.2 Domain Model DeSignccccevvieririiriiniiieieieieieeeeeeeeeneveeneas 337
11.3 IFML Front-End Design.........ccceerieenierenieenieeirieenee e 338
11.4 Data Mapping and Alignmentccecevveerieenieceniecenieeereenen, 341
11.5 Action Desigh......cceveeirieiriiieieieieieeietetee et 342
11.6 Presentation Design.......ccoeeieveieririeiieiieeieeee e 344

11.7 COde GENETAION......cueeeeeeeeeeeeeeeeeee e e 346

Contents xi
11.7.1 Code Generation for Web and Rich Internet
APPLHCALION ... 346
11.7.2 Code Generation for Mobile Applications 350
11.8 Advanced Featurescocoeeueeininreiicennieieennieeiecnesenecnennenes 350
11.8.1 Model ChecKingcecueeeemerieneriienenieneeieneeieeeenne 350
11.8.2 Model Debugging........ccccoeeererienersienierienieieneeeeecene 351
11.8.3 Cooperative Work and Enterprise Scale
Development........cocoveecierieiienieienieeeeeeeeee e 351
11.8.4 Automatic Documentationc..ceccceveevvereecveneeuennenn 353
11.8.5 IFML EXtensibilityc.cccceveevrivveinrerineinieenieeneennenes 354
11.9 Summary of the Chapter..........ccecerieirieenieereereeeee e, 355
11.10 Bibliographic NOES.cerveririeririeirieinieieieieeeeieeee e 357
CHAPTER 12 IFML Language Design, Execution, and
Integrationcccoeeecceceee s 359
12.1 IFML Language Specification Through Metamodeling............. 359
12.1.1 Metamodel...........ccccceeiiiiinininiiiniiiiiccccc 360
12.1.2 EXtensibilitycccoecerveimiemnieiniiciecnecneeneeneeeenes 361
12.1.3 Profile, Visual Notation, and Interchange Format.......... 362
12.2 TFML Model EXECULION......c.ooeiereieriieriieieieiesiee e 362
12.2.1 State Representation...........cocceceveeverereenvenreneeneeeeeeennens 363
12.2.2 ViewContainer State...........ccoervveruerreeneenreneecreneeneeneenns 363
12.2.3 State of a ViewCOmMPONENLeevueereeerrieereerieeneeneeennes 364
12.2.4 ActivationEXpPressions........cooeeeererreenernieneenieneenneneenn. 364
12.2.5 Event Processingcccoeeveerieriieneesieneenieneeneneeniennens 366
12.2.6 ViewContainer Visibility Update..........ccccceoeererieinnncne. 366
12.2.7 ViewComponent Status Update.........c.ccoeevevvereeererennns 367
12.2.8 Navigation History Preservationccccccccecvevvvnenncne. 367
12.2.9 Parameter Values Conflicts.........coccecenervieneecicneccienenn 370
12.2.10 ViewComponent Computation Process.........c..ccocceueeune. 371
12.3 IFML Models Integration with Other System Modeling
POISPECLIVES ...ttt 375
12.3.1 Integration with Business Models and
ReqUirementscoocueevierieinienieiieeieeteeeeee e 377
12.3.2 Integration with Content Model and Business
LOZIC cuiiiiiiireeete et 377
12.3.3 Integration with Implementation and Deployment
ASPECES .ttt 378
12.4 Summary of the Chapter.........ccecevievirieirieerieereeeee e, 380

12.5 Bibliographic NOLES.ccervrurueuriririeeeieririeieieneree et 380

Xii

Contents

Appendix A: IFML Notation SUMMATLYcccoceeriereeriereeeenieeieseeeeeeeeeeeeeeens 381
Appendix B: List of IFML Design Patternscoccocevevenenienreneneecencencnnenne. 389
REFEIOINCES ...ttt 395

Foreword

A decade and a half ago, on the strength of a relatively new modeling language
standard and a notion that software development needed to be more abstract, the
Object Management Group (OMG) took a leap of faith and launched an effort known
as the Model Driven Architecture (MDA). The idea was simple: like other, better-
established engineering disciplines, software development should begin with abstract
models, models that could be organized, evaluated, tested & shared before the tar-
geted system was built. After all, it’s much easier (and less expensive) to change a
system when it’s in a high-level (but precise) language, than to change it after it has
been fully built (or worse, fielded with customers and users).

Oddly, many fought the idea. We at OMG were convinced by other engineering
disciplines; after all, no ship is launched without first architecting the design on paper
(or online) and considering various important aspects. An important aspect for a ship,
which is best ascertained at design time rather than at launch time, is its center of
gravity (CG). After all, the CG of a ship had better be below the water line; if it isn’t
below the water line at launch time, it will be soon after (as the Swedes discovered
to their chagrin at the 10 August 1628 launch of the great warship Vasa, which sank
1300 m into its maiden voyage in Stockholm harbor). Evaluation of models can save
quite a lot of time, money and effort, and the MDA approach has had a salutatory
effect on software development in the 21st century. The best systems are fully archi-
tected and designed, with those designs evaluated before development begins. Even
better, though one cannot automate the construction of a ship or a building from its
blueprints, in the software realm one can automate the construction of a software sys-
tem from its blueprint (model), and many telecommunications, banking & military
systems are in fact built that way today.

Another major trend of the 21st century is “computing everywhere.” Fewer and
fewer complex systems are implemented without computing infrastructure today.
The music industry, the news industry, the telecommunications industry and the
banking industry have been totally disrupted by computing interfaces — music trav-
els by MP3 instead of by physical records and tapes; news travels by text & HTML
instead of by newsprint paper; voice travels by voice-over-IP (VoIP) instead of regu-
lar telecommunications channels; and money is by far more virtual than paper or
metal today. This has necessitated the construction of thousands of user interfaces to
access services and functions; dropping a tape into a tape recorder was quite simple
and straightforward, but every MP3 player in the world has a different user interface,
and some of them are quite bizarre and non-intuitive.

These two trends, modeling and computing everywhere, haven’t quite caught up
with each other. From the launch of the first international multi-market standard mod-
eling language (the Unified Modeling Language, or UML, in September 1997) to
2013, there has been no standard way to model user interfaces. This problem is made
even worse when one considers that many software systems need to be executable on
multiple computing platforms — after all, you want to listen to music on your desktop

xiii

Xiv

Foreword

computer, your laptop computer, your music player, perhaps even your wristwatch and
your hearing aid. Necessarily these different computing platforms have different user
interfaces — have you ever seen a screen on a hearing aid? — and while software model-
ing languages have for decades supported execution on multiple computing platforms,
they have not supported multiple interfaces on multiple computing platforms.

This is more important than it might sound. One of the major software product
failures of the second decade of this millennium has been the attempt by major soft-
ware vendors to support a single user interface concept on all computing platforms
(including servers, desktop computers, laptop computers and telephones). The touch-
screen concept makes sense for telephones (with their relatively small screens and
our relatively large fingers); it makes less sense for many on desktops and laptops
(where generally there is a full-size keyboard available, and many computing users
would prefer to use that keyboard and mouse); it makes no sense for servers (which
are generally “headless,” that is, without screens at all.

What is needed, of course, is to apply the concept of abstract models to user
interfaces, and this the new OMG Interaction Flow Modeling Language (IFML) is
designed to do. Becoming a fully-recognized standard in March, 2014, the IFML
allows the system modeler to capture the user interaction and content of the front-end
(user interface) of any system (including software systems) and model the control
behavior of that system’s front-end.

Clearly this is a major breakthrough for systems modeling in general, and soft-
ware design in particular. With a standard modeling language (fully integrated with
other OMG MDA modeling languages through shared underlying modeling struc-
ture), a systems designer can capture the control flow of both the system and the
interface to that system, and then map the system and interface to whatever infra-
structure needs to be delivered. Whether that system runs on a server in the cloud, or
on a watch on the user’s wrist, or in an embedded system in one’s body, the system
designer can expect to have both consistent execution of the system and consistent
interface to that system. This is clearly a very powerful concept for designing por-
table and interoperable systems.

In this book, you will learn the concepts of portable design of IFML models, and
how to apply those models in real-world systems. Real, executable, fully-worked
examples show you how to use IFML in practice, integrate with UML models, and
how to rely on the shared MDA infrastructure of OMG modeling languages. While
it’s worth taking a look at the standard itself to understand its structure, this book
is an invaluable guide to how to use the standard to good effect in real systems,
whether software systems, software-driven systems, or any other engineered systems
that feature a software front-end. This book belongs on the bookshelf of every system
designer that depends on software interfaces.

Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer,
Object Management Group, Inc.,
Moscow, Russian Federation,

23 October 2014

CHAPTER

Introduction

In the last twenty years, capabilities such as information browsing, hypertext-style
navigation, multimedia content fruition, form-based interaction, and interface per-
sonalization have become widespread. They are found in consumer applications,
business information systems, and even human-machine interfaces for industrial
control. More and more embedded systems are equipped with sophisticated GUIs.
Powerful interaction functionalities are implemented on top of a variety of technolo-
gies and platforms whose boundaries are becoming less distinguishable: window-
based interfaces for desktop and client—server architectures, pure-HTML web pages,
rich Internet applications, and mobile apps. This convergence in technologies is well
portrayed by the HTML 5 initiative, which seeks to establish a coherent set of con-
cepts and common technological grounds for the development of a broad variety of
interaction front-ends.

However, the emergence of such an unprecedented mix of devices, technologi-
cal platforms, and communication channels is not accompanied by the maturation
of approaches for creating a platform independent model (PIM) that can be used
to express interaction design decisions independently of the implementation plat-
form. In addition, front-end design is a complex task where many requirements, per-
spectives, and disciplines intersect: graphic design and aesthetics, enterprise visual
identity, interaction design, usability, multi-screen support, offline-online usage,
integration with backend business logic and data, and coherence with the enterprise
organization models (e.g., business process compliance).

Front-end development, therefore, continues to be a costly and inefficient pro-
cess, where the collision of many complex factors imposes continuous reworking
and refinement of the implementation. The situation is made worse by the scarcity
of automation in mainstream software production methods, which causes low reuse
of design artifacts across the interfaces of different projects and high overhead for
ensuring cross-platform portability of applications. In this context, the role of a PIM-
level interaction modeling language is to provide a stable set of concepts that can
be used to characterize the essential aspect of the user’s interaction with a software
application interface: the provision of stimuli, the capturing and processing of such
stimuli by the application logic, and the update of the interface based on such pro-
cessing. The PIM should be designed for change. The stable core of concepts should
be accompanied by a native extension mechanism capable of accommodating new
forms of interactions and interface renditions (e.g., gestural stimuli and renditions in
3D or augmented reality devices).

Interaction Flow Modeling Language. http:/dx.doi.org/10.1016/B978-0-12-800108-0.00001-1
Copyright © 2015 Elsevier Inc. All rights reserved.

2

CHAPTER 1 Introduction

A PIM-level interaction modeling language—seamlessly integrated with other
modeling perspectives for the design of complete software solutions—brings several
benefits:

e It permits the explicit representation of the different perspectives of the front
end (content, interface organization, interaction and navigation options, and
connection with the business logic and the presentation style).

» It raises the abstraction level of the front-end specification, isolating it from
implementation-specific issues.

e It improves the coordination of work in the development process by allowing
the allocation of interaction requirement specifications and their implementation
to different roles in the team.

e It enables the communication of interface and interaction design to nontechnical
stakeholders, enabling the early validation of requirements.

e With the proper tool support, it allows automatic checks on the interface mod-
els, not only for the correct use of the modeling constructs but also for desirable
properties of the portrayed interface such as uniformity of the interaction style
and usability of the interface.

To address these needs, the OMG (Object Management Group) adopted the Inter-
action Flow Modeling Language (IFML) as a standard in July 2014. This book offers
a structured introduction to this new modeling language. The spirit is not that of a ref-
erence manual for the illustration of the formal concepts that constitute the language,
but rather that of a practical guide book showing the language at work through a pro-
gression of examples, design patterns, and best practices. After reading the book, the
should have a clear understanding of how to exploit IFML in practice and integrate it
into mainstream enterprise software development standards.

As IFML gets implemented by tool vendors, the reader will be able to try out the
examples provided in the book and even generate partial or full applications from
the models.

1.1 WHAT IFML IS ABOUT

IFML supports the specification of the front end of applications independently of
the technological details of their realization. It addresses the following questions of
front-end modeling:

¢ The composition of the view: What are the visualization units that compose the
interface, how are they organized, and which ones are displayed simultaneously
and which in mutual exclusion?

e The content of the view: What content elements are displayed from the appli-
cation to the user, and what input is acquired from the user and supplied to the
application?

¢ The commands: What interaction events are supported?

* The actions: What business components are triggered by the events?

1.2 The IFML Design Principles 3

¢ The effects of interaction: What is the effect of events and action execution on
the state of the interface?

¢ The parameter binding: What data items are communicated between the ele-
ments of the user interface and the triggered actions?

IFML expresses the abovementioned aspects using a visual modeling language
based on the OMG standards. Its technical foundations lie on the OMG Model
Driven Architecture (MDA) framework. This grants seamless integration with the
specifications of the other layers of the software system. The specification consists
of five main technical artifacts:

e The IFML metamodel specifies the structure and semantics of the [IFML con-
structs using the OMG Meta Object Facility (MOF).

¢ The IFML Unified Modeling Language (UML) profile defines a UML-based
syntax for expressing [IFML models. In particular, the UML Profile for IFML is
based on the use of UML components (both basic components and packaging
components), classes, and other concepts, which may concur with hierarchical
structures or dependencies.

e The IFML visual syntax offers a concrete representation based on a unique
diagram. This compacts all aspects of the user interface that are otherwise
expressed separately with UML class diagrams, state machine, and composite
structure diagrams.

e The IFML textual syntax offers a textual alternative, equivalent to the visual
syntax, for expressing IFML models.

e The IFML XMI provides a model exchange format for tool portability.

This book adopts the IFML visual syntax as a concrete vehicle for conveying the
user interaction models because it is close to UML—and thus familiar to developers—
and because it is very compact.

1.2 THE IFML DESIGN PRINCIPLES

Designing a modeling language for the front end is a complex and multidisciplinary
task where many perspectives intersect. A good modeling language should pay atten-
tion to coverage (i.e., the ability to represent complex application front ends but also
to model usability and understandability). The latter goals require addressing all the
factors that contribute to make a modeling language quick to learn, simple to use,
easy to implement by tool vendors, and open to extensibility. The design of IFML
adheres as much as possible to the following “golden” rules:

* Conciseness: the number of diagram types and concepts needed to express the
salient interface and interaction design decisions is kept to the minimum. In
particular, the IFML visual syntax conveys the front-end model using a single
diagram. This design simplifies the model editing and maintenance processes,
because references between different types of diagrams need not be maintained

4

CHAPTER 1 Introduction

and only the internal coherence among the various elements of a single type of
diagram must be preserved.

Inference from the context: whenever something can be deduced from existing
parts of the model, inference rules at the modeling level automatically apply
default modeling patterns and details, avoiding the need for modelers to specify
redundant information. For example, parameter passing rules between different
model elements, which are ubiquitous and cumbersome to specify, are inferred
from the context as often as possible.

Extensibility: adaptation to novel requirements, interaction modalities, and tech-
nologies must be planned in the language design. IFML builds upon a small set
of core concepts that capture the essence of interaction: the interface (containers),
stimuli (events), content (components and data binding), and dynamics (flows
and actions). By design, these concepts are meant to be extended to mirror the
evolution of technologies and devices. Thus, IFML incorporates standard means
for defining new concepts, such as novel interface components or event types. The
OMG standard already comprises examples of extensions, and this book illus-
trates many more cases that ease the specification of web, desktop, and mobile
applications. Time and practice will show if the core of IFML is sufficiently tech-
nology neutral to enable extension to novel interaction paradigms that are pos-
sibly very different from the ones for which the language was initially conceived.
Implementability: models that lack adequate tool support and cannot be used
to produce the code are quickly abandoned. IFML is a platform-independent
language but has been designed with executability in mind. This is obtained
through model transformations and code generators to ensure that models can
be mapped easily into executable applications for various platforms and devices.
Chapters 10 and 11 present some techniques for implementing IFML specifica-
tions in several platforms, discuss the tool support requested in general for mak-
ing the language usable, and illustrate one specific tool that enables automation
of the design process and code generation.

Not everything in the model: sometimes the hardest choice in language design
is what to leave out. IFML purposely ignores presentation aspects, because
presentation is adversarial to abstraction (in graphic design, every pixel is
important). It also delegates to external models the specification of aspects that,
although relevant to the user interface, are not properly part of it. For example,
the internal functioning of the actions triggered by the GUI can be described
using an action model. If the action is the invocation of an object’s method,

this can be described by referencing a method in a UML class; if the action is
the invocation of an orchestration of web services, this can be described using

a SoaML! diagram; if the action is described by a complex behavior, this can
be obtained by referencing a whole UML dynamic diagram (e.g., a sequence
diagram or activity diagram). The content model underlying the application can
be described with any structural diagram, such as a UML class diagram, a Com-
mon Warehouse Metamodel (CWM) diagram,” an Entity-Relationship diagram,
or an ontology.

1.3 How to Read this Book 5

1.3 HOW TO READ THIS BOOK

This book is directed not only to the IT specialists but also to a wider audience of
all the professionals involved in the construction of interactive applications, from
stakeholders to user-experience creators. To address this target, we purged the book
of any unnecessary formalism and academic discussion, and made intensive use of
practical and motivating examples to explain each new concept introduced to the
reader. The book should be approachable with limited effort by readers with a gen-
eral background in software development and in basic database, mobile, and web
technologies. Throughout the chapters, concepts are shown at work in the modeling
of popular real-life interactive application interfaces. In the same way, development
tasks are exemplified with the help of a running case taken from a popular online
application. Our intention is to show things with the help of progressive examples,
rather than to tell how things should be done.

While writing the book, we tried to cater to the needs of four main categories of
readers:

* Software designers/analysts, whose main goal is learning IFML and under-
standing the design patterns and best practices that apply in practice. Another
fundamental question that software designers want to address is how to integrate
model-driven front-end design in current software development processes, with
the objective of enabling fast prototyping of the interface connected to the appli-
cation back end.

* U design professionals, whose aim is to use IFML for specifying the
dynamics of the interaction without developing software. Ultimately, IFML
should allow the UI professionals to produce a high-level description of
their interface concepts that is easily communicable to both IT and business
stakeholders.

* Executives with interests in the IT field, whose purpose is to understand the
role of IFML in organizing software projects and its value in terms of efficiency
and cost reduction. Early validation of front-end requirements with customers,
cross-project reuse, documentation and cross-team dissemination of design best
practices, the unlocking of corporate knowledge from source code, and its pres-
ervation in technology-independent models are some of the factors where IFML
impacts the key performance indicators of software projects.

* Students,whose objective is learning IFML, typically as part of an educa-
tion path that comprises software development and software engineering
disciplines. For students specializing in model-driven software engineering,
an added value can be the study of an example of modeling language design.
For all students, it may be interesting to try the examples of interface model-
ing illustrated in the book with the help of the online resources provided and
of an IFML modeling and code generation tool. The knowledge afforded
by the book can also be used to earn professional certification as an IFML
modeler.

|
6

CHAPTER 1 Introduction

1.3.1 STRUCTURE OF THE BOOK

The book proceeds from the prerequisites of IFML (domain modeling), through the
various facets of the language, and toward more practical aspects, including a gallery
of design patterns, implementation, tool support, and integration within the MDA
framework.

» Chapter 2 gives an introductory overview of the language, allowing readers to
grasp its main concepts quickly.

e Chapters 3 addresses domain modeling, an activity complementary to front-end
modeling. It positions IFML with respect to the established practices for model-
ing the objects of a domain, most notably the use of UML class diagrams. The
chapter also discusses useful patterns that apply specifically to domain model-
ing for interactive applications.

e Chapters 4-7 provide a walkthrough of IFML, addressing both the standard
primitives and the language extensions for specific purposes. Each construct
is defined and immediately exemplified. The chapters also contain several
design patterns that address typical requirements of application front-end
design.

e Chapter 8 complements the feature-based illustration of IFML afforded in
chapters 4-7 with a requirement-based view. Various functionalities of interest
for desktop, mobile, web, and multiscreen applications are considered, and the
design patterns that model them are discussed.

* Chapter 9 deepens the illustration of the concrete usage of IFML, switching
from a pattern-based perspective to an application-based one. Two real-life
applications are introduced and modelled.

e Chapter 10 and 11 respectively focus on how to convert IFML models into
implemented software front ends, including the tool support available for
doing so. The aim is to show how to reap the benefits of front-end modeling by
quickly producing application prototypes and by generating the complete code
of the application from the models with the help of code generation tools.

e Chapter 12 concludes the book by positioning IFML in the broader space of
OMG languages and standards, with the aim of giving the reader a precise view
on how to set up a coherent model-driven environment capable of spanning all
the tiers and facets of application development: the front end, the business logic,
the persistent data, and the interoperation with external services.

1.4 ON-LINE RESOURCES

The book is associated with several online resources. The web site at
http://www.ifml.org/ offers a variety of materials dedicated to model-driven inter-
face development and to IFML, including examples of modeling, design patterns,
technical and research articles, teaching materials, and resources for developers and

http://www.ifml.org/

1.5 Background 7

educators. In particular, the section at http://www.ifml.org/book/ is dedicated to this
book. A contact form in the web site permits instructors to contact the book’s authors
to obtain further up-to-date teaching materials.

The site at http://www.webratio.com/ is the home of WebRatio, the model-driven
engineering tool presented in Chapter 12. The WebRatio community hosts a wealth
of materials on the usage of IFML, which can be tried out in practice with the tool.
An evaluation program is available for trying the software, and academic licenses are
granted upon request to researchers, teachers, and students willing to use the tool in
educational activities.

1.5 BACKGROUND

The model-driven approach to application front-end development at the base of
this book is the result of more than fifteen years of research work at Politecnico di
Milano, the largest Italian IT School, accompanied by intense development activ-
ity in the industry at the international level. The first model-driven CASE tool for
the front end, called AutoWeb, was designed by Piero Fraternali between 1996 and
1998 and focused on web hypertexts. The tool was used to develop several web
applications and pioneered the possibility of automating the development of user
interfaces—including the presentation aspects—starting from a high-level concep-
tual model.

The ancestor of IFML was a modeling language called Web Modelling Language
(WebML), conceived in the context of the research project Web-Based Intelligent
Information Infrastructures (W3I3, 1998-2000), supported by the European Com-
mission. Since 1999, WebML has been used for the development of industrial web
applications, both as part of research contracts with companies such as Microsoft
and Cisco Systems, and in industrial projects with companies such as Acer Europe.
In the fall of 2001, a team of WebML designers and developers founded a start-up
company with the goal of developing, distributing, and marketing WebRatio, a tool
suite based on WebML. Since then, model-driven development of web applications
with WebRatio has been applied to thousands of applications worldwide, including
very large projects in such industries as utilities (water and energy), finance, logis-
tics, e-commerce, and more. This solid industrial experience has been the key to
understanding what works and what does not in the model-driven development of
user interfaces. This understanding has been distilled in the guidelines and design
patterns illustrated in this book.

The last step of the long story behind the book is the IFML standardization pro-
cess at the OMG. Here, the consensus process typical of a wide-scale international
standardization effort has produced the refinement of many fundamentals aspects
of the language, such as its compliance and integration with OMG standards, the
general applicability to any class of interactive applications, and the provision of a
model exchange format.

http://www.ifml.org/book/
http://www.webratio.com/

8

CHAPTER 1 Introduction

1.6 ACKNOWLEDGMENT

We would like to thank all the people that made this book possible. First of all, we
wish to thank Stefano Ceri and the whole research group at Politecnico di Milano,
where the WebML language originated. Secondly, all the people that in these years
worked at WebRatio, starting with the founders Roberto Acerbis, Aldo Bongio, and
Stefano Butti. The industrial experience collected there has been inspirational for
continuous innovation. Third, the people that actually contributed to the specification
and implementation of the IFML language within the OMG: Richard Soley, OMG
Chairman, who encouraged and accompanied our initiative; the whole OMG team,
the co-submitters of the standard; and people like Ed Seidewitz, Manfred Koethe,
and Arne Berre that contributed their experience to the success of the standardization
process. Finally, we want to thank the team at Morgan Kaffman, including Kaitlin
Herbert and Andrea Dierna, who patiently took care of the whole process down to
the final release of the book. Last—but not least—the reviewers of this book, Antonio
Valecillo and Juha-Pekka Tolvanen, who provided us with extremely valuable com-
ments and feedback on the first draft of the manuscript.

END NOTES

1. See http://www.omg.org/spec/SoaML./.
2. See http://www.omg.org/spec/cwm/.

http://www.omg.org/spec/SoaML/
http://www.omg.org/spec/cwm/

CHAPTER

IFML in a Nutshell

IFML supports the platform-independent description of graphical user interfaces for
applications deployed or accessed on systems such as desktop computers, laptops,
PDAs, mobile phones, and tablets. The main focus is on the structure and behavior
of the application as perceived by the end user. The modeling language also incor-
porates references to the data and business logic that influence the user’s experience.
This is achieved respectively by referencing the domain model objects that provide
the content displayed in the interface and the actions that can be triggered by interact-
ing with the interface.

This chapter introduces the essential features of IFML.: its scope, the design rules
behind it, its main modeling elements, and its role in the development process. The
chapter concludes with an initial example of the language.

2.1 SCOPE AND PERSPECTIVES

To understand the aim and scope of IFML better, it may be useful to refer to
the well-known Model-View—Controller (MVC) software architecture of an
interactive application,' shown in Figure 2.1. MVC distinguishes the applica-
tion’s internal status and business logic (Model), their representation in the user
interface (View), and the rules governing the response to the user’s interaction
(Controller).

IFML mainly describes the view (i.e., the content of the front end and the user
interaction mechanisms available in the interface). More precisely, IFML covers var-
ious aspects of the user interface:

* View structure: It expresses the general organization of the interface in terms
of ViewContainers, along with their nesting relationships, visibility, and
reachability.

* View content: It specifies what ViewContainers actually contain in terms of
ViewComponents (i.e., elements for content display and data entry). ViewCom-
ponents that display content are further characterized by a ContentBinding,
which expresses the source of the published content.

* Events: They are the occurrences that affect the state of the user interface. They
can be produced by a user’s interaction, by the application itself, or by an exter-
nal system.

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00002-3
Copyright © 2015 Elsevier Inc. All rights reserved.

|
10

CHAPTER 2 IFML in a Nutshell

invokes

updates
client > controller > model
displays notifies
view

FIGURE 2.1

The Model-View—Controller architecture of an interactive application.

* Event transitions: They specify the consequences of an event on the user inter-
face, which can be a change of the ViewContainer, an update of the content on
display, the triggering of an action, or a mixture of these effects.

¢ Parameter binding: It clarifies the input—output dependencies between View-
Components, view containers, and actions.

For the sake of conciseness, IFML condenses all these perspectives within only
one diagram type called an Interaction Flow Diagram. This is in contrast to other
modeling languages such as UML, which rely on multiple diagrams for conveying
the various facets of an application.

Besides describing the view part of the application, an IFML Interaction Flow
Diagram also provides the hooks to connect it with the model and controller parts:

e With respect to the controller, IFML represents the effects of the user’s interac-
tions. It defines the events produced in the view and the course of action taken
by the controller in response to them, such as triggering a business component
and updating the view.

e With respect to the model, IFML describes the data binding between the inter-
face elements and the objects that embody the state of the application, as well
the actions that are triggered by the user’s interactions.

Figure 2.2 shows as an initial example the IFML model of a simple interface: the
view structure consists of three ViewContainers (“ProductCategories,” “ProductOf-
Category,” and “ProductInformation”), which reflect the top-level organization of
the GUI in three distinct pages. The model shows the content of each ViewContainer.
For example, the “ProductCategories” ViewContainer comprises one ViewCompo-
nent called “CategoryList.” This notation represents the content of the respective
page in the GUI (i.e., a list of product categories). Events are represented in IFML
as circles. The “SelectCategory” event specifies that the “CategoryList” component
is interactive. In the GUI, the user can select one of the categories to access a list of
its products. The effect of the “SelectCategory” event is represented by the arrow
emanating from it (called InteractionFlow in IFML), which specifies that the trigger-
ing of the event causes the display of the “ProductOfCategory” ViewContainer and
the rendering of its “ProductList” ViewComponent (i.e., the list of products of the
selected category). The input—output dependency between the “CategoryList” and
the “ProductList” ViewComponents is represented as a parameter binding (the [IFML

2.2 Overview of IFML Main Concepts

088n On-Line Book Store 2 On-Line Book Store o¥dn On-Line Book Store

{\ Home {\ Home) { Home
t /Book D

: Standard QWE: A

Price: $44.99

/Categories

e

Software

ProductCategories ProductsOfCategory ProductInformation
il SelectCategory cllise SelectProduct «Details»
CategoryList() P ProductList » ProductDetails
«ParameterBindingGroup» «ParameterBindingGroup»
SelectedCategory > Category SelectedProduct > Product
FIGURE 2.2

Example of an interface and its IFML specification.

ParameterBindingGroup element in Figure 2.2). The value of the “SelectedCategory”
parameter, which denotes the object selected by the user in the “CategoryList” View-
Component, is associated with the value of the input parameter “Category,” which is
requested for the computation of the “ProductList” ViewComponent.

2.2 OVERVIEW OF IFML MAIN CONCEPTS

An IFML diagram consists of one or more top-level ViewContainers (i.e., inter-
face elements that comprise components for displaying content and supporting
interactions).

Figure 2.3 contrasts two different organizations of the GUI: (a) an e-mail appli-
cation (desktop or rich Internet application) consisting of a top-level container with
embedded sub-containers at different levels, and (b) an e-commerce web site that
organizes the user interface into different independent view containers corresponding
to page templates.

Each view container can be internally structured in a hierarchy of subcontainers.
For example, in a desktop or rich Internet application, the main window can contain
multiple tabbed frames, which in turn may contain several nested panes. The child
view containers nested within a parent view container can be displayed simultane-
ously (e.g., an object pane and a property pane) or in mutual exclusion (e.g., two
alternative tabs). In the case of mutually exclusive (XOR) containers, one could be
the default container, which is displayed by default when the parent container is
accessed. The meaning of a container can be specified more precisely by adding a

11

12 CHAPTER 2 IFML in a Nutshell

(@) (b)

ProductCategories
Messages
M St h
essagesearc ProductList Product
MessageManagement §
ShoppingCart CustomerInfo
MailBox Settings
MessageWriter PaymentInfo Confirmation
FIGURE 2.3

Example of different top-level interface structures.

«window» [XOR] Mail

[D] Messages Contacts

FIGURE 2.4

Example of mutually exclusive subcontainers.

stereotype to the general-purpose construct. For instance, a ViewContainer can be
tagged as «window», as in the case of the “Mail” ViewContainer in Figure 2.4, to hint
at the nature of its expected implementation.

In Figure 2.4, the “Mail” top-level container comprises two subcontainers, dis-
played alternatively: one for messages and one for contacts. When the top level con-
tainer is accessed, the interface displays the “Messages” ViewContainer by default.

A ViewContainer can contain ViewComponents, which denote the publication of
content (e.g., a list of objects) or the input of data (e.g., entry forms).

Figure 2.5 shows the notation for embedding ViewComponents within View-
Containers. The “Search” ViewContainer comprises a “MessageKeywordSearch”

2.2 Overview of IFML Main Concepts 13

Search MailBox
«Form» «List»
Message .
KeywordSearch HEEEELE

FIGURE 2.5

Example of ViewComponents within view containers.

ViewComponent that represents a form for searching; the “MailBox” ViewContainer
comprises a “MessageList” ViewComponent that denotes a list of objects.

A ViewComponent can have input and output parameters. For example, a View-
Component that shows the details of an object has an input parameter corresponding
to the identifier of the object to display. a data entry form exposes as output param-
eters the values submitted by the user. and a list of items exports as output parameter
the item selected by the user.

A ViewContainer and a ViewComponent can be associated with events to express
that they support user interaction. For example, a ViewComponent can represent a list
associated with an event for selecting one or more items, a form associated with an event
for input submission, or an image gallery associated with an event for scrolling though
the gallery. IFML events are mapped to inferactors” in the implemented application. The
way in which such interactors are rendered depends on the specific platform for which
the application is deployed and is not captured by IFML. Rather, it is delegated to trans-
formation rules from a platform-independent model (PIM) to a platform-specific model
(PSM). For example, the scrolling of an image gallery may be implemented as a link in an
HTML application and as a swipe gesture handler in a mobile phone application.

The effect of an event is represented by an interaction flow, which connects the
event to the ViewContainer or ViewComponent affected by the event. For example,
in an HTML web application the event produced by the selection of one item from a
list may cause the display of a new page with the details of the selected object. This
effect is represented by an interaction flow connecting the event associated with the list
component in a top-level ViewContainer (the web page) with the ViewComponent rep-
resenting the object detail, which is positioned in a different ViewContainer (the target
web page). The interaction flow expresses a change of state of the user interface. The
occurrence of the event causes a transition from a source to a target web page.

For example, in Figure 2.6 the “MailBoxList” ViewComponent shows the list of
available mailboxes and is associated with the “MailBoxSelection” event, whereby
the user can open the “MailBox” ViewContainer and access the messages of the
mailbox selected in the “MessageList” ViewComponent .

An event can also cause the friggering of an action, which is executed prior to
updating the state of the user interface. The effect of an event firing an action is rep-
resented by an interaction flow connecting the event to an action symbol (represented

14 CHAPTER 2 IFML in a Nutshell

Messages

«List»
MailBoxSelection
MailBoxList .

[XOR] MessageManagement

[D] MailBox MessageWriter

«List»

Messagelist

FIGURE 2.6
Example of interaction flow between ViewComponents.

by a hexagon). For example, in a mail management application, the user can select
several messages from a list and choose to delete them. The selection event triggers a
delete action, after which the ViewContainer is displayed again with an updated list.
The result of action execution is represented by an interaction flow that connects the
action to the affected ViewContainer or ViewComponent.

In Figure 2.7, the “Message toolbar” ViewContainer is associated with the events
for deleting, archiving, and reporting mail messages. Such events are connected by
a flow to an action symbol (a labeled hexagonal icon), which represents the business
operation. The outgoing flow of the action points to the ViewContainer displayed
after the action is executed; if the outgoing flow of an action is omitted, this means
that the same ViewContainer from which the action was activated remains in view (as
illustrated by the “Archive” and “Report” actions in Figure 2.7).

The model of Figure 2.7 does not express the objects on which the business actions
operate. Such an input—output dependency between view elements (ViewContainers
and ViewComponents) or between view elements and actions requires the specification
of parameter bindings associated with interaction flows. More specifically, two kinds
of interaction flows can host parameter bindings: navigation flows, which represent
navigation between view elements, and data flows, which express data transfer only
but are not produced by user interaction. Parameter binding rules are represented by
annotations attached to navigation and data flows, as shown in Figure 2.8.

In Figure 2.7, the “MessageToolbar” ViewContainer has an input parameter
“MessageSet” whose value is set to the messages selected from the “MessageList”
ViewComponent when the user triggers the “MessageSelection” event. Another
parameter binding rule is associated with the Delete, Archive and Report events; the
value of the “MessageSet” parameter is bound to the “InputMessages” parameter of
the triggered action.

2.3 Role of IFML in the Development Process 15

g
_ﬁ‘i

-

FIGURE 2.7

MailBox

Delete A\ MessageToolbar

Example of events triggering business actions.

MailBox

«List» MessageList

«OutputParameter»
SelectedMessages

MessageSelection

«ParameterBindingGroup»
SelectedMessages > MessageSet

Delete H\ MessageToolbar

«InputParameter» MessageSet

«ParameterBindingGroup»
MessageSet > InputMessages

FIGURE 2.8
Example of parameter bindings used for expressing input—output dependencies.

2.3 ROLE OF IFML IN THE DEVELOPMENT PROCESS

The development of interactive applications is typically managed with agile
approaches, which traverse several cycles of “problem discovery” / “design refine-
ment” / “implementation.” Each iteration of the development process generates
a prototype or a partial version of the system. Such an incremental lifecycle is

16

CHAPTER 2 IFML in a Nutshell

particularly appropriate for modern web and mobile applications, which must be
deployed quickly and change frequently during their lifetime to adapt to user require-
ments. Figure 2.9 schematizes a possible development process and positions IFML
within the flow of activities.

Requirements specification collects and formalizes the information about the
application domain and expected functions. The input is the set of business require-
ments that motivate the application development and all the available information
on the technical, organizational, and managerial context. The output is a functional
specifications document comprising:

¢ the identification of the user roles and of the use cases associated with each role;

e adata dictionary of the essential domain concepts and of their semantic relation-
ships; and

¢ the workflow embodied in each use case, which shows how the main actors (the
user, the application, and possibly external services) interact during the execu-
tion of the use case.

In addition, nonfunctional requirements must also be specified, including perfor-
mance, scalability, availability, security, and maintainability. When the application is
directed to the general public, requirements about the look and feel and the usability
of the interfaces assume special prominence among the nonfunctional requirements.
User-centered design practices that rely on the construction of realistic mock-ups
of the application functionality can be applied. These mock-ups can be used for the
early validation of the interface concepts and then serve as the basis for creating more
detailed and technical specifications during the front-end modeling phase.

Domain modeling® organizes the main information objects identified dur-
ing requirements specification into a comprehensive and coherent domain model.

X Architecture Design
Requirements

Specification

Domain Modelling

Front-end Modelling

Requirements
specifications

Implementation

|
! | 7._model
. | Y WA\

App7iéat/on

Maintainance

Testing and Evaluation and Evolution

Deployment

FIGURE 2.9

The role of IFML in the development process of an interactive application.

2.3 Role of IFML in the Development Process 17

Domain modeling specifies the main information assets identified during require-
ments specification into a domain model, which is a (typically visual) representa-
tion of the essential objects, their attributes and associations. The first conceptual
data modeling language, the Entity-Relationship model, was proposed in 1976, and
ever since new modeling languages have been proposed, including UML. At the
same time, modeling practices and guidelines have been consolidated; in particu-
lar, domain modeling for interactive applications exploits suitable design patterns,
discussed in chapter 3. The entities and associations of the domain model identified
during domain modeling are referenced in the front-end design models, to describe
what pieces of data are published in the interface.

Front-end modeling maps the information delivery and data manipulation func-
tionality dictated by the requirements use cases into a front-end model. Front-end
modeling operates at the conceptual level, where IFML comes into play. The designer
may use IFML to specify the organization of the front end in one or more top-level
view containers, the internal structure of each view container in terms of subcontain-
ers, the components that form the content of each view container, the events exposed
by the view containers and components, and how such events trigger business actions
and update the interface.

Business logic modeling specifies the business objects and the methods nec-
essary to support the identified use cases. UML static and dynamic diagrams are
normally employed to highlight the interfaces of objects and the flow of messages.
Process-oriented notations—such as UML activity and sequence diagrams, BPMN
process models, and BPEL service orchestrations—provide a convenient way to rep-
resent the workflow across objects and services. The actions specified in the business
logic design can be referenced in the front-end model to show which operations can
be triggered by interacting with the interface.

Data, front-end, and business-logic design are interdependent activities executed
iteratively. The precedence order of Figure 2.9 is only illustrative. In some organi-
zations, work could start from the design of the front end and the data objects and
actions could be discovered at a later stage by analyzing what information is pub-
lished in the interface and what operations are requested to support the interactions.

Architecture design is the process of defining the hardware, network, and soft-
ware components that make up the architecture on which the application delivers its
services to users. The goal of architecture design is to find the mix of these compo-
nents that best meets the application requirements in terms of performance, security,
availability, and scalability, and at the same time respects the technical and economic
constraints of the project. The inputs of architecture design are the nonfunctional
requirements and the constraints identified during business requirements collection
and formalized in the requirements specifications. The output may be any specifica-
tion that addresses the topology of the architecture in terms of processors, processes,
and connections, such as UML deployment diagrams.

Implementation is the activity of producing the software modules that trans-
form the data, business logic, and interface design into an application running on
the selected architecture. Data implementation maps the domain model onto one

|
18

CHAPTER 2 IFML in a Nutshell

or more data sources by associating the conceptual-level constructs with the logical
data structures (e.g., entities and relationships to relational tables). Business logic
implementation creates the software components needed to support the identified
use cases. The implementation of individual components may benefit from the adop-
tion of software frameworks, which organize the way in which fine-grain compo-
nents are orchestrated and assembled into larger and more reusable functional units
and also cater to nonfunctional requirements like performance, scalability, security,
and availability. Business logic may also reside in external services, in which case
implementation must address the orchestration of calls to remote components such as
web APIs (Application Programming Interfaces). Interface implementation trans-
lates the conceptual-level ViewContainers and ViewComponents into the proper con-
structs in the selected implementation platform. ViewContainers may interoperate
with business objects deployed either in the client layer or in the server layer.

Testing and evaluation verify the conformance of the implemented application
to the functional and nonfunctional requirements. The most relevant concerns for
interactive applications testing are:

* Functional testing: the application behavior is verified with respect to the func-
tional requirements. Functional testing can be broken down into the classical
activities of module testing, integration testing, and system testing.

» Usability testing: the nonfunctional requirements of ease of use, communica-
tion effectiveness, and adherence to consolidated usability standards are verified
against the produced front end.

e Performance testing: the throughput and response time of the application must
be evaluated in average and peak workload conditions. In case of inadequate
level of service, the deployment architecture, including the external services,
must be monitored and analyzed to identify and remove bottlenecks.

Deployment is the activity of installing the developed modules on top of the
selected architecture. Deployment involves the data layer, the software gateways to
the external services, and the business and presentation layer, where the interface
modules and the business objects must be installed.

Maintenance and evolution encompass all the modifications applied after the
application has been deployed in the production environment. Differently from the
other phases of development, maintenance and evolution are applied to an existing
system, which includes both the running application and its related documentation.

IFML models are the result of front-end design, but their production has impor-
tant implications for other development activities as well.

¢ Domain modeling may specify entities and associations whose purpose is to
aid the categorization and retrieval of the main business objects for a better user
experience. We discuss this practice in chapter 3.

* Business logic modeling identifies the available operations and defines their
possible outcomes and output, which affect the status of the interface. Chapter 6
discusses the interplay between front-end and business-logic modeling.

2.4 A Complete Example 19

¢ Implementation may exploit model transformations and code generation to produce
prototypes of the user interface or even fully functional code. In chapter 10
we discuss how to implement IFML models manually in some representative
software platforms, and then in chapter 11 we exemplify the automation of the
development activities achieved with model-driven tools.

e Testing and evaluation can be anticipated and performed on the IFML models
rather than on the final code. Model checking may discover inconsistencies
in the design of the front end (e.g., unreachable statuses of the interface) and
suggest ways to refactor the user interface for better usability (e.g., recommend
uniform design patterns for the different types of user interactions, such as
searching, browsing, creating. modifying, and deleting objects).

 Finally, maintenance and evolution benefit most from the existence of a conceptual
model of the application. Requests for changes are analyzed and turned into changes
at the design level. Then, changes at the conceptual level are propagated to the
implementation, possibly with the help of model-to-code transformation rules. This
approach smoothly incorporates change management into the mainstream produc-
tion lifecycle and greatly reduces the risk of breaking the software engineering
process due to the application of changes solely at the implementation level.

2.4 A COMPLETE EXAMPLE

As a conclusion to this brief introduction of IFML, we present a simple, yet com-
plete, example. The application is an online store where the user can browse prod-
ucts, such as books, music, and software, and add products to his shopping cart, as
shown by the UML use case diagram of Figure 2.10.

The application has a web front end. In the “Browse books” use case, the user
accesses a home page that contains a list of product categories. Clicking on a
product category such as “Books” leads to a page displaying the summary data
about all the items of that category. Clicking on a “See more” associated with
one item’s summary opens a page where the full details of the selected object are

'
i «include»
i

Manage
cart

FIGURE 2.10

Use cases of the Bookstore application.

20

CHAPTER 2 IFML in a Nutshell

On-Line Book Store

G Q x {} (http://wwwonlinebookstore.com/) @
098 On-Line Book Store

{\ Home W' Shopping Cort X Exit
/Categories

< XX

qus Music Software
\

AN 7
o98n On-Line Book Store

G Home < See Categories Wi Shopping Cart X Exit
Home/Categories/Books H

Standard QWE: A new modelling proposal .
o 082 On-Line Book Store
QWE is 0 mojor innovation in the field of . -

software develooment. It is ndeoendent of

seomeme /L‘_} Home 4 See Books Y& Shopping Cart X Exit
Ho Catego Books/Book 2
Grophic Interfaces: In the hands of the user
Description Standard QWE: A new modelling proposal
This book introduces, documents and Descripto:
exolons the imolications of 6 ooor desian in s gl e haiei
See more>> software development It is ndependent

of the organization of the software
implementation. Itis o highly abstroct
thinking tool that aids i the formalization
of knowledge, and is also a way of
Gescribing the concepts that make up

abstract solutions to software
Price: $44.9q Cevepmentprodiems

FIGURE 2.11
Mock-ups of the user interface supporting the “Browse books” use case.

presented. Figure 2.11 shows the mock-ups of the application front end supporting
the “Browse books” use case.

When looking at the details of an item, the user can press the “Add to cart” button
to add the item to his virtual shopping cart. A modal window appears where the user
can specify the quantity of goods he wants to purchase. After submitting the desired
quantity, a confirmation pop-up window is presented to acknowledge the addition of
the product to the cart. Figure 2.12 shows the mock-ups of the interface supporting
the “Manage cart” use case.

The IFML model of the Bookstore application contains the five ViewContainers
shown in Figure 2.13.

The ViewContainers are annotated with stereotypes (such as H, for “Home,” L
for “Landmark,” and “Modal” and “Modeless”) that further specify their properties.
These are discussed in chapter 4.

The ViewContainers definition is refined by specifying the ViewComponents they
comprise, as illustrated in Figure 2.14.

Interactivity is represented by adding the relevant events and specifying the
interaction flows they trigger, along with the parameter binding between the source
and the target components of the interaction flows. The model of Figure 2.15 shows
that the “CategoryList” ViewComponent supports an interactive event “SelectCat-
egory,” whereby the user can choose a category from the index. As a result, the

09e8n On-Line Book Store

{\Home See Books g Shopping Cort X Exit
Home/Categories/Books/Book 4]
Standard QWE: A new modelling proposal

Description
QWE is 0 major innovotion in the field of

2.4 A Complete Example

098 On-Line Book Store

softwore development It is independent
of the orgonization of the software
implementation. It is a highly abstract
thinking 100l that aids in the formalization
of knowledge, and is also a way of

C}Home 4 See Books)i Shopping Cart X Exit
me/Cat; es/Books/Book =

Home/Catego

Enter a quantity:

P—

Price: $44.99

escribing the concapts that maka up
abetroct solutions to softwors
Price: $44.99 Seveiopment prodlems. \’
FIGURE 2.12

098 On-Line Book Store

{{ Home 4 See Categories g Shopping Cart X Exit

roposal

Product added to cart
successfully!

Grophic Interfaces: In the hands of the user
Description
This book introduces, documents ond

‘exoloins the imolications of o ooor desian in

field of
bendent of

See more>>

21

Mock-ups of the user interface supporting the “Manage cart” use case.

[H] [L] ProductCategories

ProductOfCategory

ProductInformation

«Modal» Quantity

«Modeless» Confirmation

FIGURE 2.13

IFML ViewContainers of the Bookstore application.

“ProductOfCategory” page is displayed, and the “ProductList” ViewComponent
shows the items corresponding to the chosen category. The input—output depen-
dency between the “CategoryList” and the “ProductList” ViewComponents is rep-
resented by the parameter binding group, which associates the “SelectedCategory”
output parameter of the source component with the “Category” input parameter of
the target component. The same modeling pattern is used to express the interaction

22 CHAPTER 2 IFML in a Nutshell

[H] [L] ProductCategories ProductOfCategory ProductInformation

«List»
ProductList

«List»

«Details»

CategoryList Product

Details

TProduct

XX

Books. Music Software,

Price: $44.99

«Modal» Quantity «Modeless» Confirmation

«Details»
Q Accept Confirmation Close

«Form»

Quantity

Message

Enter o quantity: Product added to cart

s & ™

FIGURE 2.14
ViewComponents embedded in IFML ViewContainers, with their mock-up renditions.

[H] [L] ProductCategories ProductOfCategory ProductInformation

«List»
ProductList v

«List»

SelectCategory
CategoryList(«/

lectProduct «Details»
Product

S

@

A\ 4

/ Details
/
/
/
//
/ /
«ParameterBindingGroup> «ParameterBindingGroup»
SelectedCategory > Category SelectedProduct > Product

FIGURE 2.15
IFML events and interaction flows of the “Browse books” use case .

for selecting a product from the “ProductList” component and then accessing its
data in the “ProductDetails” component.

Some event may trigger the execution of a piece of business logic. As an example,
Figure 2.12 and Figure 2.16 show the activation of an action for inserting items in
the shopping cart. After the user presses the “Add to cart” button associated with
the “ProductDetails” component, a modal window appears asking for the quantity
of items desired. The quantity submission event triggers the execution of the “Add

2.5 Summary of the Chapter 23

«ParameterBindingGroup»
DisplayedProduct - Product

«Modeless» Confirmation
«Details» | «Form» -
AddToCart «Details»
Igosaglct > Quantity > Addrtto D Confirmation
EENS (& Message

«ParameterBindingGroup>»
Quantity > Qty

|
|
Product | «Modal» Quantity
T
|

FIGURE 2.16

IFML events and interaction flows of the “Browse Products” use case.

to cart” action. The “Quantity” value from the Form ViewComponent and the
“DisplayedProduct” parameter from the ‘“ProductDetails” ViewComponent are
submitted as input parameters to the “Add to cart” action. Once the action is com-
pleted, a confirmation window is displayed.

Notice that the binding of the “Quantity” output parameter is associated with
an interaction flow, which denotes the effect of a submit event that requires the
user’s interaction. Conversely, the binding of the “DisplayedProduct” param-
eter is associated with a data flow, which merely expresses an input—output
dependency automatically performed by the system and not triggered by a user’s
interaction.

2.5 SUMMARY OF THE CHAPTER

In this chapter we have provided a bird’s-eye view of IFML. First, we positioned its
concepts in the software architecture of an interactive application by referring them
to the elements of the Model-View—Controller design pattern. We then summarized
the essential concepts of the language: interfaces are modeled as one or more View-
Containers, possibly nested hierarchically; ViewContainers comprise ViewCompo-
nents that enable content display and data entry; and interactivity is expressed by
Events associated with ViewContainers and ViewComponents, whose effect on the
interface is denoted by InteractionFlows that connect the event to a ViewContainer, a
ViewComponent, or an Action. The latter express a business operation triggered from
the user interface. ViewContainers, ViewComponents, and Actions may have param-
eters. In this case, the input—output dependencies between them are represented by
parameter bindings associated with the InteractionFlows. These concepts have been

24

CHAPTER 2 IFML in a Nutshell

illustrated in a small, yet complete, example. The chapter has also highlighted the
role and benefits of IFML in the application development cycle.

2.6 BIBLIOGRAPHIC NOTES

Model-driven engineering basic principles are covered by various books, including
[BCW12]. Domain-specific modelling (DSM) is thoroughly discussed in the books
[KellyO8] and [Voelter13], which underline the motivations for adopting a higher
level of abstraction in the development of applications, discuss the design principles
and architecture of DSM, and contain several use cases that illustrate the approach
in practice.

The processes and modeling language for web applications—a special class of
interactive applications—have been addressed by James Conallen, who adapted
UML and the Rational Unified Process to the specific context of web application
development [Conallen99, Conallen00]. The resulting method includes the activi-
ties of requirements gathering, analysis, design, implementation, testing, deploy-
ment, configuration, and change management. In the design phase, ad hoc UML
stereotypes are used to describe the components of web pages. In this way, page
design is made visual according to one of the basic principles of the Rational Unified
Process. A more recent textbook on web application modeling and code generation
is [BBCO3], which introduces the Web Modeling Language, a conceptual language
similar to IFML but specifically tailored to web application development. The book
presents a comprehensive method applied to a real-world use case and discusses the
architectures and tools for code generation.

END NOTES

1. See, e.g., http://en.wikipedia.org/wiki/Mode-view-controller/.

2. By “interactor” we mean any interface widget that supports user interaction, such as a but-
ton, a link, or a check box.

3. “Domain modeling” is the locution normally employed in object-oriented method, whereas
conceptual database design normally refers to “data modeling.”

http://en.wikipedia.org/wiki/Mode-view-controller/

CHAPTER

Domain modeling

The goal of domain modeling is the specification of the relevant information assets
that constitute the application domain in a formal yet comprehensible and readable
way. The activity of domain modeling produces a domain model, also called a con-
ceptual schema by database designers. This embodies the available knowledge about
the relevant concepts, their properties and relationships, and, in object-oriented mod-
eling, the operations applicable to them. The reason why a book on interface model-
ing contains a chapter on domain modeling is that the interface model must refer to
the objects that provide content to be published in the application front end. Further-
more, events triggered within the interface may cause the execution of operations,
which may update objects and change the status of the interface.

Thus, domain modeling naturally interplays with the modeling of the business
logic and of the front end of the application. The produced domain model also
drives the implementation of the physical structures for data storage, update, and
retrieval.

Domain modeling is one of the most consolidated disciplines of information
technology. The resulting domain model can be regarded as a content model, which
emphasizes the description of the information assets used by the application.

Many languages and guidelines have been proposed and are now consolidated for
domain modeling. For this reason, we do not propose yet another domain modeling
language but instead exploit UML class diagrams. The motivation for this choice is
that IFML is an OMG standard based on UML, and thus using class diagrams makes
one notation fit both domain and front-end modelling. As a more familiar alterna-
tive to UML class diagrams, information system and database designers may use
the Entity—Relationship (E-R) model, which focuses only on entities, attributes, and
relations but disregards the operations supported by objects. For the sake of express-
ing most IFML patterns illustrated in this book, only the UML class diagram features
that are also present in the E-R model are necessary, and thus the two modeling
languages can be considered almost equivalent.

The essential ingredients of the domain model in UML are classes, defined
as blueprints abstracting the common properties of objects (also known as class
instances), and associations, representing semantic connections between classes.
Classes are characterized by typed attributes and by the operations applicable to their
instances. Classes can also be organized in generalization hierarchies, which express
the derivation of a specific concept from a more general one and imply inheritance
of properties and behavior. Associations are characterized by multiplicity constraints

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00003-5
Copyright © 2015 Elsevier Inc. All rights reserved.

25

|
26

CHAPTER 3 Domain modeling

Category Product

FIGURE 3.1

Graphic notation for classes.

that impose restrictions on the number of association instances in which an object
may take part.

This chapter introduces the essential domain modeling concepts sufficient to
specify the domain model of an interactive application. Examples are represented
using UML notation. The bibliographic notes at the end of the chapter mention sev-
eral textbooks on data and domain modeling in which the reader can find further
examples and discussions of advanced data modeling constructs.

3.1 CLASSES

Classes are the central concept of the domain model.

CLASS

A class represents a description of the common features of set of objects of the real world. Exam-
ples of class are Person, Car, Product, and MailBox.

A class has a population, which is the set of objects that are described by the class.
These objects are also called the instances of the class. For example, the population
of class Person is a specific set of persons, while the population of class Car is a
specific set of cars.

As is the case for all the concepts of the domain model, classes are specified using
a graphical notation. They are denoted by means of rectangles with the class name at
the top. Figure 3.1 shows two classes: “Category” and ‘“Product.”

3.2 ATTRIBUTES

Classes are further specified by means of attributes, which are the properties com-
mon to all instances of the class.

ATTRIBUTE

Attributes are the properties of objects that are relevant for application purposes. Examples
of attributes are the name, address, and photo of a person. Attributes have values, which are
typed.

In other words, the class is a descriptor of the common properties of a set of
objects, and such properties are expressed as typed attributes.

3.3 Identification and Primary Key 27

Category Product
Name Code
Name
Description
Image
Price

FIGURE 3.2
Graphic notation for classes and attributes.

Class instances are allowed to have null values for one or more attributes. How-
ever, a null value may represent different modeling situations and raises ambiguities
in the interpretation of the properties of an instance:

* A null value may denote that a certain attribute does not apply to a specific class
instance (for example, the driving license number for persons without a driving
license).

* A null value may denote that the value of a certain attribute is unknown for a
specific class instance (for example, the age or the marital status of a person).

Attributes are graphically represented inside the class box below the class name,
as shown in Figure 3.2. In the example, the class “Category” is characterized by
attribute “Name,” and class “Product” by attributes “Code,” “Name,” “Description,”
“Image,” and “Price.”

3.3 IDENTIFICATION AND PRIMARY KEY

UML follows the object-oriented assumption that all the instances of a class are distin-
guishable by means of an internal identifier, which need not be specified explicitly in the
class diagram. However, in information system and database modeling, it is customary to
highlight domain attributes that are human readable and can be used to identify objects
because they have unique values across the entire class population. Such attributes are
called primary keys and have an important role in denoting objects in the user interface
and in retrieving information about selected objects from the database.

PRIMARY KEY

A primary key is an attribute that can be used to identify the instances of the class uniquely. Exam-
ples of primary keys are the plate number of a car and the Social Security Number of a person.

A composite primary key is a set of attributes that can be used to identify the instances of the
class uniquely. An example can be the pair code and year of delivery of an academic course.

Primary key attributes must satisfy a few restrictions not required for regular attributes.
Their value must be not null for every instance of the class and unique, which means that

28

CHAPTER 3 Domain modeling

there should not exist two class instances with the same value for the key attributes. UML
does not provide a specific notation for expressing key attributes. One option is to add an
OCL constraint to the relevant attribute, to denote that its value is not null and unique.
An example of such an OCL statement could be the following, which forces attri-
bute “code” of class “Product” to be not null and unique (i.e., it must be a key):

Context Product
self.code <> null and Product.allInstances() -> forAll(cl,c2 | cl
<> c2 implies cl.code <> c2.code)

An effective way to handle the specification of key constraints is to create a UML
stereotype of the general concept of attribute or of attribute group and associate the
OCL constraints with such a stereotype so that it can be managed by any standard
UML tool. An example of such notation is the addition of the «<PK» stereotype to the
primary key attributes.

In the rest of this book, we will use the convention of prefixing with «PK» the
primary key attributes in class diagrams and assume that the implicit identity attri-
bute of class instances is represented by an “OID” (object identifier) attribute, which
is defined for all classes and thus can be omitted from the domain model diagrams.

Figure 3.3 shows the classes “Category” and “Product” completed with the speci-
fication of primary keys. Attribute “Name” is a key of class “Category,” while the
attribute “Code” is a key for class “Product.”

OCL, which we have employed for expressing the key constraint, is a general-purpose
textual language adopted as a standard by the OMG! for defining calculation rules and
constraints on top of the basic UML models semantics. The language is typed, declara-
tive, and side effect-free. Typed means that each OCL expression has a type, evaluates to a
value of that type, and must conform to the rules and operations of that type. Declarative
means that OCL does not include imperative constructs. Side effect-free implies that OCL
expressions can query or constraint the state of the modeled system but not modify it.

OCL statements defining constraints are invariants embedded in the context of a
specific type (e.g., a class or an association) called the context type of the constraint.
The body of an OCL constraint is a Boolean condition that must be satisfied by all
the instances of the context type.

The standard OCL library predefines the primitive and collection-related types (and
their operations) that can be used in the definition of an OCL expression, together with
quantifiers (such as for all and exists) and iterators (select, reject, closure, etc.). Access to

Category Product
«PK» Name «PK» Code
Name
Description
Image
Price

FIGURE 3.3

Notation for primary keys in class diagrams.

3.4 Attribute Type and Visibility 29

the properties of an object and navigation from an object to its related objects (via asso-
ciations) is expressed using the dot notation, as shown in Figures 3.14 and 3.15.

Although we use OCL extensively in the examples throughout the book, the
detailed explanation of all the features of the language is outside the scope of the
book. The bibliographic notes provide hints for further readings on OCL.

3.4 ATTRIBUTE TYPE AND VISIBILITY

Attributes must be typed, which means that they assume values from well-defined
domains (e.g., the set of integer or floating point numbers). Expressing attribute types
in the domain model is good practice for making the specification more expressive
and for driving implementation.

In the sequel, we assume that class attributes are associated with the usual data
types supported by most programming languages and database products. Such data
types may include string, text, integer, float, date, time, boolean, enumeration, blob,
are url. The meanings of these types are summarized in Table 3.1.

Attribute types can be represented in class diagrams by means of a label posi-
tioned besides the attribute declaration in the class box. Figure 3.4 shows the classes
“Category” and “Product” with the attributes types specified.

Table 3.1 Typical built-in data types

Data type Description
string A “short” sequence of characters
text A “long” sequence of characters
integer An integer numerical type
float A floating point numerical type
date A calendar date
time A temporal instant of time
boolean A true or false value
enumeration A sequence of user-defined values
blob A binary large object, for example an image or a video, which must
be handled in a special way because of its size. Blob types can be
further refined by expressing their MIME type (for example image/gif)
url A uniform resource locator of a web resource
Category Product
«PK» Name: string «PK» Code: integer
Name: string
Description: text
Image: blob
Price: float
FIGURE 3.4

Graphic notation for attribute types.

30

CHAPTER 3 Domain modeling

Attributes are associated with access modifiers that denote their visibility. Access
qualification is denoted by a symbol prefixing the attribute name, which can be:

e (+) the attribute is public, that is, visible globally;

e (-) the attribute is private, that is, visible only from objects of the owning class;

* (#) the attribute is protected, that is, visible only from objects of the owning
class or of classes derived from it; or

e (~) the attribute has package visibility, that is, only objects of the classes in the
same package can access it.

In classic object-oriented design, the general practice is to define class attributes
as private and then specify access to them through appropriate getter and setter meth-
ods, as described in Section 3.5. Conversely, in information system and database
modeling, visibility of attributes is not normally specified at the class level, as it is
assumed that the domain model represents the available data objects and access is
controlled at a global level, for example, by means of database permissions. In the
rest of the book we follow the database approach and assume all attributes in the
domain model to be public by default. This assumption simplifies the reference to
content in the interface model, because it allows one to use attribute names directly
rather that getter and setter methods.

3.5 OPERATIONS

In object-oriented modeling, classes are not only containers of information but also
allow the specification of behavior, which is expressed by their operations.

OPERATION

Operations represent the actions allowed on the objects of a class. They are described by a name, a
return value, and a (possibly empty) set of parameters.

Operations’ parameters and return values are typed just as attributes are. Opera-
tions also have visibility, which can be public, private, protected, or package.

Examples of operations for a class “Product” are “buy,” “applyDiscount,” and
“bundle.” Besides operations that denote business actions, classes typically com-
prise operations for handling the access to the attributes in read and write mode.
Setter methods are the operations that assign values to class attributes, whereas
getter methods are those used to extract the value of an attribute. Furthermore,
classes include constructors, which are operations for creating new instances of
a class. Figure 3.5 shows the UML notation for representing operations in class
diagrams.

As done for the implicit OID attribute of objects, we do not explicitly represent
constructors, getters, and setters in the domain model and assume that they exist for
all classes.

3.6 Generalization Hierarchies 31

Product
Category «PK» Codfe: integer
Name: string
«PK» Name: string Description: text
Image: blob
setName(string) Price: float
addProduct(Product) N tri
removeProduct(Product) s€ amg(s .rmg)
setDescription(text)

setPrice(float)
addToCart(Cart)

FIGURE 3.5
Representation of operations in class diagrams.

3.6 GENERALIZATION HIERARCHIES

The domain model allows the designer to organize classes into a hierarchy to high-
light their common features.

GENERALIZATION

A generalization hierarchy (also called is-a hierarchy) connects a superclass and one or more
subclasses, representing a specialization of the superclass. The hierarchy can be multilevel, because
a subclass can in turn be a superclass of other subclasses.

Each subclass inherits the features (attributes, operations, and associations) defined
in the superclass and may add locally defined features. For example, Figure 3.6 speci-
fies that “Laptop” and “Tablets” are subclasses of class “Computer.” “Laptop” has
the additional attribute “HDinterface,” denoting the type of hard disk interface, and
“Tablet” has the additional attribute “Connectivity,” denoting the type of connectivity
(WiFi, 3G, or 4G). We say that “Computer” is specialized into “Laptop” and “Tablet,”
and conversely that “Laptop” and “Tablet” are generalized into “Computer.”

When domain modeling has the purpose of specifying the persistent classes
that form the data tier of an application, it is customary to assume a few restrictive
hypotheses that simplify the form of generalization hierarchies and make them more
easily implementable with conventional database technology.

1. Each class is defined as the specialization of at most one superclass. In technical
terms, “multiple inheritance” is avoided.

2. Each instance of a superclass is specialized exclusively into one subclass.

3. Each class appears in at most one generalization hierarchy.

These restrictions reduce the expressive power of the domain model. For example,
due to the first two constraints, an instance of class “Computer” cannot be a “Tablet”
and a “Laptop” at the same time. However, a similar meaning can be conveyed by

32 CHAPTER 3 Domain modeling

Computer

«PK» Brand
«PK» Model

RAM
Processor
Laptop Tablet
HDinterface Connectivity

FIGURE 3.6
Graphic notation for IS-A hierarchies.

Computer

«PK» Brand
«PK» Model

RAM
Processor
Laptop Convertible Tablet
HDinterface Connectivity Connectivity
HDinterface

FIGURE 3.7

Generalization hierarchy approximating the use of multiple inheritance and nonexclusive
specialization.

the diagram of Figure 3.7, which specializes class “Computer” into three subclasses:
laptops, tablets, and convertibles. With this solution, the locally defined attributes of
class “Laptop” and “Tablet” must be duplicated in class “Convertible.”

3.7 ASSOCIATIONS

Classes do not exist in isolation but exhibit semantic connections to other classes
called associations.

ASSOCIATION

An association represents a semantic connection between the objects of classes. Examples of
associations are the connection between a product and the category to which it belongs or between a
product and its accessories.

3.7 Associations 33

Accessory Options Product

FIGURE 3.8
Graphic notation for associations.

The meaning of the association is conveyed by the association’s name, which is
established by the designer. For example, the association between a product and the
accessories available for it could be named “Options.” The simplest form of associa-
tion is the binary association, which connects two classes. Associations involving
more than two classes, called N-ary associations, are also allowed. However, N-ary
associations are more complex to understand and may raise subtle interpretation
issues [GLMO1]. In most cases, they can be equivalently replaced by multiple binary
associations, as explained in Section 8.

Figure 3.8 shows the UML notation for associations, applied to the “Options”
relationship between class “Product” and class “Accessory.”

Each binary association is characterized by two association ends (also called
association roles), each one expressing the function that one class plays in the asso-
ciation. For example, the association “Options” between an accessory and a product
can be decomposed into two association roles, one from product to accessory, named
“accessories,” and one from accessory to product, named “product.”

An association role/end can be regarded as the interpretation of the association
from the viewpoint of one of the involved classes, that is, as an oriented connection
between a source class and a destination class.

Association ends can be enriched with multiplicity constraints in terms of lower
and upper bounds, denoting respectively the minimum and maximum number of
objects of the destination class to which any object of the source class can be related.

* Relevant values for the multiplicity lower bound are zero or one. An associa-
tion is said to be optional for its source class if the multiplicity lower bound is
zero, and mandatory otherwise. Mandatory associations introduce existential
dependencies between classes, because an object of the source class cannot exist
without being associated with at least one object of the destination class.

* Relevant values for multiplicity lower bound are one or many. The latter option
can be denoted as “*” (or as “N” in other notations such as E-R).

Based on their multiplicity constraint upper bound, associations are called “one-
to-one” if both association ends multiplicity upper bound equals 1, “one-to-many” if
one association end has multiplicity upper bound 1 and the other one has multiplicity
upper bound N, or “many-to-many” if both association ends have multiplicity upper
bound N.

In UML, multiplicity constraints are expressed by annotating the association
ends with multiplicity indicators. Figure 3.9 shows how to represent association role
names and multiplicity constraints: an accessory is associated with multiple prod-
ucts (multiplicity 1..*, placed at the side of class “Product”), and each product may
be associated with several accessories (multiplicity 0..*, placed at the side of class

34

CHAPTER 3 Domain modeling

Accessory Options Product

0..* 1.*
CompletedBy Completes

FIGURE 3.9
Graphic notations for association roles and multiplicity constraints.

“Accessory”). The role from “Accessory” to “Product” is mandatory, while the role
from “Product” to “Accessory” is optional. The association is “many-to-many,”
because it connects one product to multiple accessories and one accessory to mul-
tiple products.

Association end names can be omitted from the diagram for better readability. In
this case we assume default names as follows:

e An association end from class “A” to class “B” with multiplicity upper bound 1
is named by default after the name of the class in singular form.

* An association end from class “A” to class “B” with multiplicity upper bound *
is named by default after the name of the class in plural form.

Defaults are not used when there is ambiguity, for example, when multiple asso-
ciations exist between the same two classes or an association relates a class to itself.
Figure 3.9 exemplifies the naming conventions assumed as default; thus the associa-
tion end names could be omitted without ambiguity from the class diagram.

3.8 N-ARY ASSOCIATIONS AND ASSOCIATIONS WITH
ATTRIBUTES

Most domain modeling languages, including UML, admit the specification of associ-
ations involving more than two classes, called N-ary associations, and of associations
with attributes, represented with association classes. However, these constructs are
less intuitive than binary relationships and also raise interpretation problems, such as
those related to the meaning of multiplicity annotations [GLMO1].

However, it is well known from the data modeling field that both these constructs
can be represented using a combination of classes and binary associations. This
practice requires slightly more modeling effort but makes the diagram interpretation
more intuitive.

Figure 3.10 and Figure 3.11 show the representation of N-ary associations (actu-
ally ternary, for the sake of illustration) with equivalent binary associations and
classes.

An N-ary association is equivalent to one “central” class and N binary associa-
tions connecting the central class to the participant classes of the N-ary association
(Figure 3.10). Multiplicity constraints for the central class of the binary association
have both upper and lower bounds equal to 1 to express the fact that an object of the
central class must be connected to exactly one object of each one of the other classes.

3.8 N-ary Associations and Associations with Attributes 35

ClassA ClassB ClassA ClassB

1.1 1.1
ClassABC
1.1
ClassC ClassC
FIGURE 3.10
N-ary associations as a primitive construct (left) and as binary associations and classes
(right).
Supplier
SupplierName
Part 11 Department
PartNumber DeptCode
1.1 1.1
0.*
0..* 0.*
Supply
FIGURE 3.11

A ternary association, represented by the class “Supply” plus three binary associations.

This is done because it does not correspond to an object in the real world but is sim-
ply an artifact denoting the connection of N real world objects.

For example, the diagram in Figure 3.11 represents the supply of parts by suppli-
ers to the departments of a company, which is a ternary association representable by
means of three binary associations. Class “Supply” is the central class, which is con-
nected to exactly one instance each of classes “Part,” “Supplier,” and “Department.”

A (binary) association with attributes is equivalent to one “central” class con-
nected by two binary associations to the participant classes of the association with
attributes (Figure 3.12). As in the case of N-ary associations, multiplicity constraints
of the binary associations must have both upper and lower bounds equal to 1 for the
central class to express the fact that an object of such class must be connected to
exactly one object of each of the other two classes, because it does not correspond to
an object of the real world, but is a notation for denoting the attributes relevant to the
connection of two real world objects.

36 CHAPTER 3 Domain modeling

ClassA
AB

1.1
Attributel
T

ClassA : ClassB ClassAB
‘ Attributel

1.1
ClassB

FIGURE 3.12

Association with attributes expressed with an UML association class “AB” (left) and an
equivalent model using only binary associations and classes (right).

Exam ion

St — XamSessio
Date

Name 1.1 o.x | Grade 0.* 1.1 | Course

FIGURE 3.13

An association with attribute, represented by the class “Exam.”

For example, the grade taken by a student in a given exam session could be rep-
resented using an association between the classes “Student” and “ExamSession,”
with an attribute “grade.” The same situation can be equivalently modeled by replac-
ing the association with attribute with a class “Exam,” with an attribute “grade.”
The “Exam” class represents an individual exam taken by a student during an exam
session. The resulting domain model, consisting solely of classes and associations
without attributes, is represented in Figure 3.13.

N-ary associations with attributes are treated similarly: one central class is cre-
ated, the association attributes are added to it, and then N binary associations are
created between the central class and the other involved classes.

3.9 DERIVED INFORMATION AND THE OBJECT CONSTRAINT
LANGUAGE (0OCL)

In domain modeling, it may happen that the value of some attribute or association of
a class can be determined from the value of some other elements of the model. For
instance, the price after taxes of an article may be computed as the product of the
price before taxes and the VAT, and the tracks published by an artist can be computed

3.9 Derived Information and the Object Constraint Language (OCL) 37

Product

«PK» Code

Descritpion

Price

Discount

/DiscountedPrice {Price*Discount}
/NumberOfAccessories {self.CompletedBy->size()}

FIGURE 3.14

Derived attributes.

by “joining” all the albums published by the artist to the tracks contained in each
album. Attribute and associations that can be calculated are called derived.

UML includes a standard notation for characterizing attributes and associations
as derived, and a language for expressing their computation rule.

* An attribute or association is denoted as derived by adding a slash character
(“/”) in front of the attribute or association name.

* The computation rule that defines the derived attribute or association is specified
as an expression added to the declaration of the attribute or association.

Figure 3.14 shows two examples of derived attributes. Among its attributes,
class “Product” includes two regular attributes, “Price” and “Discount,” and two
derived attributes: “/DiscountedPrice,” computed as the value of the expression
(Price*Discount), and “/NumberOfAccessories,” computed as the values of the
expression self.accessories -> size(). This expression counts the number of acces-
sories associated with a product according to the “accessories” association role. The
subexpression self.accessories is an example of path-expression, which is used for
accessing the objects of an association owned by an object.

Figure 3.15 shows an example of derived association. Class “Product” is associ-
ated with class “Producer” by a derived association “/BrandedAccessories,” which
is the concatenation of the two associations between a product and its accessories
and between an accessory and the company that produces it. The derivation rule is
expressed on one of the two association roles by means of a path expression. In the
example, the derivation rule is applied to the association role from class “Product”
to class “Producer,” and is formally specified by adding the OCL constraint to the
role declaration:

context Product::BrandsOfAccessories:Set(Producer)
derive: self.accessories.producer

The examples of Figures 3.14 and 3.15 are formulated using the Object Constraint
Language (OCL), which is the standard way for expressing constraints and derived
information in UML. The use of OCL in domain modeling is important because it

38

CHAPTER 3 Domain modeling

Product 1. /BrandedAccessories 0.% Company
BrandsOfAccessories
{self.CompletedBy.ProducedBy}
FIGURE 3.15

Derived association.

permits the designer to convey more of the semantics of the application domain than
would be possible with native UML constructs only, which are limited to simple
restrictions such as visibility and multiplicity constraints.

3.10 DOMAIN MODELING PATTERNS AND PRACTICES

When designing the domain model for an interactive application that offers function-
alities for data publication and management, some recurrent patterns and best prac-
tices can be exploited. They come from recognizing the role that information objects
play in the application. Such roles can be summarized as follows:

Core objects: These are the essential assets managed by the application that form
the backbone of the domain model, around which the rest of the data schema is
progressively built. Each core concept may require more than a single class to be
represented, due to the presence of complex properties and internal components.
For this reasons, core concepts become core submodels, which are sets of classes
correlated by associations, collectively representing one core concept.
Interconnection objects: These stem from the semantic associations between
core concepts. In an interactive application they are used to construct links and
indexes for navigating from one object to a related one. In the domain model,
interconnection objects are denoted by associations between core classes that
express the desired semantic connections.

Access objects: These are auxiliary objects facilitating the construction of

access mechanisms for optimizing the ease of use and effectiveness of the appli-

cation in various ways:

* by representing relevant categorizations over core objects, which can be used
to express index hierarchies, progressively leading the user to the desired
core objects;

* by providing more precise keyword-based search mechanisms focused on
well-defined categories of core objects; and

* by clustering representative core objects into meaningful clusters, like the
“pick of the day” or the “most popular objects.” These collections offer the
user a preview of the most interesting core objects.

Access objects are normally mapped into classes connected to the core classes

by associations or specialization links. In the case of access objects, it is more

3.11 The Process of Domain Modeling 39

appropriate to speak of access subschemas, because the same core object may
be categorized or specialized in different ways, using multiple categorizing
classes, associations, and specialized subclasses.

* Personalization objects: These are used to incorporate into the data model the
relevant properties of the user needed for personalization purposes. For exam-
ple, classes may be used to model user profile data and the groups in which the
users participate, and associations may be used to connect the user and group
classes to other classes in the application domain to represent aspects like object
ownership or personal preferences. Groups can also denote roles played by the
users, as is customary in role-based access control (RBAC) for regulating the
access to the core objects.

The distinction between the different roles played by the classes and associations
must take into account the application domain and the mission of the specific appli-
cation. For instance, in an e-commerce web site for selling books, the author con-
cept associated with the book concept could be considered either as a piece of core
content or just as a property of books, not deserving the status of a core concept. A
concept is core if it independently contributes to the achievement of the application’s
mission. In the book selling example, authors may qualify as core concepts if the site
offers also information about authors, irrespective of books. In this case, the designer
should treat authors as first-class objects, and, for example, publish their biography,
interviews, and so on. As another example, the profile data about users are auxiliary
content used for personalization in most e-commerce applications. Conversely, in a
social network, data about people are the main asset, and profile data are the core
content of the application.

3.11 THE PROCESS OF DOMAIN MODELING

The domain modeling process can be naturally structured as an incremental and
iterative activity. Starting from an initial nucleus—typically consisting of the most
important core concepts—the domain modeler can progressively extend the model
by applying refinement operations:

¢ Adding a new core subschema or enriching an existing core subschema by
detailing the internal properties and components of a core concept.

¢ Adding an interconnection subschema by drawing associations between core
classes that express the semantic relationships between core concepts.

¢ Adding an access subschema by introducing a categorization class and connect-
ing it to a core class, or by specializing a core class using a subclass that denotes
a special collection.

¢ Adding a personalization subschema by introducing the user and role class,
defining their properties, and connecting them to the core objects to express
user- or role-related preferences and personal objects.

40

CHAPTER 3 Domain modeling

Access sub-schema

\
P B Y
C CoreEntity2 /Y S 3

\r——-pF—=
Y D

CoreEntityl

FIGURE 3.16
Data schema highlighting access, core, connection, and personalization subschemas.

Following the above domain modeling guidelines produces a domain model with
a more regular structure, which is decomposed into modules with a well-identified
purpose, as shown in Figure 3.16:

3.11.1 DESIGNING THE CORE SUBSCHEMA

The process of defining a core subschema from the description of the core concepts
identified in the data requirements analysis is straightforward:

1. The core concept is represented by a class (called core class).

2. Properties with a single, atomic value become attributes of the core class. The
identifying properties become the primary key of the core class.

3. Properties with multiple or structured values become internal components of the
core class.

Internal components are represented as classes connected to the core class via
a part-of association. Two cases are possible, which differ in the multiplicity con-
straints of the association connecting the component to the core class:

1. If the connecting association has a 1:1 multiplicity constraint for the com-
ponent, the component is a proper subpart of the core concept. In this case,
no instance of the internal component can exist in absence of the core class
instance it belongs to, and multiple core objects cannot share the same instance
of the internal component. Internal components of this kind are sometimes
called “weak classes” in data modeling terminology, or “part-of components” in
object-oriented terminology.

3.11 The Process of Domain Modeling 41

CoreClass

0..*

Componentl Component2 Component3

FIGURE 3.17
Typical core subschema.

2. If the association between the core class and the component has 0:* multiplic-
ity for the internal component, the notion of “component” is interpreted in a
broader sense. The internal component is considered a part of the core concept,
even if an instance of it may exist independently of the connection to a core
class instance and can be shared among different core objects. Nonetheless, the
internal component is not deemed an essential data asset of the application and
thus is not elevated to the status of a core concept.

Figure 3.17 illustrates the typical domain model of a core subschema, including
one core class, two proper nonshared internal components, and one shared component.
Note that a shared component may be part of one or more concepts, but it is not
treated as an independent object for the purpose of the application. Such a consid-
eration is useful for building the front-end model, which should present or manage
components as parts of their “enclosing” core concepts and not as standalone objects.

3.11.2 DESIGNING AN INTERCONNECTION SUBSCHEMA

Interconnection subschemas are patterns of associations introduced in the domain model
for expressing semantic relationships between core objects, as illustrated in Figure 3.18.

At the two extremes, it is possible that all core concepts are related, which pro-
duces a completely connected graph of associations, or that all the core concepts of
the application are unrelated. In the latter case, the interconnection subschema is
empty, and the core concepts are isolated.

3.11.3 DESIGNING AN ACCESS SUBSCHEMA

Access subschemas are patterns of classes and associations that support the loca-
tion and selection of core concepts. Identifying the needed access subschemas is
less straightforward than identifying the other classes of subschemas. Hints as to
the presence of access concepts can be found in the use case inventory, by carefully
reviewing how users locate their objects of interest. An access subschema consists of
two kinds of classes: categorizing classes and specialized subclasses.

42

CHAPTER 3 Domain modeling

CoreClass1

0.* 0.*
CoreClass2 CoreClass3

FIGURE 3.18

Typical connection subschema.

1. A categorizing class is a class connected via an association to a core class that
plays the role of the categorized class, with the purpose of superimposing a
classification hierarchy over the instances of the core class. For example, in an
online portal application, the published news can be classified into categories by
introducing a “NewsCategory” class into the domain model, with the role of cat-
egorizing class, and associating it to the class “Newsltem,” which plays the role
of the categorized class.

2. A specialized subclass is a class connected by an “is-a” association to a core
class. The instances of this subclass share some common property that distin-
guishes them from the general case and can be exploited for facilitating access.
Examples of this way of grouping special instances are commonly found in web
applications and social networks in the form of “highlighted items,” like editor’s
choices, specials of the day, recent news, and popular topics. In this case, the
subclass denotes the restricted subgroup of instances of the superclass that are
selected as members of the special collection.

Figure 3.19 pictorially represent a “canonical” access schema. A central
class, labeled “Core,” represents the core concept, and is surrounded by two
classes representing access concepts, labeled “Access1,” and “Access2,” which
denote alternative categorizations. The diagram contains also a subclass, labeled
“SpecialCollection,” which denotes a collection of representative core concepts.

Note that categorical concepts are treated as classes and not only as an inter-
nal property of the categorized class, because they may themselves store sev-
eral pieces of information, like a representative image or some descriptive text,
which illustrates the common features of core objects belonging to the category.
The organization of categorical concepts can reflect the following three recurrent
patterns:

» Categorical concepts can themselves be categorized, resulting in a hierarchy of
categorizations. For example, hardware products can be classified by category

3.11 The Process of Domain Modeling 43

Accessl Access2

1.1 1.1

1.% 1.*
Core

SpecialCollection

FIGURE 3.19
Typical access subschema.

(a) (b) (c)

Category
1.1 Topic Tag Country
0..*
Family 0.* 0..* 1.1 1.1
1.1 0.2 o o o
o* Post News Product |
Product ‘
FIGURE 3.20

Three forms of categorization: hierarchical (a), multiple (b), and shared (c).

(computers or peripherals), then by family (PCs, servers, and laptops), then by
commercial brand, and so on (Figure 3.20a).

* The same core concept may be subject to more than one categorization, provid-
ing multiple classifications. For example, blog posts may be organized by topic
and by user generated tags (Figure 3.20b).

» Finally, the same categorical concept can be used to classify more than one core
concept, resulting in a shared categorization. For example, the class “Country”
may classify both news and products (Figure 3.20c).

44 CHAPTER 3 Domain modeling

1.* Default 1.1

User defaultFor hasDefault Group
«PK» Username «PK» GroupName
Password MembersNumber
Email 1% Membership 1.% P
Photo
users belongsTo

FIGURE 3.21

User and Group representations in the personalization data schema.

3.11.4 DESIGNING A PERSONALIZATION SUBSCHEMA

A personalization subschema consists of classes and associations describing proper-
ties of the users, relevant to the adaptation of the user interface. The properties cap-
tured by the personalization subschema typically comprise:

1.

Profile data, which are the attributes—possibly complex—that characterize

the individual users. Example of general-purpose profile attributes may be the
name, address, location, sex, and age of a user. Profile data may also be applica-
tion specific. For instance, in e-commerce applications profile attributes may
include the total amount of expenditure, the date of the last visit or purchase, the
feedback score of a buyer or seller, and so on.

. User groups, which represents the identified clusters of users with homogeneous

requirements or permissions. The typical usage of the user group concept is the
clustering of users according to the role they are entitled to play in the application.

. Personalization associations, which are semantic associations between core

objects and the users or groups, denoting aspects such as the access rights of
users or groups over core objects, the ownership of core objects by users or
groups, the preference of users or groups for selected core objects, or the recom-
mendation of core objects to users or groups.

Information about a user can be represented explicitly in the domain model. The

model in Figure 3.21 is an example of a basic, yet typical, personalization subschema.

Class “User” specifies information about the individuals who access the applica-
tion. It includes basic properties such as username, password, photo, and e-mail.
Class “Group” specifies information about clusters of users with homogeneous
requirements. It includes collective properties, such as the group name, the
number of members, and so on. The “Group” class can also be used to represent
the roles of the users for access control purposes.

A many-to-many association (called “Membership”) connects class “User” and
“Group,” denoting that a user may belong to multiple groups and that a group
clusters multiple users.

A one-to-many association (called “Default”) connects class “User” and
“Group,” denoting that a user may have one group as the default one among

the groups he belongs to. This additional information is useful for assigning the

3.11 The

Process of Domain Modeling 45

User
«PK» UserName
Password
EMail
FirstName
LastName
Title
Photo
1. Country 11
Street
ZIPcode
0..* 0.
ShippingAddress PastPurchase
Country ProductCode
Street Price
ZIPcode Quantity
Value
Date
Time

FIGURE 3.22

Domain-specific user profiles data for an e-commerce application.

user to the default group after he logs into the application. Note that in those
applications where users are associated with a single group there is no need of
the “Default” association.

The simple data schema of Figure 3.21 can be augmented with further elements
to represent user information needed in a specific application domain.

Figure 3.22 shows an example in which the “User” class includes additional
profile attributes, such as “FirstName,” “LastName,” “Title,” “Country,” “City,”
“Street,” and “ZIPcode.” Further classes can be included for modeling additional
data of the user profile. For instance, the class “ShippingAddress” can be added to
allow users to ship goods to multiple addresses. The class “LastPurchase” can be
added for recording data about the last purchased products, like the price, the ordered
quantity, the total order value, the purchase date and time, and the shipping address.
Personalization data of this kind can be used, for example, for recommending prod-
ucts based on the past purchase history.

Personalization associations can also represent interface configuration prefer-
ences. An example of personalization association is reported in Figure 3.23, in the
context of a personalized geo-referenced application publishing local information,
like weather reports, events, and city guides. The preference associated with the user
records the city where he is currently located and is represented by an association
between class “User” and class “City,” which permits the selection of specific content

46 CHAPTER 3 Domain modeling

User

«PK» Username

Password
Photo
Email

0..*

Forecast
1.1 Date
- 0..*| Weather
City 1.1 Temperature
«PK» ZIPCode
Name
Country
Region LocalNews
g
11 Title
<>1--1 0..*| Date
Text
0..% Photo
Event

Title
Date
Place

FIGURE 3.23

Basic domain model for a geo-localized newsfeed application.

based on the preferred city of the user, as denoted by the “Forecast,” “LocalNews,”
and “CityGuideltem” components classes owned by class “City.”

Note that the choice of making forecasts and local news part-of components of
class “City,” rather than shared components, is arguable and depends on the specific
application and viewpoint of the modeler. This observation applies to most examples
in the book, which should not be taken as the only possible models. Many of them
may admit alternative variants in different contexts, based on the interpretation of
requirements and even on the modeling style of the designer.

A personalization association may also denote information objects owned by
individual users. The meaning of such an association may be that only the user who
owns personal objects can access and manipulate them. This happens, for example,
for the shopping cart in e-commerce applications. In other cases, personal objects
are created and managed by their authors but are also available to other users. This
happens, for example, in blog and content sharing platforms, where users publish
content items for other users to view and comment.

The data schema of Figure 3.24 includes two personalization associations that
relate each user with the articles and comments he has produced. Comments are also
connected to the article with which they are associated.

3.12 Running Example

User

«PK» UserName
Password

EMail
FirstName
LastName

Photo

Address

City

Country

1.1

1.1

0..* 0..*

Article Comment

Subject 1.1 0.* |Text
Text CommentDate
PostingDate

FIGURE 3.24
Basic domain model of a blog application.

The personalization subschema of the domain model describes the properties
of users and the way they are clustered and associated with other domain objects.
They are typically stored persistently (e.g., as the result of a user registration pro-
cess). Exploiting the information of the personalization subschema for dynami-
cally adapting the interface requires identifying the specific user at runtime and
preserving his identity during the course of the interaction. In chapter 4, we intro-
duce the IFML constructs for modeling interface adaptation: Context, ContextDi-
mensions, and ContextVariables. A ContextVariable is a runtime-initialized object
that can be used in the interface model. It can represent, among the other things,
the authenticated user’s identity and, if the application assigns specific roles to the
authenticated user (e.g., as part of a RBAC scheme), also the current role of the
user. In chapter 8, we will show how to model the login process, which is the typi-
cal way in which the ContextVariable with the authenticated identity of the user
gets initialized at runtime.

3.12 RUNNING EXAMPLE

In this Section we start illustrating a running example that will support the descrip-
tion of interface modeling with IFML in the next sections.

The application is an e-mail management system that lets users manage mes-
sages and contacts. Users have a name and an e-mail address. E-mail messages are

47

48

CHAPTER 3

Domain modeling

Contact

FIGURE 3.25

picture: blob
I phone: string

Message

ChatConversation

1

0.*

ChatMessage

recipient: string

message: string

0.*

subject: string
body: string
date: date
time: time
read: boolean

0.*

’—\7 name: string
address: string

Personalization
sub-schema T

EmailUser

0.*

to 1.*

0.*

from 1

1
0.*

Attachment

Domain model of the e-mail management application.

clustered into system- or user-generated mailboxes for easier access. They can also
be associated with tags for enabling topic-driven access. Tags themselves can be
organized in hierarchies. E-mail messages have a subject, a body, a date and time,
a “read” flag, a sender, several recipients (direct, carbon copy, and blind copy), and
possibly multiple attachments. Users can be recorded as contacts with additional
data such a photo and phone number. Contacts can be clustered in groups for easier
access. Users can have chat conversations. A chat conversation consists of several
chat messages belonging to the user who produced them.

Figure 3.25 shows the domain model of the e-mail management application.
Classes and associations are laid out to highlight the different subschemas:

» Core subschema: contains the classes “Message,” “Contact,” and “ChatConver-

sation,” with their attributes, subclasses, and part-of classes.

* Interconnection subschema: messages are related to their recipient users.
* Access subschema: e-mail messages are categorized by tags and clustered into

mail boxes. Contacts are clustered into groups.

e Personalization subschema: the “User” class stores profile data Users are related
to the messages, chat conversations, and contacts they possess.

3.14 Bibliographic Notes 49

3.13 SUMMARY OF THE CHAPTER

This chapter has addressed domain modeling, an activity complementary and highly
relevant to interface modeling. Adhering to the principles of simplicity and separa-
tion of concerns, IFML does not prescribe a specific domain modelling language
but can be interfaced to the notation preferred by designers, provided that it allows
expressing the objects and associations of the application domain. For the sake of
illustration, we have employed UML class diagrams, and briefly recapped their main
features for structural modeling.

To show the interplay of domain and interface modeling, we have discussed
design patterns that occur in the domain model, which stem from the joint consider-
ation of data representation and interaction support requirements. The chapter ended
with the specification of the domain model of an e-mail application, the running
example that we discussed in chapters 4, 5, and 6, devoted to the systematic introduc-
tion of the core IFML concepts.

As a final remark, the position of a chapter about domain modeling before those
devoted to front-end modeling follows the editorial necessity of sequencing topics,
but does not imply a prescription on the order in which things must be done. Dis-
covering the objects and the associations of the domain model benefits from the
understanding of the type of interaction that the application must support. The design
of the front end equally benefits from the knowledge about the important objects
and associations the application deals with. The relative importance and the order in
which domain design and front-end design should be executed depend also on the
emphasis of the specific application at hand.

3.14 BIBLIOGRAPHIC NOTES

Domain modeling dates back to 1976, the year in which the seminal article by Peter
Chen, “The Entity—Relationship Model—Toward a Unified View of Data,” appeared
in the first issue of ACM’s Transactions on Database Systems. Ever since, conceptual
data modeling with the Entity—Relationship model has been the cornerstone informa-
tion systems development. Conceptual database design is a classic ingredient of data
design, described in detail in [BCN92]. A popular book on the subsequent phase of
physical database design is [Shasha92].

Domain modeling is also part of object-oriented analysis and design. Classic
books on the subject are [BJR98, Booch94, CY90, Jacobson94, RBPEL91, SM8S].
In particular, Booch, Jacobson, and Rumbaugh provide an excellent guide to the Uni-
fied Modeling Language (UML), by means of an easy-to-understand example-driven
approach [BJR98]. A concise reference to UML is Martin Fowler’s UML Distilled
[Fowler03]. The Object Constraint Language official specifications are published
in the web site of the OMG (http://www.omg.org/spec/OCL/). The language use is
treated extensively in the textbook [WKO3].

http://www.omg.org/spec/OCL/

50

CHAPTER 3 Domain modeling

The idea of using domain modeling in conjunction with web front-end design has
been explored by a few web design methods proposed in the research community,
including HDM [GPS93], RMM [ISB95], and WebML [BBCO03]. These methods
have underlined the differences between data modeling for traditional applications
and for hypertext-based interfaces. The importance of design patterns in object-
oriented design was first been recognized in the milestone book [GBMS86]. Design

patterns and best practices specific to data design for the web were first discussed in
[CFP99].

END NOTES

1. http://www.omg.org/spec/OCL/.

http://www.omg.org/spec/OCL/

CHAPTER

Modeling the composition
of the user interface

The goal of user interface modeling is the specification of the front end of the appli-
cation. This activity is performed at a high level, comparable to the conceptual level
at which objects and associations are specified in the domain model. In contrast to
domain modeling, which rests on a consolidated tradition, interface modeling is a
younger discipline based on new concepts and methods.

In this chapter, we describe IFML in detail, commencing with the elements used
to specify the general organization of the interface and high-level navigation. In
chapter 5, we discuss the IFML primitives for expressing the internal composition
of the interface: the published content components and the data entry forms, as well
as the interaction mechanisms associated with them. In chapter 6, we focus on the
specification of the business actions triggered by user interaction and on their effect
on the status of the interface. For a more formal introduction to the elements of [FML
and their associations, the reader can refer to chapter 12, where the IFML metamodel
is briefly discussed.

4.1 INTERFACE ORGANIZATION

The specification of the interface in IFML is organized hierarchically using modular-
ization constructs called ViewContainers.

VIEWCONTAINERS

A ViewContainer is an element of the interface that aggregates other view containers and/or view
components displaying content.

In practice, a ViewContainer may represent a physical interface artifact such as a
window or a page of a web application. But it can also denote a purely logical aggre-
gation of other view containers, such as a section of a large web portal constituted by
several pages dealing with a homogeneous subject.

ViewContainers support navigation, which is the change of focus from one con-
tainer to another. To specify that a ViewContainer is the source of a navigation com-
mand, it is necessary to associate it with an event.

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00004-7
Copyright © 2015 Elsevier Inc. All rights reserved.

51

|
52 CHAPTER 4 Modeling the composition of the user interface

EVENTS

An Event is an occurrence that can affect the state of the application by causing navigation and/
or passing parameters. Events may be produced by a user interaction (ViewElementEvent), by an
action when it finishes its execution normally or exceptionally (ActionEvent), or by the system in
the form of notifications (SystemEvent).

A ViewElementEvent is an Event that may be triggered by the user while
interacting with ViewContainers, ViewComponents, and parts thereof called
ViewComponentParts.

The effect of user interaction—that is, the target ViewContainer displayed after
a ViewElementEvent has occurred—is specified by means of a NavigationFlow,
denoted as a directed arc connecting the event symbol to the target view container.

NAVIGATIONFLOW

A NavigationFlow represents the navigation or the change of the view element in focus, the trig-
gering of an Action, or the reaction to a SystemEvent. NavigationFlows are activated when Events
are triggered. They connect Events owned by ViewContainers, ViewComponents, ViewComponent-
Parts, or Actions with other ViewContainers, ViewComponents, ViewComponentParts, or Actions.

Figure 4.1 shows a very simple IFML model exemplifying these concepts,
together with a hypothetical rendition.

Source Target

ClickMe

O

Target Web Page

Source Web Page
A X () =) @) A0 X} Eormmmeemom) @)
ClickMe "
Z L4

FIGURE 4.1
Model of navigation between view containers expressed with events (top) and the corre-
sponding rendition (bottom).

4.2 View Container Nesting 53

“Source” and “Target” are ViewContainers, denoted as UML classifiers.
“ClickMe” is an Event, represented as a circle associated with the owning ViewCon-
tainer. The NavigationFlow, denoted by an unlabeled directed arrow, connects the
event named “ClickMe” of the “Source” ViewContainer to the “Target” ViewCon-
tainer, indicating that the occurrence of the “ClickMe” event causes the display of
the “Target” ViewContainer.

Notice that some model features, such as the name of the ViewContainers and
of the Event, are purposely shown also in the rendition. This is to highlight that
the model features can be employed to create the implementation. For example, the
name of the ViewContainer could be used to produce the title of a window or the
name and URL of a web page, and the name of an Event could be exploited to create
the text of a hyperlink anchor or a button label.

4.2 VIEW CONTAINER NESTING

Most interfaces organize the content and interaction commands presented to the user
into a regular structure to enhance usability. For example, many web pages have
a central content area and one or two columns for collateral items such as menus,
search bars, and ads. Window-based interfaces split the work area into several panels
and use tabbing to present alternative views of the work items.

IFML models the structure of the interface by means of nested ViewContainers.
Nested ViewContainers express the organization of the interface at a conceptual level
but necessarily have an interpretation that depends on the platform where the inter-
face is deployed. Two typical situations arise:

e In window-based platforms, such as Java Swing or Windows.NET, the interface
is normally hosted within one top-level container.

e In a pure HTML web application, the interface is normally fragmented across a
set of independent page templates, which means that there is no top-level View-
Container. Rather, one ViewContainer is elected as the one accessed by default
(the so-called “Home Page”).

The advent of rich Internet applications has blurred the distinction between win-
dow-based and page-based interfaces, so it is not uncommon to see interfaces that
have an organization that stands in the middle between the two extremes. This is in
line with the single page development paradigm.

In the rest of this section, we proceed in the explanation of the features of View-
Containers from a platform-independent perspective. We will come back to the influ-
ence of platform-dependent features on design when discussing interface design
patterns later in this chapter. In chapter 7, we will present some extensions to [IFML
conceived for desktop, web, and mobile development, which customize the termi-
nology and concepts of IFML to make the language closer to the expectations of
developers of these popular classes of solutions.

Nested ViewContainers may be in conjunctive form, which means that they
are displayed together, or in disjunctive form, which means that the display of one

http://Windows.NET

54

CHAPTER 4 Modeling the composition of the user interface

ViewContainer replaces another ViewContainer. The property of disjunctiveness is
explicitly associated with the enclosing container with the notation shownin Figure 4.2:
a XOR label before the name of the ViewContainer. By default, ViewContainers dis-
play their inner ViewContainers in conjunctive form.

Figure 4.3 shows an example of disjunctive ViewContainers from the e-mail
application used as a running example. The interface consists of a top-level View-
Container from which the user can access either the “MailMessages” ViewContainer
or the “Contacts” ViewContainer.

Top
Top One Two
One AnotherOne
Top
IOne ‘ Two \
[XOR] Top One
One AnotherOne
FIGURE 4.2

Cconjunctive and disjunctive nested ViewContainer and a possible rendition.

[XOR] Mail

MailMessages Contacts

FIGURE 4.3

Example of disjunctive nested ViewContainer in the e-mail application.

4.4 View Container Relevance and Visibility 55

4.3 VIEW CONTAINER NAVIGATION

ViewContainers support a basic form of navigation, which we call content-independent
navigation to mark the distinction with the content-dependent navigation described in
chapter 5.

Content-independent navigation is expressed by associating a navigation event to
a ViewContainer and by specifying the target of the navigation with an Interaction-
Flow. An example of this design pattern was illustrated in Figure 4.1.

The meaning of content-independence is that user interaction does not depend on
the content of the source and destination ViewContainers. In implementation terms,
it is not necessary to associate parameter values with the interaction in order to com-
pute the content of the target ViewContainer. This behavior is in contrast to content-
dependent navigation, discussed in chapter 5.

4.4 VIEW CONTAINER RELEVANCE AND VISIBILITY

ViewContainers are characterized by some distinguishing properties that highlight
their “importance” in the organization of the interface.

DEFAULT VIEWCONTAINERS

The default property characterizes the ViewContainer presented by default when its enclosing
ViewContainer is accessed.

Default view containers are denoted by a “D” within square brackets placed at the
top-left corner of the view container.

LANDMARK VIEWCONTAINERS

The landmark property characterizes a ViewContainer that is reachable from all the other View-
Containers nested within its enclosing ViewContainer (i.e., from its sibling ViewContainers) and
from their subcontainers.

Landmark view containers are denoted by an “L” within square brackets placed
at the top-left corner of the view container.

Figure 4.4 shows an example of the landmark and default properties in the
e-mail application. When the user starts the application the “Mail” ViewContainer is
accessed. The default subcontainer “MailMessages” is displayed, whereas the alter-
native ViewContainer “Contacts” remains hidden. Both “MailMessages” and “Con-
tacts” are defined as landmarks, which means it is always possible to access the one
that is not in view from the one that is in view.

56

CHAPTER 4 Modeling the composition of the user interface

[XOR] Mail

[D] [L] MailMessages [L] Contacts

FIGURE 4.4
Use of the landmark and default properties in the e-mail application.

[XOR] Top [XOR] Top
[L] One [L] Two
[L] Three [L] Four
FIGURE 4.5

Landmark ViewContainers (left) and equivalent diagram with explicit events and navigation
flows (right).

The landmark property is an example of a construct introduced for model usability.
It does not augment the expressive power of IFML, because the access to ViewCon-
tainers can be represented explicitly with navigation flows, but reduces the burden of
model specification and augments the readability of diagrams. Figure 4.5 illustrates
on a small scale example why this is true. It shows two equivalent IFML diagrams.
In the diagram on the left, the ViewContainers nested inside the Top ViewContainer
are marked as landmarks, which means that every ViewContainer is the target of an
implicit navigation flow pointing to it from the sibling ViewContainers. The diagram
on the right explicitly shows these navigation flows and the events triggering the
navigation. The meaning conveyed by the diagram on the left is that a landmark View-
Container can be reached from any other ViewContainer of the enclosing module. If
an interface contains many containers, the landmark property significantly reduces
the number of events and navigation flows to be drawn and makes the diagram much
more readable.

4.5 Windows 57

[XOR] Top [XOR] Top
[L] One [L] Two One <
.-.
Four Four

FIGURE 4.6

Landmark ViewContainers with nesting (left) and an equivalent diagram with explicit events
and navigation flows (right).

Figure 4.6 shows an example with nested ViewContainers. ViewContainer “One”
is landmark and thus accessible from its sibling ViewContainers and their children
(i.e., from the ViewContainers “Two,” “Three,” and “Four”). The same applies to
ViewContainer “Two.” Again, the use of the landmark property avoids cluttering the
diagram with many events and navigation flows.

4.5 WINDOWS

IFML provides a set of specializations of the ViewContainer concept that allow one
to represent more precisely the behavior of the container-level navigation.

WINDOW

A Window is a specific kind of ViewContainer that represents a window in a user interface.

A Window ViewContainer can be tagged as Modal or Modeless depending on its behavior with
respect to the user interaction. A Modal window opens as a new window and disables the interaction
with the background window(s) of the application; a Modeless window opens as a new window and
still allows interaction with the other pieces of the user interface.

Navigation from a source window to a target window (not tagged as Modal or
Modeless) implies that the source window disappears and is replaced by the target. If
the target Window is tagged as Modal or Modeless instead, the new window will be
superimposed onto the old one and will behave as modal or modeless respectively.
Window, Modal, and Modeless specializations can be specified as stereotypes of the
ViewContainer classifier, as shown in Figure 4.7.

Navigation between Windows “Step 1” and “Step 2” implies that “Step 2” sub-
stitute “Step 17 on the screen. Navigations from “Submission” to “Confirmation”
and “ToolsMenu” will open the two new windows in front of the old one and will
respectively grant modal and modeless behavior.

«Window» Step 1

«Window» Step 2

Enter Category Data

«Window» Submission

«Modal» Confirmation

Edit Category Data

v

i

Enter Products Dato

Name Galvanized Steel Rod

Code SR5678

Price

Do you wont to edit?

(o) (fossn)

v

«Window» Submission

«Modeless» ToolsMenu

x
lﬂiﬁ

Enter Category
Name St Insert Image
Code SH Change Specifications

=]

FIGURE 4.7

Examples of window, modal window, and modeless window, and their possible renditions.

8¢S

QoBpIaIUI JasN 8y} Jo uosodwod ay} SuljePoN ¥ ¥ILdVHID

4.6 Context and Viewpoint 59

4.6 CONTEXT AND VIEWPOINT

The composition of the interface is not necessarily a static concept. Many applica-
tions update the interface organization and content at runtime, based on informa-
tion about the context of the user interaction. For example, a mobile application can
deliver alerts based on the current position of the user, and a web-based portal may
exploit the information of the personalization subschema, introduced in chapter 3,
for publishing user profile data and personalized recommendations.

To support the dynamic adaptation of the interface, IFML comprises concepts
that capture both the design-time adaptation requirements set by the developer and
the runtime values set by the application, which are necessary for deciding which
adaptations to apply based on the interaction context of the user. The notion of con-
text provided by IFML is purposely very broad. It may encompass aspects such as
the identity, role, geographic position, or device of the user.

CONTEXT AND CONTEXTDIMENSION

The Context is a descriptor of the runtime aspects of the system that determine how the user inter-
face is adapted. A ContextDimension is a component of the Context.

IFML comes with various predefined extensions of the ContextDimension
concept.

USERROLE, DEVICE, AND POSITION

The UserRole represents the role currently played by the user in the application. It comprises the
attributes that the user’s profile should satisfy to enable the context.

Device represents the characteristics that a device possesses.

Position represents the availability of location and orientation information of the device used to
access the application.

The predefined Context and ContextDimension elements can be extended to rep-
resent finer-grain or other context perspectives, such as network connectivity or tem-
poral aspects.

The requirements for a Context to be active are expressed by OCL expressions,
called ActivationExpressions.

ACTIVATIONEXPRESSION

An ActivationExpression is a Boolean condition that determines whether the associated Context
(or other IFML element) is active (if the condition is true) or inactive (if the condition is false).

Figure 4.8 shows the IFML notation for an ActivationExpression that speci-
fies when a Context is active. The specific context is represented as an instance

|
60

CHAPTER 4 Modeling the composition of the user interface

«ActivationExpression»

«context» CustomerMobileContext - Self.Device.Type= “Tablet” and
Self.Device.Size="Small” and
Self.UserRole.RoleName="Customer”

FIGURE 4.8

ActivationExpression specifying the requirements for the Context to be enabled.

(“AdminMobileContext”) of a classifier stereotyped as «context». The Activa-
tionExpression is expressed as a stereotyped annotation associated to the Context
instance.

The example of Figure 4.8 assumes that the “UserRole” ContextDimension has
an attribute called “RoleName” that specifies the role that the user should fulfill
in a role-based access control (RBAC) system. It also assumes that the “Device”
ContextDimension has two attributes. “Type” identifies the class of device, while
“Size” indicates the dimensions of the screen. The specification of Figure 4.8
therefore mandates that the “CustomerMobileContext” is enabled when the user’s
access device is a small screen tablet and the role granted after login is that of a
registered customer.

The evaluation of an ActivationExpression associated with a context requires that
the values of the relevant ContextDimensions be recorded at runtime. Such runtime
values can be represented in IFML as ContextVariables.

CONTEXTVARIABLE

A ContextVariable is a runtime variable that holds information about the usage context. It special-
izes into SimpleContextVariable (of a primitive value type) and DataContextVariable (referencing a
DataBinding).

ContextVariables enable a form of fine-grain interface adaption, as we will see
in chapters 7, 8, and 9. They can be used in ActivationExpressions associated with
ViewElements to condition their visibility based on the situation. Another, coarser-
grain form of interface adaptation is achieved by using ViewPoints, which denote
whole application designs tailored for a specific context.

VIEWPOINT

A ViewPoint is the specification of an entire interface model that is active only when a specific
Context is enabled.

The enablement of the ViewPoint is dynamic and governed by the ActivationEx-
pression associated with the Context. When the ActivationExpression is satisfied, the

4.6 Context and Viewpoint 61

e

«ActivationExpression» ‘

«ViewPoint» Admin «context» AdminContext Self.UserRole.RoleName="Admin
«ActivationExpression» ‘
«ViewPoint» Editor «context» EditorContext | Self.UserRole.RoleName="Editor
FIGURE 4.9

ActivationExpressions and Contexts enabling different ViewPoints.

Context becomes active and so does the associated ViewPoint with all the ViewEle-
ments and Events contained in it.

Figure 4.9 shows an example of ViewPoint specification. Two ViewPoints are
defined (“Admin” and “Editor”) that contain different interface models for the
two distinct roles. They are associated with the contexts that specify the activation
requirements of the ViewPoints.

In summary, the ContextDimensions express the enabling dimensions of the Con-
text, and an ActivationExpression can be used to dictate the required values for such
ContextDimensions. The actual runtime values for a specific user are represented by
ContextVariables. When the relevant runtime values of the ContextVariables match
the required values for the ContextDimensions in the ActivationExpression, the Con-
text is enabled. The enabled Context in turn identifies the ViewPoint (i.e., the variant
of the interface) to be used. Finer-grain adaptation can be achieved using ContextVari-
ables in ActivationExpressions associated with individual element of the interface.

The values of the ContextVariables can also be used to publish or to put to work
the content of the personalization schema

¢ A ContextVariable holding the user’s identity (e.g., the “username” attribute)
permits the application to look up the appropriate instance of the “User” class of
the personalization subschema, retrieve profile data and personal objects from
the database, and publish them in the interface.

e A ContextVariable holding the role of an authenticated user can be used to look
up the appropriate instance of the “Group” class in the personalization sub-
schema, retrieve the permissions of the user, and adapt the interface content and
actions to such permissions.

In chapter 7, we put these concepts to work in various examples of the adapta-
tion of the interface for web and mobile applications. In chapter 8, we discuss how
to set the ContextVariables explicitly based on user interaction (e.g., as the effect of
a login Action) and how to use them in applications exploiting the identity and role
of the user.

62

CHAPTER 4 Modeling the composition of the user interface

4.7 USER INTERACTION PATTERNS

The proper organization of the interface is paramount for getting a good and user-
friendly experience. IFML allows the designer to express such an organization at
a conceptual level before committing to the implementation architecture. To sup-
port the design of the interface structure, we introduce a set of guidelines based on
user interaction patterns, reusable models that effectively address a recurrent set of
requirements in the design of user interfaces. When most users become accustomed
to a successful pattern, new applications tend to implement the same design to reduce
the learning curve and induce a sense of familiarity. User interaction patterns are
classified into various categories, based on the concern addressed.

We will use a pattern naming convention to help designers immediately identify
the purpose of a pattern. The name of a pattern is structured as XY-Z, where:

* Xs the category of pattern. For instance, interface organization patterns start
with the letter “O.”

e D is the deployment platform. For instance, desktop patterns are labeled with
“D,” web with “W,” and mobile with “M.” The letter “G” (for “general”) is
reserved for cross-platform patterns that apply irrespective of the deployment
platform.

e Zis a mnemonic label identifying the specific pattern.

For instance, a pattern could be named OD-SWA (as in the first example described
in section 4.8.1.1).

4.8 INTERFACE ORGANIZATION PATTERNS AND PRACTICES

An interface organization pattern is a user interaction pattern that focuses on the
hierarchical structure of the user interface. Different interface organization patterns
have emerged for different classes of applications and for the various delivery plat-
forms and access devices. This section reports some of the best-known patterns in
this category, classified by platform (desktop, web, and mobile). Other categories of
patterns are presented in the next chapters.

4.8.1 DESKTOP INTERFACE ORGANIZATION PATTERNS

In desktop applications—and more recently in single-page rich Internet appli-
cations—the entire user interface is hosted within a single topmost ViewCon-
tainer, which has an articulated internal structure based on a hierarchy of nested
ViewContainers.

4.8.1.1 PATTERN OD-SWA: Simple work area
A typical functional division distinguishes a work area where the main tasks of the
application are performed from one or more service areas, including ViewContainers

4.8 Interface Organization Patterns and Practices 63

either hosting commands (e.g., menu bars, tool bars) or supporting auxiliary tasks
(e.g., console or error message panels, status bars).

Figure 4.10 shows the IFML model of the simple work area interface organiza-
tion pattern with an example application (a text editor). The pattern simply comprises
a top-level ViewContainer with embedded nested sub-ViewContainers.

4.8.1.2 PATTERN OD-MWA: Multiview work area
When the task supported by the application and the data or the objects to be manipu-
lated grow in complexity, the simple work area organization can be refined. One
extension is to allow for multiple alternative views of the object/data/task in the work
area, as represented by View1 and View2 in Figure 4.11.

Figure 4.11 shows an example of the multiview work area interface organization.
An image editor has a normal view shown by default (called “Home”) and a zoom
view used for adjusting the zoom level of the image (called “View”).

4.8.1.3 PATTERN 0D-CWA: Composite work area
An alternative way of breaking down complexity is to split the work area into subre-
gions devoted to different subtasks or perspectives of the object/data/task, presented
simultaneously to allow the user to switch without losing the focus on the item under
consideration. In such a case, one subregion often hosts the principal representation
of the object/data/task and the other regions support collateral properties or subtasks.
Figure 4.12 shows an example of a composite work area interface with an exam-
ple application: a document editor, featuring the main work area with a set of associ-
ated panels plus a set of menu bars.

4.8.1.4 PATTERN OD-MCWA: Multiview composite work area
The decomposition of the work area into alternative perspectives and simultaneous
partial views can be combined to achieve a nested structure that best fits the specific
requirements of the task supported by the application. For example, the work area
could be partitioned into partial views displayed simultaneously, and the main view
could be organized into multiple perspectives. Another option could have the work
area supporting alternative perspectives, each one composed of several partial views
appropriate to a perspective, displayed simultaneously.

Figure 4.13 shows an example of a multiview composite work area: a program-
ming language IDE has an editing and a debug view, the latter composed of several
parts.

4.8.2 WEB INTERFACE ORGANIZATION PATTERNS

In web applications, the typical organization of the interface allocates functional-
ity to multiple pages, either produced statically or generated dynamically by page
templates or server side scripts. In this case, nested ViewContainers are still useful
and can fulfill a twofold role. As with desktop applications, they may express the
allocation of content and navigation within regions of a page (e.g., as is possible with

+7 WinEdt 7.0 - [Doc1)

=&

Top

WorkArea

MenuBar

ToolBar

StatusBar

() file Edit Search Insert Document Project View Iools Macros Accessories TeX QOptions Window Help
Qv @ g 9| P s e e o aeav|r .
EPREEIFEIRE R EERE AR
Math | Greek | Symboss | intemational | Typeface | Functions(x) ... [{ } .| <>= [+/= o[>

Svl@yzvuraa-
CIREE N IR

s [aus =<> s ot =<>]

&

x

SNUJS $§NU|aadéaladeade ae aw ale @ |« NBB
UVAO®R®UY | aaaaa deae Vaetale f/ 23 o ¢ § T
3 poct |

CONSOLE AND A STATUS BAR.
=]

Console - Idle ...

THIS IS AN EXAMPLE OF A DESKTOP APPLICATION WITH A MAIN WORK ARER, A SET OF MENU AND TOOL BARS, A

G xlewloa mElso|Ri@

FIGURE 4.10

y 11 0 modfed Wrap Indent NS UNE spel Tex

WEdtpr

The simple work area interface organization pattern with an example application (a text editor).

9

QoBpIaIUI JasN 8y} Jo uosodwod ay} SuljePoN ¥ ¥ILdVHID

Top

[XOR] WorkArea

MenuBar

[D] [L] Viewl

ToolBar

[L] View2

StatusBar

paste

Clipboard

B

7l VO o7 ovie
f=) OLAN -| g
s - @ ZQI(EHIO O OOk

Image Tools shapes.

size

[EEEES seEmy

el O

©

[1211054 x 432px

I size: 17,9K8.

100% @

®

FIGURE 4.11

The multiview work area interface organization pattern with an example application.

S9211081d PUB Sueled UoieziuesiQ adepalu| 8

<9

Top PuEzsEST
- B

oo | bt apinot Beeces Modops Bees Vew Adbws dach

s E KNS A BN ECEE ®E RS s Aseccd|AaBbC AaBbCe Aabbcd AQB aasice soseciod sossccdd aosscede |

B av-A e EEa DD e Thospm| vesdgt | besdog? besde) Tee e Sbelmp (mphwn emeln |

WorkArea MenuBar

il 5 [THIS IS AN EXAMPLE OF AN A
APPLICAITON WITH A COMPOSITE =
WORK AREA =

MainView

Ithas:

Adocumenteditor vt

AuxiliaryPanel1 ToolBar S

AuxiliaryPanel2 StatusBar

oo ots | wees | Dt s |

FIGURE 4.12

99

The composite work area interface composition pattern.

QoBpIaIUI JasN 8y} Jo uosodwod ay} SuljePoN ¥ ¥ILdVHID

Top C/C++ - Hello'
file Edit Source Refactor Navigate Search Project Run Window Help
(Shd P ore e gty RORACR AR AR AR R AL Te=tl SR SN T e
Quick Access] gg@:: % Debug
[XOR] WorkArea MenuBar @ Project Explorer = O @ Hello Worldcpp I -8 =om ™ =g
%l ~ ®// Name Hello. cppl - EARY e n ¥
Deb ‘e:-d:,:‘o:m #include <iostream> U iostream
e uQ & Includes using namespace std; -
® e int main() { * main):int
@ Debug cout << "111Hello World!!1™ << endl; // prints |
Trace Vars Explorer cout << *111Hello World!11* << endl; // prints |
return 0;
}
Code Outline
“ mn » .
Console o St
No consoles to display at this time.
StatusBar
0 items selected

FIGURE 4.13

The multiview composite work area pattern.

S9211081d PUB Sueled UoieziuesiQ adepalu| 8

L9

68

CHAPTER 4 Modeling the composition of the user interface

HTML frames or through the use of JavaScript). In contrast to desktop applications,
they may express the logical clustering of multiple pages that have some common
characteristics, for the purpose of modularizing the web application and supporting
cross-site navigation mechanisms.

4.8.2.1 PATTERN OW-MFE: Multiple front-ends on the same domain
model
In many cases, the web is used as a technical architecture to deliver a set of appli-
cations on top of the same data, represented in the domain model. A classical
case is that of content management systems (CMS). These applications support
two roles, as shown in Figure 4.14: the content editor and the reader, which have
different use cases and must be served by distinct front ends acting upon the
same data. In such a scenario, the pages constituting the two applications could
be clustered into two distinct top-level containers, one for the editor and one for
the reader.
Such an organization brings several benefits:

* It expresses a functional modularization of the front end that could be exploited,
for example, to partition the implementation effort across different teams.

» It allows ViewContainers to be used as resources in a role-based access control
policy. Users with role “editor” will access the pages of the “Editor” ViewCon-
tainer, whereas users with role “reader” will access the pages of the “Reader”
ViewContainer.

¢ It enables a better management of the implementation artifacts, including the
deployment at different web addresses and the separation of graphic resource files.

Create
content

Access
content

Editor Reader

Update

content
Rate

content

Delete
content

FIGURE 4.14

User roles and use cases in a content management system.

4.8 Interface Organization Patterns and Practices 69

Figure 4.15 shows an example of multiple front ends interface composition pat-

tern applied to a content management application serving the roles and use cases
illustrated in Figure 4.14. A top-level ViewContainer “Login” denotes a public page
for logging into the application, common to both roles. Then two nested ViewCon-
tainers comprise the ViewContainers that denote the web pages specific to the use
cases of each role.
The dynamic activation of the appropriate interface after a user request based on his
role can be specified using the Context and Viewpoints introduced in chapter 3. For
each role, a Context with the appropriate ActivationExpression on the “UserRole”
ContextDimension can be defined and associated with a ViewPoint that comprises
the ViewContainers of Figure 4.15 appropriate for that role.

4.8.2.2 PATTERN OW-LWSA: Large web sites organized into areas
ViewContainers also come handy for expressing the logical organization of many
real-world web applications that exhibit a hierarchical structure whereby the pages
of the site are clustered into sections dealing with a homogeneous subject. Nested
ViewContainers can play the role of “site areas,” recursively structured into other
subareas and/or pages. Most real-life web sites exhibit an organization into areas.
For example, Figure 4.16 shows an interface fragment taken from a web site
whose pages include a navigation bar with anchors pointing to the various areas
of the site.

In chapter 7, we will exploit the native extension mechanism of IFML to intro-
duce specializations of the ViewContainer concept that make the specification of web
interface organization patterns more expressive.

Login
Editor Reader

Editor Home Content update Reader Home Content rating
Content search

Content access
Category browsing

1
Content deletion Content reading

FIGURE 4.15

Example of multiple front ends interface composition pattern applied to a CMS application.

70

CHAPTER 4 Modeling the composition of the user interface

+You Search Images Maps Play YouTube News Gmail Drive Calendar Move--

Translate
Mobile
Books
Offers
Wallet
. Shopping
Blogger
O C) Finance
Photos

Videos

Even more

Google Search I'm Feeling Lucky

FIGURE 4.16
Popular web sites exhibit an organization into logical areas.

4.8.3 MOBILE INTERFACE ORGANIZATION PATTERNS

Mobile interface organization must account for the reduced screen space of
portable devices and for the usage context, whereby users often access the
application in unconformable conditions, such as while standing or walking.
Therefore, a consistent usage of the scarce screen space is the number one rule of
interface organization to reduce the learning curve and minimize the interactions
needed to perform tasks. This requirement constrains the top-level organiza-
tion, which repeats consistently across mobile operating systems and individual
applications.

In this section, we introduce only one high-level interface organization pattern.
We defer to chapters 7 and 8 the illustration of several other design patters for mobile
applications based on the interplay between the organization of the main interface
containers and the content components.

4.8.3.1 PATTERN OM-MSL: Mobile screen layout

The basic organization of the interface of mobile applications maps the interface to a
top-level grid that contains three regions: the header, the content area, and the footer,
as shown in Figure 4.17.

The header is normally used for command menus and notifications. Part of the
header may be reserved for operating-system notifications and therefore remains
fixed across all applications. The content area normally has a simple layout that lim-
its the use of multiple perspectives and nested panes to a minimum and exploits
scrolling along one dimension to accommodate content that overflows the size of the
screen. The footer region is normally allocated to system-level commands, such as
general or application-specific settings menus.

4.9 Running Example 71

TopView
Birmingham Friday, 03.08.2012
Header
48
H g
Content 11 9°F < 0 (I)_I7
Feels:67°F in/h mph
Fr. Sa. So. Mo, Di.
Footer * * * * ‘h
52° 68°|55° 66°|53° 66°|53° 66°|51° 65°
WeatherPro Last update: 03/08/2012 13:44 (5]
FIGURE 4.17

Mobile applications organize the interface into header, footer, and content regions.

This essential design pattern can be articulated in a variety of more specific forms
depending on the device capacity, the content type, and the application requirements.
Chapters 7 and 8 provide many examples of IFML extensions that make the models
of mobile applications more expressive and introduce several design patterns that
recur in different classes of mobile applications.

4.9 RUNNING EXAMPLE

We return to the running example of the e-mail management application started in
chapter 3 to show how to model the organization of the interface.

When the user accesses the application, the interface presents by default the func-
tionality for accessing mailboxes and managing messages, as shown in Figure 4.18.

An equivalent interface is available for contact management, which is accessed
upon request. Its organization is shown in Figure 4.19.

The application lets the user always switch from one view to the other by means
of a menu, as shown in Figure 4.20.

72

CHAPTER 4 Modeling the composition of the user interface

Your E-Mail
O o x Q {http://wwwmail.com/inbox/) @
a
Mail [~ | | IY |
Mail ¥ Ow Q More W 1-18of13 & D Bw
Inbox (2) ¥ > Brandy Lewis People Company Reporting Anomalie Jun 18
Starred > WaltersCompany ADY Review- Maybe normal in diferent... Jun 15
Important [Youtv Your Youtv Digest - Jan 20, 2013 Jun 11
Chats "] > Mandy Batilla Request to share ADY_P_WorkPlan.doc Jun 10 ll

Sent Mail gy = Brandy Lewis ADY Company Reporting 2 Jun 10
Drafts [WaltersCompany ADY brainstorming - The send action is ... May 6
All Mail [") %> WaltersCompany IFML brainstorming - What kind of containers... Jan §
Spam []9 Pietro Ferrari Imports May 2
Trash Owc> Flor Jenkings ADY Verona meeting minutes May 1
More w J%C Fracesco Tietto (no subject) Apr 31
"> Daniel Parinni Research Project Apr 30
| > Camil James Internship in Asmat SA Apr 16
"] > WaltersComopany ADY bainstorming Mar 15

v

7

FIGURE 4.18

Mock-up of the initial e-mail message management interface of the e-mail application.

Your E-Mail
‘e Q X Q (http: /7 wwwmoil.com/inbox/ contacts) @
| =
Contacts v O+ &J+v Morey 1-5005 & > &
My Contacts (5) [7) + Brandy Lewis brandylewis 18@mail com ll
WaterGroup Walter Miran walmir@mail.com
Most Mandy Batilla mantilla_org 12@mail. com
Other [7]+« John Master masterjohn54@mail. com
New Group []++ Richard Burke richard burke. d@mail. com
Import
4
FIGURE 4.19

Mock-up of the contact management interface of the e-mail application.

The message management interface comprises an area for working with mail-
boxes and messages. This area is displayed by default, as shown in Figure 4.18. If
the user activates the compose command, the mailbox and message area is replaced
with a message composer interface, shown in Figure 4.21. Similarly, if the user acti-
vates the “Settings” command, a pop-up panel for editing options and preferences is
displayed, as shown in Figure 4.22.

The area for working with mailboxes and messages displays a search panel, a
toolbar, and a mailbox/message display region, as visible in Figure 4.18. When a

Mail [

4.9 Running Example

|

ail ¥ Ow @) More W
Mail

E Contacts

Insorrey D*E> Brandy Lewis People Company Reporting Anomalie
Starred D*[ﬁ WaltersCompany ADY Review- Maybe normal in diferent...
Important D*E’> Youtv Your Youtv Digest - Jan 20, 2013
Chats ["]4% > Mandy Batilla Request to share ADY_P_WorkPlan.doc

FIGURE 4.20

Mock-up of the view switching menu.

Your E-Mail
O Q x Q { http://wwwmail.com/compose) @
Mail [] | =Y |
Mail ¥ Q More W 1-Bef13 & > By
_ I Send Jl Save JI DiacordJ
Inbox (2)
Starred To l I
Important
Chats From |]
Sent Mail
Drofts Subject |] Il
All Mail Add Bcc Add Cc Attach Filef)
Spam
Trash Rich Formatting >> Check Spelling v
More w
v
L4
FIGURE 4.21

Mock-up of the interface element for composing message.

message is selected, the message list is replaced with the visualization of the message
content, as shown in Figure 4.23.

The message search box alternates between two interfaces for searching: a simple
keyword input field, visible in Figure 4.18, and an advanced search form with mul-
tiple fields, shown in Figure 4.24.

Figure 4.25 shows an excerpt of the IFML model that specifies the organiza-
tion of the interface of the e-mail application sketched in Figures 4.18-4.24.

.
73

|
CHAPTER 4 Modeling the composition of the user interface

74

Your E-Mail
o Q x Q { http://www.mail com/inbox/) @
Mail E l lil
Mail ¥ Ov O More W' 1-180f18 & D> By
Display density:
Comfortable
Inbox (2) [[J# > Brandy Lewis People Company Reporting Anomalie Cozy
Starred [¥ > WaltersCompany ADY Review- Maybe normal in diferent... Compact
Important [Youty Your Youtv Digest - Jan 20, 2013
Chats Owc> Mandy Batilla Request to share ADY_P_WorkPlan.doc Configure inbox II
Sent Mail [#ec> Brandy Lewis ADY Company Reporting 2
Drafts [[J x> WaltersCompany ADY brainstorming - The send action is ... Settings
All Mail [TJ > WaltersCompany IFML brainstorming - What kind of containers... Themes
Spam [CJ%c> me test Help
Trash [J# > Flor Jenkings ADY Verona meeting minutes May 1
More w Ow> Fracesco Tietto (no subject) Apr 31
[J# > Daniel Parinni Research Project Apr 30
[TJ > Camil James Internship in Asmat SA Apr 16
[[J > WaltersComopany ADY bainstorming Mar 15
Q
[4
FIGURE 4.22

Mock-up of the interface element for editing options and preferences.

Your E-Mail
O Q x Q { http://wwwmail. com/inbox/4yb6box/msg34yzed] @
A
o 3]
Mail » QN ey 1-8013 & > By
J 4 Reply ‘{\Raply to all ‘{ > Forward \
Inbox (2)
Starred From Pietro Ferrari <pferrari@mail.com>
Important To Pablo Marmol <pmarmol@mail.com>
Chats Date Tue, Oct 15, 2014 ot 10:03 AM
Sent Mail Subject Important “
Drafts
All Mail Dear Pablo,
Spam 1 checked the documents, | filled the missing information and I answered your questions in
Trash the form.
Mere = Please, do not hesitate to me if hing is not clear.
Best regards,
Pietro Ferrari.
2
[4
FIGURE 4.23

Mock-up of the interface element for reading a mail message.

4.9 Running Example 75

Your E-Mail
O o x Q {http://wwwmail.com/inbox/) @
Mail E Q l
Mail ¥ Search [All Mail [8] X 1-130f13 £ > Bw
From
i ,
Inbox (2) To Jun 18
Starred [] jun ::
Important Subject un
(S:hols ; I .::n 1(;
ent Mad Has the words = (]
Drafts [I May 2
All Mail Doesn't have :"y;o
Spam r
P [I
Trash Apr 28
More w [0 Hos attachment e
O Don't include chats Apr 10
Mar 30
Date within of E Mar 16
Mar 15
Examples: Fridoy, today, Mar 26, 3/26/14
E Create filter with this search >> Mar 10
Mar 9
5]
Z
FIGURE 4.24

Mock-up of the interface for advanced searchs.

[XOR] Mail

[D] [L] Messages [L] Contacts

[XOR] MessageSearch

[D] Search FullSearch

[XOR] MessageManagement

[D] MailBox [L] Settings

[XOR] MessageViewer

[D] Message List MessageDetails [L] MessageWriter

MessageToolbar

FIGURE 4.25

Fragment of the IFML model specifying the organization of the interface of the e-mail
application.

76

CHAPTER 4 Modeling the composition of the user interface

The top ViewContainer (“Mail”) hosts two alternative subcontainers: one for mes-
sage management and one for contact management. For brevity, we illustrate only
the internal structure of the default ViewContainer (“Messages”). Its structure
comprises two ViewContainers that are displayed together: “MessageSearch” and
“MessageManagement.”

The “MessageSearch” ViewContainer comprises two mutually exclusive land-
mark subcontainers: “Search” (shown by default) and “FullSearch.” The “Mes-
sageManagement” ViewContainer comprises three mutually exclusive landmark
subcontainers: “MailBox” (the default), “Settings,” and “MessageWriter.” The “Mail-
Box” ViewContainer consists of the “Message Toolbar” and the “MessageViewer”
containers displayed simultaneously. Finally, the “MessageViewer” ViewContainer
comprises the “MessageList” and the “MessageDetails” subcontainers, which are
visualized in alternative.

4.10 SUMMARY OF THE CHAPTER

This chapter has started the systematic illustration of the essential IFML concepts,
which continues in the next two chapters. We have introduced the IFML constructs
for representing the general organization of the interface independently of the content
published in the view. Roughly speaking, two types of organizations are possible:
one typical of web applications, where multiple peer-level ViewContainers embody
the content and navigation of the interface; one typical of desktop, mobile, and rich
Internet applications, where the interface is hosted within a top level container with
an internal structure of nested subcontainers. We have discussed the concepts of vis-
ibility and relevance of ViewContainers and of content-independent navigation. These
notions—though very simple—permit the designer to sketch a realistic model of the
high-level navigation that can be transformed into a prototype of the interface manu-
ally or with the help of tools such as the one described in chapter 11. We have applied
the IFML concepts introduced in the chapter to the modeling of various interface orga-
nization patterns for web, desktop, and mobile applications, and started the specifica-
tion of the front end of the running case, which will be completed in chapters 5 and 6.

4.11 BIBLIOGRAPHIC NOTES

Interface composition guidelines are part of usability design, a discipline described
in many textbooks, such as the classic work by Ben Shneiderman, recently reedited
[Shneiderman10]. Dedicated usability guidelines have also been proposed for web
applications that have a specific interaction flavor. An exemplary textbook on the
subject is [Nielsen00]. The advent of mobile applications has sparkled interest in
the design of usable mobile interfaces. Good textbooks on the subject are [Neill2,
NB12]. The first chapter of [HB11] deals with composition patterns for mobile
interfaces.

CHAPTER

Modeling interface
content and navigation

Interface composition partitions the user interface into ViewContainers and possibly
establishes hierarchical relationships among them. The user interface specification is
completed by the definition of the content shown within each ViewContainer and the
supported user interaction. The key ingredients of content and navigation modeling
are ViewElements, Events, and InteractionFlows.

ViewElements are distinguished in ViewContainers (already treated in chapter 4)
and ViewComponents, which are the main subject of this chapter.

Events and InteractionFlows have been already introduced in chapter 4 but
acquire a more interesting meaning in content and navigation modeling. They enable
the specification content-dependent navigation, that is, a form of interaction that
exploits the objects of the domain model. The simplest example of content-dependent
navigation is the selection of items from a list. The user accesses a ViewComponent
that displays a list of objects, selects one, and accesses another ViewComponent that
displays detailed information about the chosen object.

On the one hand, content-dependent navigation is similar to content-independent
navigation, described in chapter 4:

» Itinvolves a source and a destination element and is expressed by means of an
Event and of a NavigationFlow.

¢ On the other hand, it has important differences: typically the source and target
of the navigation are ViewComponents (and not ViewContainers). Furthermore,
the target ViewComponent normally depends on some data provided by the
source ViewComponent; this dependency is expressed by associating one or
more ParameterBinding specifications to the NavigationFlow.

The specification of ViewComponents can be done at different levels of precision:

* At the most abstract level, a ViewComponent is just a “box with a name,” as
in the preliminary examples introduced in chapter 2 (e.g., see Figure 2.2). Its
meaning is conveyed only by the name, without further details except for the
optional specification of subcomponents specified with the IFML ViewCompo-
nentPart construct. Using this level of abstraction keeps the specification very
general and easy to produce but may overlook important information needed for
model checking and code generation.

* At an intermediate level of abstraction, IFML allows a standard way of binding
ViewComponents to elements of the domain model. This is extremely useful
to express, for example, that a ViewComponent “Index of Products” actually

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00005-9 77
Copyright © 2015 Elsevier Inc. All rights reserved.

78 CHAPTER 5 Modeling interface content and navigation

derives its content from the instances of a “Product” class of the domain model.
This additional knowledge can be used for checking the consistency between
the IFML model and the domain model and for automatically generating the
data query that extracts the content of the “Index of Products” ViewComponent.

e At the most refined level, the ViewComponent construct can be extended with
specialized subclasses to express specific ways in which content is presented or
exploited to enable user interaction. For example, a List ViewComponent can be
defined to represent a specific ViewComponent aimed at publishing an ordered
set of objects from which the user can select one item. Extended components
may have domain-dependent properties and thus enable deep model checking
and full code generation.

In this chapter we discuss both the basic IFML notion of ViewComponent and the
extensions already defined in the standard. In chapter 7 we illustrate how the designer
can introduce novel extensions, using web and mobile application development as
examples.

5.1 WHAT VIEWCONTAINERS CONTAIN: VIEWCOMPONENTS

A ViewContainer may comprise ViewComponents.

VIEWCOMPONENT

A ViewComponent is any element that can display content in the user interface or accept input
from the user.

Examples of ViewComponents are interface elements for visualizing the data of
one object, for displaying a list of objects, data entry forms for accepting user input,
and grid controls for displaying and editing data tables. A ViewComponent may have
an internal structure consisting of one or more ViewComponentParts.

VIEWCOMPONENTPART

A ViewComponentPart is an interface element or a structural property that may not live outside
the context of ViewComponent.

The meanings of ViewComponent and of ViewComponentPart are left purposely
broad. Their semantics are defined by the designer and conveyed by the component/
part name. Figure 5.1 shows the graphic representation of ViewComponents and
some exemplary renderings. As can be noted, at the highest level of abstraction only
the name of the component is used to suggest the intended meaning.

5.2 Events and Navigation Flows with ViewComponents 79

ProductEntry

ProductList ProductDetails
Form

%0 On-Line Book Store o On-Line Book Store

N
(N Home & See cotegories i swoppng Cat X Exit (Home See allBocks W swpng Cont X Ext IProduct Updote
/Books [Product Enter Product Dato.

Standord QWE: A new modeling proposal Nome | Stondord QWE: A new modeling
Descrpton

QWE s 0 major rnovation i the fild of software development It

8 ndeontent o the cr02n2c0n of i ltwere molamentction

See L

Code [879 | Price
Graphic [nterfaces In the hands of the user . noo
o
Descrpton or sloted Gre he enplons
Ths book ntroduces, dacuments cnd explons b inghcctions of o how ndviduol S8t Gomans ore wowen v ™ ;
006t danon n i uber excarmnce compiar
Seemores>

L Home &\ See cotegories Y smopsng cot X Exit

Descr

e =an L
Price: $44.99

FIGURE 5.1
Examples of ViewComponents and of their rendition.

5.2 EVENTS AND NAVIGATION FLOWS WITH
VIEWCOMPONENTS

ViewComponents and ViewComponentParts can support interaction. This capacity
is denoted by associating them with Events, which in turn enable NavigationFlows.
Figure 5.2 shows an example of an interactive ViewComponent. The “ProductList”
ViewComponent is associated with an Event “SelectProduct,” which is the source
of a NavigationFlow leading to the “ProductDetails” ViewComponent. The mean-
ing of this design pattern is that “ProductList” publishes a list of objects from
which the user can select. The selection event triggers an interaction, whose
effect is showing the information of the chosen object in the ‘“ProductDetails”
ViewComponent.

In content-based navigation, the source and destination ViewComponents can
be positioned in different ViewContainers, as shown in Figure 5.2. In this case, the
navigation event has the effect of showing the target ViewContainer and of trigger-
ing the computation of the ViewComponents present in it. The display of the target
ViewContainer may impact the visualization of the source ViewContainer in one of
two ways:

e If the source and target ViewContainers are mutually exclusive (either directly
or because they are nested within mutually exclusive ViewContainers), the
target replaces the source.

* Otherwise the target is displayed in addition to the source.

For example, Figure 5.3 shows the ViewComponents, Event, and NavigationFlow
of Figure 5.2, but this time both the source and target ViewComponent are in the
same ViewContainer. This indicates that the choice of one product in the list causes
the display of the details in the same ViewContainer.

CHAPTER 5 Modeling interface content and navigation

Products

Product

Select|product

ProductList J

ProductDetails

o On-Line Book Store
N Home See calegories JHJ Shopping Cart

X Exit

Home /Books

Standerd QWE: A new modelling propasal

Duserption:
QAWE i 0 majer mnovalion in the feld of softwore de

s ndependent of the oroanaotion of the softwore A

A

o8 On-Line Book Store
Home @\ SeeallBooks [} SwepngCot X Exit

—

Graphea Interfaces: In the hands of the user

Dwserption
This book introduces, documents and explane the imy
D007 SRSean i the Uber SuDeTRNCE

Bae moress

Home (Books (Product

Snandand QWE: A sew modeling propasel

Descrpion.

QWE @ o major mnovabon in T Sekd of software deveiopment It

) indapancunl of thi SAgEnTaon of e Soiware Il alion

[t o haghly abatroct thinking tool thot aide in e frmakpation of
nowiedge, ond i aleo o way of desorbng T concapts thal make
up chutsc! sokstors 1o sl tuore devwloprent problees

Thes sy ook Bormughly miroduces, oo b, and anplons the amgor

Techrology The cuthers show OWE 2on Iarmaine sequasments ond v cabed M3 4 ndh

sat of verrfabie dogroma, how i con be used 1o produce sxscuioble ond iestatle models,

and how these models con be tranalsted drectly nto code In addbon, the book esplans

Pt inchvichucl HyBtAT SOMAING 3% woven Wgether by on anecutchie CIWE model

Price: $44.99 'Add 1o cert
FIGURE 5.2
A basic example of an interactive ViewComponent and a possible rendition.
Products
) Select product
ProductList (/) ProductDetails
0Fn On-Line Book Store o0 On-Line Book Store
(L Home 4 See categories W swovpng {\Home « See categories W Shopping Cart X Exit

Home /Books
N—

X

Home /Books

X

‘Standord QWE: A new modeling proposal Standard QWE: A new modelling proposal

Description

Descripton

QWE 4 o mopr emovetion n the ek of GWE 1o @ mopr inovoton i the feld of

softwore devaooment It s ndeoendent of softwore Itia ncepandant

8 of the organzaton of the software

Seemerene mplamantatin. Itis @ Nghy cbatroct
kg 1o 0t oide

Graphic Interfaces: In the hands of the user

A Oraphic Interfaces: In the hands of the user ™
DX e e Sonirom
L The book ewrcduces, documents and This book introduces, documents and Price: $44.99 t
@xplons the mobcotons of o 0oor dewan ‘exclans the molcatons of @ ooor desion in A5 ot
— ——

Content-based navigation within the same ViewContainer.

5.3 Content Dependencies: Data Binding 81

5.3 CONTENT DEPENDENCIES: DATA BINDING

ViewComponents publish content in the interface. It is therefore necessary to specify
the source of the published content. This aspect is represented by means of the Con-
tentBinding specification.

CONTENTBINDING

A ContentBinding is a very general representation of the content source of a ViewComponent; its
only attribute is the URI of the resource from which the content may be obtained.

Figure 5.4 shows a simple example of ContentBinding: the “FeedReader”
ViewComponent is associated with a ContentBinding specification that references
the URL of the feed provider.

To represent the common situation in which the content published by a
ViewComponent originates from the objects of the domain model or from an external
service, the ContentBinding concept is refined in two specializations: DataBinding
and DynamicBehavior.

DATABINDING

A DataBinding represents the provenance of content from objects of the domain model; it is
characterized by features that specify the type of data, the criterion for selecting instances, and the
attributes relevant for publication.

More precisely, a DataBinding is associated with:

» areference to a domain model concept (depending on the type of domain
model, the referenced concept can be a UML classifie—which may represent a
class in the domain model, an XML file, a table in a database, etc.—or another
element);

* a ConditionalExpression, which determines the specific instances to be
extracted from the content source;

FeedReader

«ContentBinding»
http://www.myserver.com/feed.html

FIGURE 5.4
Example of ContentBinding.

82 CHAPTER 5 Modeling interface content and navigation

MessageList

«DataBinding» MailMessage

FIGURE 5.5
A DataBinding with a reference to an entity of the domain model.

MessageList

«DataBinding» MailMessage

«ConditionalExpression»
self.isRead=false

«VisualizationAttributes»
subject, date

«OrderBy»
date DESC

FIGURE 5.6

A DataBinding with a reference to an entity of the domain model and an instance selection
condition.

* one or more VisualizationAttributes, used by the ViewComponent to locate the
data shown in the interface, such as an object attribute, a database column or an
XML element or attribute; and

* an optional OrderBy ViewComponentPart, which lists one or more sorting
criteria consisting of an attribute name and a sort direction (ASC or DESC for
ascending or descending, respectively).

Figure 5.5 shows an example of a simple DataBinding. The “MessageList” View-
Component draws its content from the “MailMessage” entity of the domain model.
The DataBinding neither specifies which instances are to be published nor the attri-
butes to be visualized, and so these aspects are left unspecified.

Figure 5.6 refines the example of Figure 5.5. The DataBinding contains an
OCL ConditionalExpression “self.isRead = false,” which specifies that only the
instances of the entity “MailMessage” with the attribute “isRead” equal to false
should be published. The VisualizationAttributes ViewComponentPart specifies
that the attributes “subject” and “date” should be used to display the objects, and
the OrderBy ViewComponentPart indicates that they are sorted in descending
order of date.

5.4 Input-Output Dependencies: Parameter Binding 83

TweetList

«DynamicBehavior»
TwitterAPI.Search(query, responsesPerPage)

FIGURE 5.7

A DynamicBehavior that specifies the retrieval of content through a call to the API of an
external service.

Note that because the conditional expression is defined within the DataBinding
ViewComponentPart, the context of the expression is implicitly set to “MailMessage”
(i.e., the object referenced by the DataBinding).

The DataBinding represents the association of a ViewComponent to the content
elements in a declarative way, which facilitates the generation of the data extraction
queries. An alternative way of expressing the content of a ViewComponent is through
the DynamicBehavior element.

DYNAMICBEHAVIOR

A DynamicBehavior represents the data access of a ViewComponent in an operational way (e.g.,
through the invocation of a service or method that returns content).

For instance, a DynamicBehavior can be expressed by referencing any
UMLBehavior or UMLBehavioralFeature.

Figure 5.7 shows an example of DynamicBehavior used to specify that the
“TweetList” ViewComponent exploits the web API of an external service to publish
content.

5.4 INPUT-OUTPUT DEPENDENCIES: PARAMETER BINDING

Content-dependent navigation allows expressing the very common situation in
which one component displays content that depends on some previous interaction
performed by the user. Examples are the display of the data of an object previ-
ously selected from a list, the display of the result list of a keyword search, and the
drill-down into a hierarchy.

All these situations require expressing an input—output dependency between
ViewComponents. The ViewComponent target of the navigation requires input pro-
vided by the source ViewComponent for retrieving the content to publish. An input—
output dependency is described by means of the ParameterBinding construct.

84 CHAPTER 5 Modeling interface content and navigation

PARAMETERBINDING AND PARAMETERBINDINGGROUP

A ParameterBinding specifies that the value of one parameter, typically the output of some
ViewComponent, is associated with that of another parameter, typically the input of another
ViewComponent. When the input—output dependency involves several parameters at the same time,
ParameterBinding elements are grouped into a ParameterBindingGroup.

Figure 5.8 shows an example of an input—output dependency. The “MessageList”
ViewComponent displays the messages of the specific mailbox selected by the
user in the “MBoxList” ViewComponent. The NavigationFlow is associated with
a ParameterBindingGroup that contains the declaration of an input—output depen-
dency: the value of the parameter “SelectedMailBox” (output of the “MBoxList”
ViewComponent) is associated with the value of the parameter “MailBox” (input of
the “MessageList” ViewComponent). The value of the “MailBox” parameter is used
in the ConditionalExpression of the “MessageList” ViewComponent, specified by
the following OCL expression:

self.MailMessageGroup = MailBox

The OCL expression specifies that the instances of “MailMessage” to retrieve are
those associated by the relationship role “MailMessageGroup” with the object iden-
tified by the value of the parameter “MailBox.” The pattern of Figure 5.8 provides
an example of a ConditionalExpression that exploits an association in the domain
model.

The transfer of parameters necessary for satisfying the input—output dependen-
cies between correlated components does not always requires user intervention.

MBoxList

«DataBinding»
MailMessageGroup

MessagelList
«DataBinding» MailMessage
«ParamBindingGroup» ’ «ConditionalExpression»
SelectedMailBox - MailBox QI mailMessageGroup=MailBox

FIGURE 5.8

Example of an input-output dependency expressed with a ParameterBinding and a
parametric ConditionalExpression.

5.5 Extending IFML with Specialized ViewComponents and Events 85

Addresses
«ParamBindingGroup» —
contact - contactID «DataBinding» Address

l «ConditionalExpression»
> contact=contactID

| «VisualizationAttributes»
i Name, City, State,
Number, ZipCode, Phone

ContactInfo i
ContactList H

select [
DataBinding» Contact
«DataBinding» Contact ¢ inding» ‘

«VisualizationAttributes» «VisualizationAttributes»

. FirstName, LastName, Photo, I'.
FirstName, LastName Birthday, URL ‘. (Emails
2 | «DataBinding» MailAddress

"‘ «ConditionalExpression»
““““““““““ » || contact=contactID

«VisualizationAttributes»
Name, MailAddress

FIGURE 5.9
DataFlows for parameter passing without user interaction.

Figure 5.9 shows an example of such a situation. When one contact is selected in the
“ContactList” ViewComponent, the details of the selected object are displayed in the
“ContactInfo” ViewComponent. In addition, further information about the same object
is displayed, namely, the list of addresses and e-mails in the “Addresses” and “Emails”
ViewComponents respectively. These two components are displayed simultaneously with
the “ContactInfo” ViewComponent after the selection from the list without any further
user interaction. The input parameter needed for computing their content (the ID of the
selected contact) is provided by a ParameterBinding associated with the DataFlows from
the “ContactInfo” ViewComponent to the “Addresses” and “Emails” ViewComponents.

DATAFLOW

A DataFlow is an InteractionFlow that specifies that some parameters are supplied from a source to
a target element, without any user’s interaction; the involved parameters are specified by means of a
ParameterBindingGroup associated with the DataFlow.

DataFlows emanate directly from ViewComponents rather than from Events and
are denoted with dashed arrows to distinguish them from NavigationFlows.

5.5 EXTENDING IFML WITH SPECIALIZED
VIEWCOMPONENTS AND EVENTS

The examples of the previous sections introduced a rather rudimentary notion of
ViewComponent. So far this concept is little more than a box. Its meaning is con-
veyed only by the name assigned to it by the designer. In this way, however, the

|
86

CHAPTER 5 Modeling interface content and navigation

«List» ListName «Details» DetailsName «Form» FormName

«SimpleField» Field1: typel

«SimpleField» Field2: type2

«SelectionField» Selection1

FIGURE 5.10

Extensions of the ViewComponent concept.

model usability and semantics cannot be improved much. If “all boxes are equal,”
tools could not check the correctness of the models or support the designer with use-
ful inferences and shortcuts.

To allow deeper model checking and improve model usability, IFML supports
the extension of the basic ViewComponents with user-defined specializations.
Figure 5.10 illustrates the extensions of the base ViewComponent construct already
provided in the IFML standard, which are still quite general. More extensions will be
introduced in chapter 7 for web and mobile applications.

The List and Details ViewComponents just add a stereotype to the basic View-
Component concept. The Form ViewComponent also adds novel ViewComponent-
Parts (SimpleField and SelectionField).

5.5.1 DATA PUBLISHING EXTENSIONS

IFML component extensions are represented in the model by stereotypes added to
a ViewComponent. For the sake of conformance to the IFML standard, we use tex-
tual stereotyping, which is quite cumbersome for ViewComponents, especially when
their names are long. However, a tool may replace the textual notation of stereotypes
with a more concise representation to save screen space (e.g., small icons, font col-
ors, textures).

LIST VIEWCOMPONENT

A List ViewComponent is a ViewComponent used to display a list of objects retrieved through a
ContentBinding. When the List ViewComponent is associated with an Event, it means that each
object displayed by the component can be used to trigger the Event. Firing the Event causes the
passing of the chosen instances as a parameter value to a target IFML element.

DETAILS VIEWCOMPONENT

A Details ViewComponent is a ViewComponent used to display the attribute values of one object
retrieved through a ContentBinding. When the Details ViewComponent is associated with an Event,
it means that the instance displayed by the component can be used to trigger the Event. Firing the
Event causes the passing of the displayed instance as a parameter value to a target [IFML element.

5.5 Extending IFML with Specialized ViewComponents and Events 87

Figure 5.11 shows an example of List and Details ViewComponents connected
with an event and a navigation flow. The “MessageList” publishes the list of all
“MailMessage” instances. The “select” event indicates that the “MessageList”
ViewComponent supports interaction (i.e., the user can click on one of the dis-
played object and trigger the event). The firing of the event produces the display
of the “Message” Details ViewComponent, which receives as input the chosen
“MailMessage” object.

The selection from a list is an event frequently associated with ViewComponents.
It thus has a specific representation in IFML as an extension of the base Event con-
cept, shown in Figure 5.11 (and previously in Figures 5.2, 5.3, 5.8, and 5.9).

SELECTEVENT

A SelectEvent is a kind of Event that supports the selection of one or more elements from a set.
When triggered, it causes the selected value(s) to be passed as a Parameter to the target of its associ-
ated NavigationFlow.

In chapter 6 we will introduce another refinement of the Event, the “select all”
event, which is used to express an Event that supports the selection of all elements
of a set.

Figure 5.12 shows an example that illustrates how adding more semantics to the
model via IFML extensions can improve usability. The model representation is more
concise than that of Figure 5.11, but the usage of extensions with precise semantics
easily allows a tool (or a human reader) to infer that the two models are equivalent.
Indeed, the List ViewComponent publishes a set of instances of the “MailMessage”
class, the Details ViewComponent publishes one instance of the same class, and the
“select” Event actually allows the user to select one item from the source ViewCom-
ponent and pass it to the target ViewComponent. Thus the designer could draw the
more concise variant of Figure 5.12, sparing the effort of expressing the inferable
ParameterBinding and ConditionalExpression.

The selection from a list can also include multiple items, as supported by the
multichoice list ViewComponent.

MULTICHOICELIST

The MultiChoice List enables the selection and submission of multiple instances. It supports mul-
tiple event types. The standard select event expresses the selection of one element of the list, while
the checking and unchecking events express the application or removal of a selection ticker on any
element in the list. The set selection event denotes the submission of the entire set of objects, and
the submit event denotes the submission of the currently selected objects.

An example of a multichoice list is shown in Figure 5.31 and in the multiple-
object deletion pattern discussed in chapter 8.

«List» MessagelList

select

«DataBinding» MailMessage

«Details»Message

«DataBinding» MailMessage

«ConditionalExpression»
self = Message

«ParamBindingGroup»

SelectedMessage - Message

Your E-Mai

G D X Q (Rtip 77 wwwmail com/inbox! & ybebox/msg 34 yzed

—)&)

Your E-Mail
o CD X Q [http://wwwmail com/inbox/)] @
H Mail
Hail [[1a] &
Mail ¥ Oov 'O More W 1not & > By Mail v
Inbox (2)
Inbox (2) W Brandy Lewis People Company Reporting Anomalie Jun 18
Starred 1" WaltersCompany ADY Review- Maybe normal in diferent Jun 15 Starred
Important Joer . Youty Your Youtv Digest - Jan 20, 2013 Jun 1 Important
Chats e Mandy Batilla Request to share ADY_P_WorkPlan doc Jun 10 I Chate
Sent Mai e Brandy Lewis ADY Company Reporting 2 Jun 10 se"l' Mail
Drafts x> WaltersCompany ADY broinstorming - The send action i May 6 Drafts
Al Mail > WoltersCompany IFML broinstorming - What kind of containers. Jan's All Mad
Spam o Pietro Ferrari Import Mey 2 Spom >
Trash e Flor Jenkings ADY Verona meeting minutes May 1 -
-
More w e Fracesco Tietto (no subject) Apr 31 More
. Daniel Parinni Research Project Apr 30
%> Camil Jomes Internship in Asmat S.A Apr 16
o1 WaltersComopany ADY bainstorming Mar 15
&

=21

(o]

More W

|

* Repy {WRepytoas Y& Forward \

1-8018 £ D By

From Pietro Ferrari <pferrori@mail. com>
To Pablo Marmol <pmarmol@mail com>
Date Tue. May 2. 2014 ot 10:03 AM
Subject Important

Dear Pablo,

1 checked the documents, I filled the missing information and I answered your questions i

the form

Please, do not hesitate to contact me if something is not clear

Best regards,

Pietro Ferrari

FIGURE 5.11

Example of the List and Details extensions of ViewComponent and their renditions.

88

uonesiAeU pue JuUslU0d soeualUl SUllBPON S ¥ILAVYHI

5.5 Extending IFML with Specialized ViewComponents and Events 89

«List» MessageList «Details» Message
select ‘

«DataBinding» MailMessage «DataBinding» MailMessage

FIGURE 5.12
Concise model representation that a tool can infer as equivalent to that of Figure 5.11.

5.5.2 DATA ENTRY EXTENSIONS

Besides content publishing, IFML extensions can also be used to express data entry.
This is done using the Form ViewComponent extension.

FORM

A Form is a ViewComponent that represents a data entry form.

A form comprises one or more ViewComponentParts that represent input fields
(and thus are tagged with the Field stereotype).

FIELD

A Field is a subelement of a Form that denotes a typed value acquired from or displayed to the user.

Fields also represent Parameters for passing their values to other [IFML elements.
There are two kinds of fields: SimpleFields and SelectionFields.

SIMPLEFIELD

A SimpleField is a kind of Field that captures a typed value. Such a value is typically entered by
the user but can also be designated read-only or even hidden. The value of a SimpleField is an
output Parameter that can be passed to other ViewElements or Actions.

As customary in data entry applications, form fields could also allow a quicker
and more controlled type of interaction (e.g., the selection of values from a pre-
defined set). This feature is captured by the SelectionField element.

SELECTIONFIELD

A SelectionField is a kind of Field that enables the choice of one or more values from a
predefined set.

|
90

CHAPTER 5 Modeling interface content and navigation

- Enter data
«Form» Enter data
Text E j
Simplefield» Text:strin ‘
csmpees Tersrng =
Simplefield» Picker:date ‘ Submit
— Choser [Crooaeone ¥
«SelectionField» Chooser ‘ -
FIGURE 5.13

Form, SimpleField, and SelectionField, and a possible rendition.

Figure 5.13 shows an example of a Form with two SimpleFields and one
SelectionField.

The mock-up rendition of Figure 5.13 hints at the fact that the type of the field can
be used by the developer or by a code generation tool to produce the most appropriate
interaction widget within the form.

Both simple and selection fields can be preloaded with values. Each Field also
defines an input parameter of the Form that contains it so that its value can be pre-
loaded with a value supplied by another IFML element. Alternatively, the prove-
nance of the Field content can be expressed with a ContentBinding, if the content
is extracted from domain model objects. Preloaded Fields behave as follow: a pre-
loaded SimpleField displays a value to the user, who can overwrite it; a preloaded
SelectionField displays multiple values to the user, who can choose the one(s) to sub-
mit. Each field also defines an output parameter of the Form that contains it, which
assumes as value the entered value (for a SimpleField) or the selected value(s) (for a
SelectionField) provided by the user.

Forms support interaction for submitting the content of their Fields. The basic
data submission activity of the user can be represented by an extension of the generic
Event construct called SubmitEvent.

SUBMITEVENT

A SubmitEvent is a kind of event that denotes the submission of one or more values. It triggers the
Parameter passing from the ViewComponent owning the event to the ViewComponent or Action
target of the NavigationFlow outgoing from the event.

Figure 5.14 shows an example of Form ViewComponent with one SimpleField
and one SubmitEvent (note that the SubmitEvent is represented by an “enter but-
ton” icon). The “MessageKeywordSearch” Form ViewComponent is associated
with the “SearchKey” SimpleField and with the “Search mail” SubmitEvent. The
latter triggers an interaction that leads to the display of the “MessageList” View-
Component, which publishes the messages that contain the search keyword in their

5.6 Content and Navigation Patterns and Practices 91

«Form» MessageKeywordSearch

«List» MessagelList
Search mail

«Simplefield» SearchKey:string «DataBinding» MailMessage

«ConditionalExpression»

if (keyword.size() <= title.size()) then
Sequence(1..title.size() - Keyword.size()) -> exists(i |
title.substring(i,i+Keyword.size()) = Keyword)

else
false

«ParameterBindingGroup»
SearchKey > Keyword

Your E-Mail

o D x Q {http://wwwmail com/inbox/4yb&box j @

Mail E lrewew l S I A

Mail » O Q &

Inbox (2) k> Mandy Batilla Request to review ADY_P_WorkPlan.doc Jun 17
Starred WaltersCompany ADY Review- Maybe normal in different. Jun 15
Important

Chats .I
Sent Mail
Drafts
All Mail
Spam
Trash

More w

FIGURE 5.14

Example of a Form ViewComponent with one SimpleField and one SelectEvent.

title. The OCL expression that selects the set of instances whose title contains the
input keyword is:

if (keyword.size() <= title.size()) then
Sequence(l..title.size()- Keyword.size()) -> exists(i |
title.substring(i,i+Keyword.size()) = Keyword)
else
false

which checks that the input keyword is a substring of the message title.

5.6 CONTENT AND NAVIGATION PATTERNS AND PRACTICES

As already mentioned in chapter 4, interface design patterns are IFML models that
embody the solution to recurrent interface design problems. In the following, we
discuss useful patterns that emerge frequently during the design of the content and
interactivity of the user interface. The patterns described in this chapter are high level
and platform independent. Platform-specific patterns are discussed in chapter 7.

92

CHAPTER 5 Modeling interface content and navigation

We start by introducing content and navigation patterns, reusable models that
effectively addresses a recurrent set of requirements in the design of the content and
navigation in user interfaces. We prefix the name of platform-independent content
and navigation patterns with CN.

5.6.1 PATTERN CN-MD: MASTER DETAIL AND PATTERN CN-MMD:
MASTER MULTIDETAIL

The master detail pattern is the simplest data access pattern, already exemplified
in Figure 5.11. A List ViewComponent is used to present some instances (the so-
called master list), and a selection Event permits the user to access the details of one
instance at a time. The master multidetail variant occurs when the object selected
in the master list is published with more than one ViewComponents, as shown in
Figure 5.9.

5.6.2 PATTERN CN-MLMD: MULTILEVEL MASTER DETAIL

This pattern, sometimes also called “cascaded index,” consists of a sequence of List
ViewComponents defined over distinct classes, such that each List specifies a change
of focus from one object (selected from the index) to the set of objects related to it via
an association role. In the end, a single object is shown in a Details ViewComponent,
or several objects are shown in a List ViewComponent. A typical usage of the pattern
exploits one or more data access classes to build a navigation path to the instances of
a core class. For example, Figure 2.2 provides an example of the multilevel master
detail pattern exploiting the instances of the “Category” access class to access the
instances of the “Product” core class.

5.6.3 PATTERN CN-DEF: DEFAULT SELECTION

A usability principle suggests maximizing the stability of the interface by avoiding
abrupt and far reaching changes of the view when they are not necessary. The default
selection pattern helps improve the stability of interfaces that show pieces of corre-
lated content and allow the user to make choices.

The basic master detail pattern and the multilevel master detail pattern exhibit
possibly unwanted interface instability, as visible in Figure 5.3. When the ViewCon-
tainer is initially accessed, the first List ViewComponent is computed and appears
rendered in the interface. However, the Details or List ViewComponent, which
depends on a parameter value supplied by a user selection, cannot be computed, and
thus the interface contains an “empty hole” corresponding to it. When the user selects
one item from the list, then the missing parameter value becomes available and the
content of the second ViewComponent can be computed, thus filling the hole but
producing a possibly unwanted instability of the interface.

The default selection pattern resolves this problem by simulating a user selection
at the initial access of the ViewContainer. A default value is chosen from the source

5.7 Data Entry Patterns 93

ProductList

«List» Products «Details» ProductDetails

«DataBinding» Product

«DataBinding» Product ‘

I —— > «ConditionalExpression»
self = SelectedProduct

FIGURE 5.15
Default selection pattern.

ViewComponent and used to define the value of the parameter needed for computing
the target ViewComponent. In this way, the user sees a stable interface initialized
with a system-defined object or list, which the user can subsequently change by using
the provided interactive events.

Figure 5.15 shows the notation for expressing the default selection pattern.

Besides the NavigationFlow outgoing from the select event, the pattern also
includes a DataFlow, which expresses a parameter passing rule for supplying a
default value when the page is accessed, in absence of user interaction.

5.7 DATA ENTRY PATTERNS

Data entry is one of the most important activities supported by the front end and one
where usability requirements are most stringent. In the next sections, we illustrate
some cross-platform patterns generally applicable to data entry interfaces, based on
the usage of Form ViewComponents. We prefix the name of platform-independent
data entry patterns with DE.

5.7.1 PATTERN DE-FRM: MULTIFIELD FORMS

The basic data entry pattern consists of a Form ViewComponent with several fields
corresponding to such elements as the properties of an object to be created or updated,
the criteria for searching a repository, or the parameter values to be sent to an external
service.

Figure 5.16 shows an example of multi-field form for composing an e-mail
message.

As Figure 5.16 illustrates, assigning a type with the fields adds useful informa-
tion to the model. For example, a code generator may render a text editing field by
means of a rich text editing widget or a Blob field with a file chooser window. Other

94 CHAPTER 5 Modeling interface content and navigation

MessageWriter Sard

Save now Discard
T | |
[| |

Add Bec Edit Subject Attach File Insert: Invitation

«Form» MessageComposer

«SimpleField» to: String

«SimpleField» cc: String

BZU wmrEF:=i=|C2)BEEO Check Spelling v

Welcome to our newest progrom, I sent you some documentation that I think will be
useftul for you in this process.

«SimpleField» bce: String

Enjoy!

«SimpleField» subject: String |
«RichTextEditor» body: Text |

Waiter Miran

]

«SimpleField» attachment: Blob |

Discard

FIGURE 5.16
Multifield form.

examples are Boolean fields rendered as radio buttons and date fields rendered as
calendars. We will show how to extend Fields to specify several usability hints in
chapter 8.

5.7.2 PATTERN DE-PLDF: PRELOADED FIELD

In many situations, the data entered in a form modify or add to existing information.
Examples include updating the description of a product in an online e-commerce
web site or changing one’s profile in a social network. In each case, preloading
fields with content augments the usability of the interface and reduces data entry
erTors.

Figure 5.17 shows the pattern for preloading a SimpleField and a SelectionField
in two different ways. The “Categories” SelectionField incorporates a DataBind-
ing element, which specifies that the values are extracted from the “name” attri-
bute of the “Category” objects of the domain model. Conversely, the “Description”
SimpleField is preloaded by means of a ParameterBinding associated with the
DataFlow connecting the “ProductDetails” Form and the “UpdateProduct” View-
Components. In this way, the text of the description attribute of the product object
in display is also used to provide an initial value to the homonymous field in the
Form.

Figure 5.18 shows another example of field preloading: a form for replying to an
existing e-mail message, in which the fields of the new message are partly preloaded
with the values of the original message. The “Reply” event associates the subject of
the original message to the subject of the new message prefixed with the string “Re:
,” copies the recipient of the original message into the sender of the new message,
and pulls the body of the original message into the body of the new message.

Product content management

«List» Products

«DataBinding» Product

«Details» ProductDetails

Select

«DataBinding» Product

i

«ConditionalExpression»
self = product

«ParameterBindingGroup»
SelectedProduct=> product

/«Form» UpdateProduct \

l «SimpleField» Description ‘

«SelectionField» Categories

«DataBinding» Category

«VisualizationAttributes

«ParameterBindingGroup»
description—> Description

»
name

FIGURE 5.17

Home /Books

X

Standard QWE: A new modelling proposal

Description:
QWE is o major innovation in the field of

software tis of

See mgug)

Graphic Interfaces: In the hands of the user

Description:
This book introduces, documents and
explains the implications of a poor desian in

See more>>

Standard QWE: A new modelling proposal

Price: $44.99

Description:

QWE is a major innovation in the field of
software development. It is independent
of the organization of the software
implementation. It is a highly abstract
thinking tool that aids in the formalization
of knowledge, and is also a way of
describing the concepts that make up
abstract solutions to software

development problems.

Description:

QWE is a major innovation in the field
of software development. It is
independent of the organization of the
software implementation. It is a highly
abstract thinking tool that aids in the
formalization of knowledge, and is also
a way of describing the concepts that
make up abstract solutions to software
development problems.

Form fields preloaded with DataBinding and ParameterBinding.

sulaped Mg eleq £°g

S6

96

CHAPTER 5 Modeling interface content and navigation

MessageManagement

To [[Welter tiran <waimir@mai com>]

«Details»
MessageReader

«DataBinding» MailMessage

From []

Subject [Re: your mail]

AddBcc Add Cc AttachFile) Insert: Invitation

Rich Formatting >> Check Spelling v

On Sat, Jan 18 2013 ot 5:34 PM, Walter Miran <walmir@mail.com> wrote:
> Welcome to ou newest program, I sent you some documentation that I think will be >
useful for you in this process.

«ParameterBindingGroup» :Emoy'
“Re:” + Subject > subject
from > to

body = body

Discard >Walter Miran

«Form» Composer
@ @

FIGURE 5.18

Form fields preloaded with parameters.

5.7.3 PATTERN DE-PASF: PREASSIGNED SELECTION FIELD

This design pattern helps when the user’s selection among a number of different
choices can be inferred from available information (e.g., from profile data, previous
choices, or the interaction context). In this case, the value of a SelectionField can be
initialized with a ParameterBinding, as shown in Figure 5.19.

The “SignUp” ViewContainer shown in Figure 5.19 contains a “UserCountry”
Details ViewComponent that retrieves the default country for a user by querying the
Locale contextVariable and exposes an OutputParameter UserCountry. Such a piece
of information is passed to the form “SignUp” as input parameter CountryPreselect

SignUp

«Details» «Form» SignUp

UserCountry — SignUp

l«SimpIeFieId» Name: String |

«DataBinding»

Context.Locale.Country 7 L«SimpIeFieId» Surname: String ‘ Name

«OutputParameter» /
Usergountry / «SelectionField» Country: String Surname -

«DataBinding» Country G -
ountry Italy
«VisualizationAttributes» name‘

«Parameter» CountryPreselect.

N @ @ 4 Submit
Submit Cancel
«ParameterBindingGroup»

UserCountry - CountryPreselect

FIGURE 5.19

Preassigned selection field.

5.7 Data Entry Patterns 97

to set the value of the “Country” SelectionField. Note the use of a DataFlow from the
Details to the Form because no interaction is required except the association of the
parameter with the SelectionField parameter value.

5.7.4 PATTERN DE-DLKP: DATA LOOKUP

This design pattern is useful when the data entry task involves a complex form with
choices among many options, such as in the case of form filling with large product
catalogues. In this case, a SelectionField can be conveniently supported by a data
lookup ViewContainer, which contains a data access pattern such as a master details.

Figure 5.20 shows an example of data lookup. The “FillRequest” Form con-
tains a SimpleField “ProductCode” that must be filled with the code of a product.

RequestQuotation

«Form» FillRequest «Modal» ProductPicker

’ «SimpleField» Customerld: string ‘

Pick «List» SelectCategory AlliE

| «SimpleField» ProductCode: String

A

ProductList

Submit Cancel
SelectProduct

«ParameterBindingGroup»
Selected > ProductCode

o982 On-Line Book Store o¥fn On-Line Book Store
{\Home « Categories i Shopping Cart X Exit ’.}Hme Categories JH Shopping Cort X Exit
ome /RequestQuotation /RequestQuotation
Fill Request = Fill Request
Product Picker
o [876509] emai [pmian@mailcom] o [ereso —
Categories
Narme | Pedro] Last Name [Miones] Name@ o —
20 || F=—
Product Cods
EE ——
0¥ On-Line Book Store 0N On-Line Book Store
{\Home @ Categories YWY Shopping Cort X Exit {\Home < Categories g Shopping Cart X Exit
/RequestQuotation ome /RequestQuotation
Fill Req Product Picker Fill Request
o |l 0 [876504] E-mail [pmilan@mailcom]
Categories Products
Nome[| [Booke Social 8P Nome [Pedro] Last Nome [Mianes]
Recordings Web Inforirdtion
Produey | Software Search Computing Product Code |8796

Selection help.

|
98

CHAPTER 5 Modeling interface content and navigation

An event “Pick” opens a ViewContainer (e,g, a modal window) whereby the user
can navigate the product taxonomy and select the desired code. The product code
chosen with the data lookup is assigned to the SimpleField “ProductCode” using
a ParameterBinding.

5.7.5 PATTERN DE-CSF: CASCADE SELECTION FIELDS

The cascade selection field pattern is useful when the data entry task involves enter-
ing a set of selections that have some kind of dependency. The typical example is
a form for entering user information, where the address is incrementally built by
selecting the country, the state or province, and then the city. If this step by step selec-
tion is performed within a form with selection fields, the fields need to be dynami-
cally updated according to the selection at the previous step. In this case, the list of
states or provinces depends on the selected country, and the list of cities depends
on the selected province. Figure 5.21 shows the IFML model that exemplifies this
behavior. The selection of an element in the “Country” SelectionField triggers the
calculation of the list of associated states to be shown in the “State” SelectionField.

User Data Input

/ «Form» Userlnput \

‘ «SimpleField» Name ‘

«SelectionField» Country

«DataBinding» Country

‘«VisualizationAttributes» name‘

«SelectionField» State/Province «ParameterBindingGroup»
«DataBinding» State SelectedCountry > UserCountry,
«ConditionalExpression» <

country=UserCountry

«VisualizationAttributes» name‘/

/ User Data

ne / User Data
User

User

Name Name Pedro Milanes
State/ - Countr: State/ [Select
caunry [Seet_p 9] l) y [S

% Province ~ Alabama

FIGURE 5.21

Cascade selection fields pattern: selecting a country triggers the calculation of the
corresponding states or provinces.

5.8 Search Patterns 99

5.7.6 PATTERN DE-WIZ: WIZARD

The wizard design pattern supports the partition of a data entry procedure into logi-
cal steps that must be followed in a predetermined sequence. Depending on the step
reached, the user can move forward or backward without losing the partial selections
made up to that point. Figure 5.22 shows a three-step wizard.

Notice that at each step the Form ViewComponent shows one Field, the one
pertinent to the current step, and caches the values of the inputs of all steps in
Parameters. The events and navigation flows for moving from one step to another
are associated with a ParameterBinding that carries the current values of all the
fields to keep track of interactions performed in previous steps. In this way, the
user can go back and forth and—at the end—all the collected values are correctly
submitted.

An alternative equivalent design can be that of associating a single copy of all
the wizard parameters with the enclosing ViewContainer and updating such global
parameters at each previous/next event.

5.8 SEARCH PATTERNS

Search patterns address recurrent problems in which user input must be matched
against some content to retrieve relevant information. We prefix the name of plat-
form-independent content search patterns with CS.

5.8.1 PATTERN CS-SRC: BASIC SEARCH

The basic search pattern has already been exemplified in Figure 5.14, where a Form
ViewComponent with one SimpleField is used to input a search key. This key is used
as the value of a parameter in the ConditionalExpression of a List ViewComponent
that displays all the instances of a class that contain the keyword. A variant of the
pattern that searches the keyword in multiple attributes of the target class is obtained
using disjunctive subclauses in the ConditionalExpression:

if (keyword.size() <= title.size()) then
Sequence(l..title.size() - Keyword.size()) -> c(i |
title.substring(i, i + Keyword.size()) = Keyword)
else
false
OR
if (keyword.size() <= body.size()) then
Sequence(l..body.size() - Keyword.size()) -> exists(i |
body.substring(i, i + Keyword.size()) = Keyword)
else
false

With the above expression, the keyword is searched in the title or in the body of a
message.

[XOR] InstallationWizard

[D] Stepl \

. Cancel
«Form» Terms&Conditions

«SimpleField» Accept: Boolean l

«Parameter» Location:
directory Next

Step2 |

S O

«Form» Location

Step3 ‘

«Form» Options C)

A=

«Parameter» Options: Bool

«SimpleField» Location: I «SimpleField» Options: Bool l
directory
«Parameter» Location:
I «Parameter» Accept: Boolean ;I\ Next directory
—y «Parameter» Options: Bool e I «Parameter» Accept: l
revious / Previous Bootean

Cancel

N End
A\ -
«ParameterBindingGroup»
Location-> Location
Options-> Options
Accept-> Accept
Installation wizard Installation wizard Installation wizard

Step 1/3 Step 2/3 Step 3/3
Terms and conditions Choose a location Installation Options
lorem ipsum dolor sit amet, consectetur adipisicing elit, sed :

do eiusmod tempor incididunt ut labore et dolore magna aliqua. D c\ ® Basic (recommended)

Ut enim ad minim veniam, quis nostrud exercitation ullamco ﬁ DA\ O Expert

laboris nisi ut aliquip ex ea commodo consequat Duis aute

irure dolor in reprehenderit in voluptate velit esse cillum dolore ﬁ MyPrograms

eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non ﬁ Utilities

proident, sunt in culpa qui officia deserunt mollit anim id est

laborum. ipsum

I have read the terms and conditions and I

O Accept

ODo not accept

@] Concel] P] Next | Cancel] Fame] concel)

FIGURE 5.22

Three-step wizard.

uonesdiABU pue 1Us1u0d adepalul SUllBPOIN G HIALdVYHI 001

5.8 Search Patterns 101

5.8.2 PATTERN CS-MCS: MULTICRITERIA SEARCH

The advanced multicriteria search pattern uses a Form ViewComponent with mul-
tiple Fields to express a composite search criterion. Figure 5.23 shows an example of
multicriteria search pattern. The “Message full search” Form contains multiple Field
elements for the user to fill. A ParameterBindingGroup assigns the field values to
the parameters in the ConditionalExpression of the “MessageList” ViewComponent.

5.8.3 PATTERN CS-FSR: FACETED SEARCH

Faceted search is a modality of information retrieval particularly well suited to
structured multidimensional data. It is used to allow the progressive refinement
of the search results by restricting the objects that match the query based on their
properties, called facets. By selecting one or more values of some of the facets, the
result set is narrowed down to only those objects that possess the selected values.
Figure 5.24 shows an example of faceted search applied to bibliography informa-
tion retrieval.

«Form» Message full search

«List» MessagelList

Search mail

«DataBinding» MailMessage
«ConditionalExpression»
(contact1.isNull() OR from = contact2) AND
(contact2.isNull() OR to -> includes(contact2)) AND
(datel.isNull() OR date > date1) AND
(date2.isNull() OR date < date2) AND
(HasWord.isNull() OR (if (HasWord.size() <= title.size()) then
Sequence(1..title.size() - HasWord.size()) -> exists(i |
title.substring(i,i+ HasWord.size()) = HasWord)
else
false)) AND
(DoesntHave.isNull() OR (if (HasWord.size() <= title.size()) then
not Sequence(1..title.size() - HasWord.size()) -> exists(i |
title.substring(i,i+ HasWord.size()) = HasWord)

«Simplefield» From: string

«Simplefield» To: string

«Simplefield» HasWords: string

«Simplefield» Doesn't have: string

«Simplefield» After: date

«Simplefield» Before: date

«ParameterBindingGroup»
From-> contactl

To-> contact2 else
HasWords-> keys1 true))
DoesntHave-> keys2
After> datel
Before> date2
Mail E [v "El
Search | All Mail X\
Mail» e L1 Grn Mo
C '
Inbox (2) [| |any Reporting Anomalie
Starred Subject Maybe normal in
Important Research Project igest - Jan 20, 2013
Chats Has the words hare
Sent Mail L j y Reporting 2
Drofts Doesn't have rming - The send action
Al Mail ["~ | |rming - What kind of
Spam O Has attachement
Trash meeting minutes
Hid
Examples: Friday, todoy, Mar 26, 3/26/04 |
AnotherBox E < ” N hect
reate filter with thi >>
eate fiter with this search >> [
WaltersComopany ADY bainstorming

FIGURE 5.23

Multicriteria search pattern.

FacetedSearch

«Form» Search /
/ Search

«SimpleField» key: string

«List» Results

«DataBinding» Document

=

«ConditionalExpression»
(Years.isEmpty() OR
Years->includes (self.year)) AND
(Venues.isEmpty() OR
Venues->includes(self.venue))
AND

keyword.size() > 0 AND (if
(keyword.size() <= title.size())
then

Sequence(1..title.size() -
keyword.size()) -> exists(i |
title.substring(i,i+
keyword.size()) = keyword

«ParameterBindingGroup»
key > keyword

«ParameterBindingGroup»
SelectedYears—> Years

«ParameterBindingGroup»
SelectedVenues—> Venues

<<checking>>
<<unchecking>>|

<<checking>>
<<unchecking>>

v

«MultiChoice» Years

N

«DataBinding» Document

«VisualizationAttributes»

«ConditionalExpression»
keyword.size() > 0 AND (if ...

«MultiChoice» Venues

A

«DataBinding» Document

«VisualizationAttributes»
venue

«ConditionalExpression»
keyword.size() > 0 AND (if ...

o4

‘Search repository

O Q X Q (RtoTwwwiacetedsearchcom) @

‘Search repository
QD X Q (R /Twwwlocetedsearchcom) @)

Search reposi
a o X Q (htto://www faceted:

itory

searchcom) @__)

Please enter your search keywords..

Seore for

Refine by yeor | Authors. Title Yea¥ [Venue | Publishe
O 201 @ |ABonges Comai | The semantcs of IFML 2014 f1oWE
0 208() | M Brambita Proctical MDE with IFM| 2014 [1CSE
0 20m¢2)
P Fraternali IFML exploined 2014 | Addison-Wesley
0O 2010y
Refine by venve | M. Brombila IFML distilled 2018 |www
1 publisher
O] 1cwe 2) | A Bongio M Brambilla| Coding from IFML 2013 |www
O 1CSEM |4 Bongio's Cerietal |IFML for dummies |20m [icwe
0O www 2)
D VLDB (1) P. Fraternali et ol IFML ot work 2011 |vLDB

—r—

Refine by yeor
0 2014 (3)

0 201309
™ 201(2)
0 2010 ()

Refine by venue

I publisher

0O 1cwe 2)
0 1cse
0O www (2)
0 veos ()

Searh for

A.Bongio S Cerietal [IFML for dummies |2011

A.Bongio P Fraternali et al [IFML at work 201

Authors Title: Year ¥ |VenuelPublisher
ICWE

vLDB

FIGURE 5.24

Faceted search pattern.

(4]}

uonesiAeU pue JuUslU0d soeualUl SUllBPON S ¥ILAVYHI

5.9 Running Example 103

The model of Figure 5.24 consists of a ViewContainer (“FacetedSearch”), which
comprises a Form for entering the search keywords, a List for showing the query
matches (“Results”), and two MultiChoice Lists (“Years” and “Venues”) for select-
ing facet values and restricting the result set. At the first access of the ViewContainer,
no keyword has been provided yet by the user, and thus the ConditionalExpression
of the “Results” List evaluates to false and the ViewComponent is not displayed. The
same holds for the “Years” and “Venues” ViewComponents (their ConditionalEx-
pressions are not entirely shown in Figure 5.24 for space reasons, but they retrieve
the documents that match the input keyword). When the user submits a keyword and
triggers the “Search” event, the ConditionalExpressions of the “Results,” “Years,”
and “Venues” ViewComponents are evaluated and the content of these ViewCompo-
nents is populated with the matching documents. The VisualizationAttributes of the
“Years” and “Venues” ViewComponents comprise a single attribute, whose distinct
values are displayed as facets'. Checking or unchecking the values of the facets trig-
gers the corresponding events shown in Figure 5.24, which causes the binding of the
“Years” and “Venues” parameters. As a consequence, the ConditionalExpression of
the “Results” ViewComponent is evaluated using thoseparameters, which—if not
empty—can lead to the restriction of the result set.

5.9 RUNNING EXAMPLE

As already mentioned in chapter 4, the e-mail application interface consists of a top-
level ViewContainer, which is logically divided into two alternative subcontainers:
one for managing mail messages (open by default when the application is accessed)
and one for managing contacts.

The “Messages” ViewContainer, visible in Figure 5.25, displays the list of the
available mailboxes, which is presented in conjunction with the messages con-
tained in a mailbox or with the interface for composing a message or for editing
the mail settings. Selecting a mailbox causes the messages it contains to appear
in the central part of the interface (the MailBox sub-ViewContainer). Entering the
application causes the selection of a default mailbox in accordance with PATTERN
CN-DEF: default selection.

Figure 5.26 shows the ViewComponents, Event, and NavigationFlow that model
the selection and display of a mailbox.

Access to the messages can also occur through a search functionality displayed
together with the mailbox list. An input field supports simple keyword based search.
With a click, the user can access an alternative full-search input form that allows the
entry of various criteria, as shown in Figure 5.27.

Figure 5.28 shows the model of the two alternate search functions. A mode-
less ViewContainer is used to denote that the full search form opens in a modeless
window, as shown in Figure 5.27. The forms “Message Keyword search” and “Full
Search” contain the fields shown in Figure 5.14 and Figure 5.23, respectively. The
“Message List” ViewComponent has three ConditionalExpressions. Each expression

104 CHAPTER 5 Modeling interface content and navigation

Your E-Mail
‘el C> X Q (Fto77wwwmall com/inbox/ D)
O
wal) T3]
Mail ¥ Hv R More W 1-18ef18 & > By
Inbox (2) [TJ# > Brandy Lewis People Company Reporting Anomalie Jun 18
Starred [> WaltersCompany ADY Review- Maybe normal in diferent... Jun 15
Important [Youtv Your Youtv Digest - Jan 20, 2013 Jun 1
Chats [7] > Mandy Batilla Request to share ADY_P_WorkPlan.doc Jun 10 ll
Sent Mail Owc> Brandy Lewis ADY Company Reporting 2 Jun 10
Drafts [J x> WaltersCompany ADY brainstorming - The send action is ... May 6
All Mail [] 9> WaltersCompany IFML brai ing - What kind of Jan 5
Spam [J# > Pietro Ferrari Important May 2
Trash Ow Flor Jenkings ADY Verona meeting minutes May 1
More w [] > Fracesco Tietto (no subject) Apr 31
[“J# > Daniel Parinni Research Project Apr 30
[> Camil James Internship in Asmat SA Apr 16
[WaltersComopany ADY bainstorming Mar 15
4’!

Mock-up of the top-level ViewContainer of the e-mail application, with the default subcon-
tainer “Messages” in view.

[XOR] Mail

[D] [L] Messages [L] Contacts

[XOR] MessageSearch

«List» MailBoxList

«DataBinding»
MailBox

[XOR] MessageManagement

MailBox [L] Settings

«List» MessageList

«DataBinding»MailMessage
______________ _Jd - «ConditionalExpression»
Self.MailMessageGroups

ParameterBindingGroup» ->includes(Mbox)
Selected> Mbox

[L] MessageWriter

FIGURE 5.26

The ViewComponents, Event, and NavigationFlow that model the selection and display of a
mailbox.

5.9 Running Example

Mail [~ l 2N |

Search -AII Mail X
Mail v From B vy v More w
I Compose I ITo l
Inbox (2) L l any Reporting Anomalie
Starred Subject Maybe normal in
Important Research Project igest - Jan 20, 2013
Chats Has the words hare
Sent Mail L] y Reporting 2
Drafts Doesn't have rming - The send action
All Mail L I ‘rming - What kind of
Spam O Has attachement) }
Trash Day within I e lel of [j meeting minutes
Water .
Examples: Friday, today, Mar 26, 3/26/04 .
AnotherBox P " ject
>
reate filter wi' IS searcl > Asma(SA
[> WaltersComopany ADY bainstorming
FIGURE 5.27

Mock-up of the full-search input form.

is reached by a navigation flow, one for each of the ways in which it can be accessed.
At every user interaction, only the expression that is the target of the current user
navigation will be evaluated. The condition expressions are visible in Figure 5.14,
Figure 5.23, and Figure 5.26.

For brevity, Figure 5.28 omits representation of the ParameterBindingGroup ele-
ments associated with the events “Select Mailbox,” “Search mail,” and “Search mail
full.”

Figure 5.28 also shows a refinement of the “MailBox” ViewContainer, which
unveils its internal organization into the sub-ViewContainers necessary to alternate
between the visualization of a message list and that of a single message. The “Mes-
sageList” ViewComponent supports interaction with mail messages individually or
in sets. On the entire set of messages, the “MarkAllAsRead” event permits the user
to update all the messages in the current MailBox, setting their status to “read” (see
Figure 5.29).

As shown in Figure 5.30, the “MessageList” ViewComponent also supports a sec-
ond kind of interaction, the selection of a subset of messages. When at least one mes-
sage is selected, a ViewContainer is displayed (“MessageToolbar’), which permits
the user to perform several actions on the selected message(s), including archiving,
deleting, moving to a MailBox/Tag, and reporting as spam.

When one or more messages are selected in the “MessageList” ViewComponent,
the “MessageToolbar” view container appears, which allows the user to perform

I
105

[XOR] Mail

[D] [L] Messages

[L] Contacts

«List» MailBoxList

«DataBinding»
MailBox

9)

! Select
Mailbox

[XOR] MessageSearch

o

Search mail

[D] Search
«Form» Message Full |search
keyword search
<

Close full search

«Modeless» FullSearch

%

«Form» Message
full search

Search mail full

[XOR] MessageManagement

[D] MailBox

[L] Settings

[XOR] Message Reader

[D] Message List

MessageDetails

«List» Message List

«DataBinding»MailMessage

«ConditionalExpression» Cond1

«ConditionalExpression» Cond2

e

«ConditionalExpression» Cond3

[L] MessageWriter

MessageToolbar
1]

FIGURE 5.28

Refined model of the search functionality, alternating between a basic and a full search form.

LoHeSIA_U pUE JUSJU0D ddBpalUI BUIIRPON G HILAYHD 90T

5.9 Running Example 107

D v Q More v
Mark all as read

[> WaltersCon Select messages Your Youtv Digest
— ‘to see more actions

FIGURE 5.29
The “MarkAllAsRead” event marks all messages in the current mailbox as “read.”

Message toolbar

O« Q Mrew [@ Qw (Iw /

V5 ¢ Brandy Lewis People Company Reporting Anomalie
WaltersCompany ADY Review- Maybe normal in diferent...
Vit Youtv Your Youtv Digest - Jan 20, 2013
Mandy Batilla Request to share ADY_P_WorkPlan.doc
Brandy Lewis ADY Company Reporting 2
FIGURE 5.30

Behavior of message selection in the “Messagelist” ViewComponent.

several actions on the selected messages. If all messages are deselected, such a view
container disappears

In summary, the “MessageList” ViewComponent supports three types of interac-
tive events:

1. An event for selecting the entire set of messages and triggering an action upon
them, marking all messages as read (Figure 5.29);

2. Two events for checking/unchecking messages (Figure 5.30);

3. An event for selecting an individual message and opening it for reading.

The Events of the “MessageList” ViewComponent are modeled in Figure 5.31
and Figure 5.33.

The “SelectMultiple” checking event marks one or more messages in the current
mailbox and produces the display of the “MessageToolbar” ViewContainer, which
remains active while at least one message is selected. The “Deselect” unchecking
event allows the user to deselect messages, which updates the value of the “Messag-
eSet” parameter. Notice that the checking and unchecking events are triggered every
time one element is checked or unchecked in the list. The “SelectMultiple” event has
a ParameterBinding, which associates the (possibly empty) set of currently selected
messages with an input parameter of the ‘“MessageToolbar” ViewContainer. The
“MessageToolbar” ViewContainer is also associated with an ActivationExpression,
which verifies that at least one message is selected. The “SelectOne” SelectEvent

[XOR] Mail

[D] [L] Messages

[L] Contacts

«List» MailBoxList

[XOR] MessageSearch

«DataBinding»
MailBox

Select
Mailbox

[XOR] MessageManagement

[D] MailBox

[L] Settings

[XOR] MessageViewer

[D] MessagelList

Message

«Multichoice» MessagelList

«DataBinding»MailMessage

«ConditionalExpression»
MailBox.MailMessages

->exists(self)

setselectiol
arkAllAsRead

<<checking>>

v

Details

$electOne

<<unchecking>>

Deselect

SelectMultiple

MessageToolbar

Delete
«Parameter» MessageSet |
Archive
Report
) R
MoveTo _/ U Labels

[L] MessageWriter

«ParameterBindingGroup»
SelectedMessages - MessageSet

«ActivationExpression»
MessageSet.notEmpty()

FIGURE 5.31

Model of the behavior of the “SelectMultiple” Event.

LoNeSIABU pUE JUSJU0D ddBualUl BUIIPPON G HILAYHD 80T

5.9 Running Example 109

o EMal Your E-Mat

Q0 X () Cormmmacommer) QO XG(-)
] L =] i [F) . =1 1
Mail v Ow o More W v (&[> By Mail v o Morew 1000 (&> By

Brondy Lewis Peopie Compony Reperting Ancmalie 018 Inbox (2)
WaitersGampany ADY Review- Moybe norma i dierent un 5 Storred
Youty Your Youty Digest - Jan 20, 2013 Jn Important

Mandy Batsa Raquest 1o shore ADY_P_WorkPlongoc. ann Toe, A0 30, 2013 ot 156 AM

Sent Mo Subject Research Project W

Dear Patla
me test Moy 2 Spam

Flor Jenkings ADY Verona meeting mintes
Frocesco Titto (00 subject) Apr 3t More ¥
Danel Parioni Rasaarch Projec Apr 30

>
*
*
>
>
*
0 WoltersCompany IFML brainstorming - What kind of oo Jons Aot
>
>
*
*
*
*

[remy [Remy oo YO Forvars \

From Daniel Parini <dparini®mailcom>
To Poblo Morml <pmrmal@mailcom>
Date Tue Ap 30, 2013 ot 1156 AM
Subject Research Project

Brandy Lewss Peopla Company Reporting Anomabe Jun 18
WaltersCompany ADY Review- Maybe normal in diferent. Fun 15
Youtv Your Youtv Digest - Jan 20, 2013 Jn 11
Mandy Batilo Requast o share ADY_P_WorkPlon doc Jun 10
Brondy Lewis ADY Company Reparting 2 3 10

. WaltersCompany ADY brainstorming - The send action is Moy 6
WaltersCompany 1ML brainstorming - What kind of containera. Jon'§ I checked the document of the Research Project.
me test Moy 2

- For Jerkings ADY Verona mesting minutes May 1

. Fraceaco Tietto (no subject) Apr 31 Daniel Parinni
Danie! Porinni Research Projecy Apr 30
Comil Jomes Intemship in Asmat SA Apr 16
WaltersComopany ADY bainstorming Mor 15

Dear Poblo,

ooooooo

Bost regards,

-
EARRARARAAE B8

oo

FIGURE 5.32

Mock-up of the selection of a single message, which causes the details of the message to
be displayed.

enables the selection of a single message from the mailbox and causes the details of
the message to be displayed, as shown in the mock-up of Figure 5.32.

This functionality is modeled in Figure 5.33 with a SelectEvent associated with
the “MessageList” ViewComponent, which causes the setting of the “MessageSet”
parameter and the display of the “MessageReader” ViewComponent. Such a com-
ponent permits the user to access one specific message at a time. Its visualization
replaces the “MessageList” ViewContainer, as denote by the XOR nesting of the
children ViewContainers “MessageList” and “MessageDetails” within “Messa-
geViewer,” shown in Figure 5.31 and Figure 5.33.

We conclude this elaborate example with a model of the functionality for com-
posing messages. The interface for composing a message can be accessed in two
ways: by clicking on the “Compose” link anywhere in the message management
interface (to write a new message) and by selecting one of the various commands
available in the message reader interface (for replying to or forwarding an existing
message). Consequently, the model should support both the content-independent and
the content-dependent navigation to the message composer. Figure 5.34 shows the
mock-ups of the two ways for accessing the message composer functionality; notice
that the content of the message editing fields and the navigation events available dif-
fer in the two cases.

Figure 5.31 and Figure 5.33 show the model of content-independent navigation
that permits the user to access the message writing functionality. The “Message-
Writer” ViewContainer is marked as landmark, and therefore it is accessible from all
the other ViewContainers of the “MessageManagement” ViewContainer. It contains

[XOR] Mail

[D] [L] Messages [L] Contacts

[XOR] MessageSearch

«List» MailBoxList

«DataBinding» [XOR] MessageManagement
MailBox

@ [D] MailBox [L] Settings
[XOR] MessageViewer

Select
Mailbox

[D] MessagelList MessageDetails

«Multichoice» MessageList
«DataBinding»MailMessage

«Details» [L] MessageWriter
MessageReader

«ConditionalExpression»
Self.MailMessageGroups->
includes(Mbox

SelectMultiple ™.

<<setselection>> Deselect) /«ParameterBindingGroup»

MarkAllAsRead k,¢~f~ """""" =/ SelectedMessages > MessageSet
Delete MessageToolbar
Archive —~ | «ActivationExpression»
«Parameter» MessageSet | I MessageSet->notEmpty()
Report
VR
MoveTo U Labels

LoNeSIABU pUE JUSJUOD 8dBMalUI BUIIGPON G HILAYHD OTT

FIGURE 5.33

Model of the events and components for reading a single message.

5.9 Running Example 111

r‘\ RGP'V‘ ®\Reply to alp{ > FOI"Ndfd\

Send Savenow Discard Send Save now Discard

To IBVM Lewis <brandylewis18@mail com> l To | Brandy Lewis <brandylewis18@mail.com>]
Ce Iwn",, Miran <walmir@mail com> I Ce I Walter Miran <walmir@mail.com> I
Add Boc Edit Subject Attach File Insert: Invitation Add Boc Edit Subject Attach File Insert: Invitation
Rich Formatting >> Check Spelling v Rich Formatting >> Check Spelling v
On Sat, Jan 18 2013 ot 5:34 PM. Walter Miran <walmir@mail com> wrote:
> Welcome to our newest program, I sent you some documentation that I think will be
> useful for you in this process.
>
> Enjoy!
>
> Walter Miran

FIGURE 5.34

Mock-up of the interface of the message composer when reached with content-independent
navigation (left) and when accessed with content-dependent navigation (right).

[XOR] MessageViewer «ActivationExpression»

MessageRecipients->size() > 1 «ParameterBindingGroup»

Y “Re” + Subject > subject
MessageDetails i

' cc> cc

«Details» ReplyToAll - body - body

e “Reply All” State

rward

MessageReader

«ParameterBindingGroup»

_/ “Fw” + subject > subject
body - body

“Forward” > State

eply

- «ParameterBindingGroup»
Subject > “Re” + subject

[L] Message| Writer| from > to
5 Y A cc > cc
«Form» body > body

“Reply” > State

MessageComposer

FIGURE 5.35
Model of the content-based navigation to the “MessageWriter” ViewContainer.

the “MessageComposer” ViewComponent, modeled as a form with different fields
corresponding to the main attributes and relationships of the domain model class
“Message’: To, Cc, Bec, Subject, Body, and Attachment. When the “MessageWriter”
ViewComponent is accessed in the content-independent navigation case, the form
fields are not preloaded and the user can fill them freely, as shown in the left part of
Figure 5.34.

Conversely, Figure 5.35 shows the model expressing the access to the mes-
sage composer functionality as a consequence of content-dependent navigation.
The “MessageReader” ViewComponent is associated with three events (“Reply,”

112

CHAPTER 5 Modeling interface content and navigation

“ReplyToAll,” and “Forward”) that allow the user to navigate to the “MessageWriter”
ViewContainer and access the “MessageComposer” Form. The “ReplyToAll” event
is active only when the message displayed in the “MessageReader” ViewComponent
has more than one recipients, as expressed by the activation expression associated
with the “ReplyToAll” event.

The “Reply,” “ReplyToAll,” and “Forward” events are associated with a Parame-
terBindingGroup, which conveys the properties of the original message displayed in the
“MessageReader” ViewComponent. These properties are used to preload the fields of
the “MessageComposer” Form as shown in the mock-up in Figure 5.34 (right). Each
form field is associated with a parameter of the same name, which takes a value from
the proper attribute of the original message as expressed by the ParameterBindingGroup:

e The “Reply” and “ReplyAll” events associate the subject of the original message
with the subject of the new message (prefixed with the string “Re:), the recipient
of the original message with the sender of the new message, the body and the cc
recipients of the original message to the body and cc recipients of the new message.

* The “Forward” event associates the subject of the original message with the
subject of the new message (prefixed with the string “Fw:) and the body of the
original message with the body the new message.

The “MessageComposer” Form supports two SubmitEvents (“Send” and “Save”)
for sending and for saving without sending the message, respectively.

The “MessageComposer” Form, whose mock-up appears in Figure 5.34, also
supports a kind of stateful interaction. Besides the events “AddCc,” “AddBcc,”
“AddAttachment”—which are available irrespective of the kind of response the user
is editing—the events “Reply,” “ReplyToAll,” and “Forward,” allow switching the
response type. However, only two out the three events are active at a time depending
on the current state of the editing. For example, when the user is editing a “ReplyTo-
All” message, only the “Reply,” and “Forward” events are active. This is conveyed
by the “State” parameter of the Form and by the three ActivationExpressions associ-
ated with the events, as shown in Figure 5.36. The ActivationExpressions check for
the value of the parameter “State,” which is set appropriately by each of the “Reply,”
“ReplyToAll,” and “Forward” events, so that only the events appropriate to the cur-
rent editing context are active.

Another example of a conditional event is the “EditSubject” Event. The event for
editing the subject field is disabled when the value of the “State” parameter is ‘“Forward.”

In chapter 6, we will conclude the e-mail application example by showing how
to represent the invocation of the business actions triggered by events, such as send-
ing the message, moving it to another folder, or applying rich formatting to its body.

5.11 Bibliographic Notes 113

«ActivationExpression»

State = “Reply” or \
State = “Forward” \

«ParameterBindingGroup»

[L] MessageWriter “Re:” + Subject > subject
from > to
Discard /" > cc
\/ ~— «Form» MessageComposer X body > body
Reply All | “Reply All” > State
AddCe N1 (simpleField» to: String A

r—v—h «SimpleField» cc: String «ActivationExpression»
|| State = "Reply All" or ‘\
«SimpleField» bce: String) State = “Forward” |
«SimpleField» subject: String er__‘y} «ParameterBindingGroup»

“Re:"” + Subject > subject,
from - to

> cc

body > body
“Reply” > State

State != “Forward"”

’7«Act|vat|onExpre55|on» «SimpleField» body: String ‘ :
-

«SimpleField» attachment: ...

«Parameter» State

«ActivationExpression» -
State = “Reply” or ‘

State = “Reply All” |

AddAttachment A send \!,J Save

«ParameterBindingGroup»

\/ “Fw:"” + subject > subject
body > body

“Forward” > State

FIGURE 5.36

Model of the stateful interaction supported by the “MessageComposer” Form
ViewComponent.

5.10 SUMMARY OF THE CHAPTER

In this chapter we have delved into the specification of the content and navigation
aspects of the interface and shown how to use ViewContainers, Events, Navigation-
Flows, and DataFlows to describe many configurations. The readability of models is
enhanced by using more specific ViewComponents, such as List and Details, which
make diagram more understandable and amenable to deeper checking and more thor-
ough code generation. We have paid special attention to the input—output depen-
dencies between ViewComponents, which are essential for specifying the runtime
update of interface content induced by user events. The introduced IFML constructs
have been shown at work in the specification of different categories of design pat-
tern for content publication, data entry, and searching. At the end of the chapter, we
resumed the specification of the running case, refining the interface model with the
content publication components and the content-dependent navigation flows.

5.11 BIBLIOGRAPHIC NOTES

Modeling the content of interfaces is a relatively new subject. Its academic roots
can be traced back to a few pioneering design models proposed in the past for
hypermedia applications such as HDM (Hypermedia Design Model) [GPS93],
OOHDM (Object Oriented HDM) [SR95], and RMM (Relationship Management

114 CHAPTER 5 Modeling interface content and navigation

Methodologies) [ISB95]. The first hypermedia model to gain acceptance was the
Dexter Model [HBR94], a model providing a uniform terminology for represent-
ing the different primitives offered by hypertext construction systems. In the Dexter
Model, components describe the pieces of information that constitute the hypertext,
and links represent navigable paths. Many subsequent proposals in the hypermedia
field started from the Dexter Model and added more sophisticated modeling primi-
tives, formal semantics, and structured development processes. For example, HDM
adds more complex forms of hypertext organization and more powerful navigation
primitives to capture the semantics of hypermedia applications. RMM proposes a
modeling language built upon the Entity-Relationship model and goes further in the
definition of a structured method for hypermedia design. OOHDM takes inspiration
from object-oriented modeling by adding specific classes for modeling advanced
navigation features. It also exploits classical object-oriented concepts and notations
in the design process.

The advent of the web as an application development architecture has sparked
new interest in platform-independent modeling of the front end as a means for over-
coming the proliferation of the implementation technologies and nonstandard exten-
sions of web languages. The Autoweb system was the first system demonstrating the
fully automatic generation of complex web application from a model of the front end
[FPOO]. Among the several languages and systems proposed in the literature, the Web
Modeling Language (WebML) reached industrial maturity, being employed in the
development of applications since 2000 [BBCO03]. WebML describes the composi-
tion of the (web) interface using domain-specific concepts, such as site views, areas,
pages, areas, content units, and links. The language includes a set of predefined con-
tent publishing components and allows developers to extend the core set with their
own components.

END NOTES

1. When the data binding of a List contains objects with duplicate values of the visualization
attributes, two options are possible: showing duplicates or distinct values. We assume the
latter option as the default. If needed, the alternative option can be specified (e.g., with the
«duplicate» stereotype).

CHAPTER

Modeling business
actions

Interactive applications are not only about displaying an interface to the user. The
interface is a means for requesting services. These services are performed by the
application business logic, possibly with the help of external programs.

Taking the Model-View—Controller pattern as a high-level conceptual descrip-
tion of the way in which an interactive application works, the view allows the user
to trigger events, which are handled by the controller. The controller dispatches each
event to the proper element in the model, which performs the business action implied
by the event. This can result in the update of the application status. At the end of the
cycle, the view is updated to display the current status to the user for the next round
of interaction. This typical roundtrip is shown in Figure 6.1.

The model could be logically regarded as responsible for two distinct aspects:
exposing the business actions that embody the service requested by the user and
maintaining the status of the application, which displays in the view.

In chapter 3, we discussed how to construct a domain model that specifies the
objects of the application model. In chapter 4, we described how to define the general
structure of the application interface. Chapter 5 illustrated how to express the publi-
cation of the domain objects in the interface.

The focus of this chapter is on the business logic of the application, be it embed-
ded in methods of the application domain objects, described by suitable UML behav-
ioral diagrams, or delegated to external objects and services.

The goal of IFML is not modeling the internal functioning of the application busi-
ness logic. Rather the objective is to express the interplay between the interface and
the business logic. This is done by:

* Showing that an event triggers a business action, which may imply also the
specification of some input—output dependency between the interface and the
business logic; and

¢ Showing that the interface can receive and respond to events generated by “the
system,” be it a business component of the application or an external service. In
this case, IFML also permits the designer to describe the input—output depen-
dency between the information carried by a system event and the affected ele-
ments of the interface.

IFML does not replace the behavior specification languages that are normally
employed to describe the algorithmic aspects of the business logic. IFML business
actions are black boxes that show the minimal amount of information needed to

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00006-0 1 1 5
Copyright © 2015 Elsevier Inc. All rights reserved.

116 CHAPTER 6 Modeling business actions

View Controller Model

-
> Status update

FIGURE 6.1

Sequence diagram describing at a high level the cycle of an interactive application.

User event

A

Model event

View update

A

specify the abovementioned aspects. The designer is free to focus on such black
boxes and describe their internal functioning using the behavioral language of choice.
To support this kind of refinement, an action in IFML can reference a behavior in an
external model.

6.1 ACTIONS

ACTIONS

An Action represents a reference to some business logic triggered by an Event.

Actions may reside on the server or on the client side. The elementary design pat-
tern for triggering actions is represented in Figure 6.2.

The model contains a source ViewContainer and ViewComponent, with an
Event connected via an InteractionFlow to an Action (shown as a named hexa-
gon). The Action is itself connected to a target ViewComponent through an
outgoing flow by an event typically representing the completion of the Action.
ParameterBinding elements are used to denote the input—output dependency
between the source ViewComponent and the Action, and between the Action
and the target ViewComponent.

For example, the source ViewComponent could be a form for entering a flight
request. The Action could be a flight brokering business component that takes as
input the form data, checks availability and price at different flight operators, and
produces the best offers as output. The target ViewComponent could be a List show-
ing the retrieved options to the user.

The pattern of Figure 6.2 assumes that the action always terminates with the same
event, after which the same target ViewContainer is displayed. However, in many
situations, invoking a piece of business logic may result in various alternative out-
comes lead to different termination events. Therefore, Actions may trigger different

6.1 Actions

117

SourceViewContainer

TargetViewContainer

TriggeringEvent

Source
ViewComponent

Target
ViewComponent

«ParameterBindingGroup» «ParameterBindingGroup»
ViewOutput - ActionInput ActionOutput - ViewInput

FIGURE 6.2

Elementary model describing the triggering of the action and its effect on the interface.

SourceViewContainer

‘ NormalTargetViewContainer

. . NormalTermination ‘
TriggeringEvent
Source - - NormalTarget
ViewComponent , ViewComponent

ExceptionalTermination ™

«ParameterBindingGroup» /. «ParameterBindingGroup»
ExceptionActionOutput-> ViewInput NormalActionOutput-> ViewInput

ExceptionTargetViewContainer

ExceptionTarget
ViewComponent

FIGURE 6.3

Model of action invocation with explicit ActionEvent.

Events, called ActionEvents, as the result of the normal termination of computation

or to signal the occurrence of exceptions.

ACTIONEVENTS

An ActionEvent is an Event that may be produced by an Action to signal normal or exceptional
termination.

Figure 6.3 shows the typical usage of multiple ActionEvents. The Action can
terminate in normal or exceptional conditions, and the ActionEvents and associated
InteractionFlows express the course of action taken in the two cases. For example,

118 CHAPTER 6 Modeling business actions

the source ViewComponent could be a form for signing up an application to an
external service, and the Action could be a validation business component, taking
as input the form data, validating it, and producing a limited-time service token. In
case of normal termination, the target ViewComponent could be a Details component
showing the newly generated token and the service terms and conditions to the user.
Exceptional termination may also occur (e.g., when the user’s request does not meet
the conditions for obtaining an access token). In this case, the target ViewComponent
could be a Details component showing the reasons of failure to the user.

The source and the target ViewComponent of an action invocation need not be dis-
tinct. For example, Figure 6.4 shows a model of an interface for deleting objects from
a list. The source ViewComponent allows the user to select an object for deletion. After
the deletion, the same ViewComponent is presented again with its content updated.

Figure 6.4 also shows two shortcuts for simplifying the ActionEvent notation.
When no outgoing InteractionFlow and no ActionEvent are associated with the
Action, it is assumed that the target is the smallest ViewContainer comprising the
source ViewElement from which the Action has been activated.

SourceViewContainer

«List» Some
objects

SourceViewContainer

i Delete
«List» Some Delete

objects Action

SourceViewContainer

Delete

Delete
Action

«List» Some
objects

FIGURE 6.4

Model of an interface that redisplays the (updated) source ViewContainer after an action is
executed.

6.3 Business Action Patterns 119

6.2 NOTIFICATION

The influence of business logic on the interface manifests not only when the user
takes the initiative but also as a consequence of a system-initiated action. This situ-
ation requires modeling the notification of an occurrence from the application back
end of an external system to the user interface. In this case, the [IFML model does not
represent the initiation and execution of the action but only its ultimate effect, which
is captured by a SystemEvent.

SYSTEMEVENT AND SYSTEMFLOW

A SystemEvent is an Event produced by the system that triggers a computation reflected in the user
interface. Examples of SystemEvents are time events (which are triggered after an elapsed frame of
time), system alerts (such as a database connection loss), or message receipt notifications.

A SystemFlow is an InteractionFlow that connects a SystemEvent to a ViewElement to identify
the element affected by the occurrence of the SystemEvent.

The cause of a SystemEvent may be left unspecified in the model, although it
is also possible to express a condition whose occurrence triggers the SystemEvent.
Such a condition is represented by means of a TriggeringExpression.

TRIGGERINGEXPRESSION

A TriggeringExpression is an expression that determines when or under what conditions a System-
Event should be triggered.

The notification PATTERN A-notif, introduced later in this chapter, contains an
example of a SystemEvent, a SystemFlow, and a TriggeringExpression.

6.3 BUSINESS ACTION PATTERNS

Several design patterns embody the solution to recurrent problems in the design of
the interplay between the user interface and the business logic. We call such plat-
form-independent patterns action patterns and prefix their name with an “A.”

6.3.1 CONTENT MANAGEMENT PATTERNS

The most important action patterns relate to the management of the objects of the
domain model. Such content management patterns all have a similar structure. They
exploit an Action endowed with the input parameters necessary to create, delete, or
modify objects and association instances, and with output parameters that character-
ize the effect of the performed content update. The role of the interface is that of
supplying the input and of visualizing the output to the user as a confirmation that the
action has been executed and the application state updated.

120 CHAPTER 6 Modeling business actions

6.3.2 PATTERN A-OCR: OBJECT CREATION

The object creation pattern enables the creation of a new object. The pattern relies on
an Action characterized by:

¢ auser-defined name;

» areference to the dynamic behavior that the action must perform; and

* aset of input parameters, used to initialize the attributes of the object to be
created.

The input of the Action is typically supplied by a ParameterBindingGroup asso-
ciated with a NavigationFlow exiting from a Form ViewComponent. The parameter
values are used to construct the new object. If some attributes have no associated
input value, they are set to null. The only exception is the object identifier (OID),
which is normally treated in an ad hoc way: if no value is supplied, a new unique
value is generated by the Action. The behavior of the object creation Action typically
consists of invoking a class constructor or a factory method in a creator class. The
output produced by the Action is the newly created object, comprising its OID and
all its attribute values. The output of the Action is defined only when the operation
succeeds and thus can be associated as a ParameterBindingGroup only with the Inter-
actionFlow that denotes normal termination. If no ParameterBindingGroup is speci-
fied explicitly, a default output ParameterBinding consisting of the OID of the newly
created object is assumed as implicitly associated to the normal termination event.

The example of Figure 6.5 shows the typical object creation pattern, which con-
sist of the combination of an entry Form (“EnterProductData”) providing input to an
Action (“CreateProduct”) that creates a new Product by invoking the DynamicBehav-
iour implemented by a factory method of a creator class. The Form has several fields
(e.g., “Code,” “Name,” and “Price”) for entering the respective attribute values. The
field values inserted by the user are associated as explicit parameters with the Naviga-
tionFlow from the Form to the Action. In the rendition, also shown in Figure 6.5, the
SubmitEvent associated with the form is displayed as a submit button, which permits
the activation of the Action. The “CreateProduct” Action has two ActionEvents. Nor-
mal termination is associated with an InteractionFlow that points to the “NewPro-
ductDetails” ViewComponent and with the default output parameter (the OID of the
new object). The exceptional termination event is associated with an InteractionFlow
that points to a ViewContainer for displaying an error message.

6.3.3 PATTERN A-OACR: OBJECT AND ASSOCIATION CREATION

A variant of the object creation pattern can be used to create a new object and set its
associations to other objects. Figure 6.6 shows an example of such an object creation
and connection pattern.

The “EnterProductData” Form contains an additional SelectionField, correspond-
ing to the association that must be set, namely the association between Product and
Category. The Category SelectionField can be preloaded with all the categories as
discussed in chapter 5. The NavigationFlow triggered by the SubmitEvent “Creat-
eNewProduct” has one additional ParameterBinding for the identifier of the selected

Product Creation

«Form» EnterProductData

«SimpleField» Code: string
«SimpleField» Name: string
«SimpleField» Price: integer

«ParameterBindingGroup»
Code-> Product.code
Name -> Product.name
Price - Product.price

roduct

CreateProduct

«DynamicBehavior»
ProductFactory.
CreateProducty(...)

ExceptionalTe

6.3 Business Action Patterns

NewProductDisplay

«Details» NewProductDetails

NormalTermination

«DataBinding» Product

«ConditionalExpression»
self = product

rmination

«ParameterBindingGroup»
product > product

- Enter Product Data

Code:
Name:

Price:

Error

Error Message

SR2386h

150

— New Product Details

Code: SR236h
Name: Steel rod

Price: 150 USD

FIGURE 6.5

The object creation pattern and a possible rendition.

ProductCreation

«Form» EnterProductData

«SimpleField» Code: string

eNewProduct

«SimpleField» Name: string

CreateProduct

NewProductDisplay

«Details» NewProductDetails

NormalTermination

«SimpleField» Price: integer

«DynamicBehavior»
ProductFactory.

«SelectionField» Category

CreateProduct(...)

«DataBinding» Product

«DataBinding» Category

«VisualizationAttributes» name

Exceptiol

«ParameterBindingGroup»
Code -> Product.code
Name-> Product.name
Price-> Product.price

nalTermination

«ParameterBindingGroup»
product-> product

121

Category-> Product.category

Error

Error Message

r— Enter Prod

Code:

Name:

Price:

Categor,

— New Product Details

SR2386h : Code: SR2386h

¥ 0 Bor
M Rod
[Sheet

uct Data

Price: 150 USD

Category: Rod

FIGURE 6.6

The object creation and connection pattern.

122

CHAPTER 6 Modeling business actions

category, which is passed as input to the Action. The Action itself can be specified
either by referencing a constructor that sets the proper category for the product or
by referencing a behavioral diagram (e.g., a UML sequence or activity diagram) that
describes all the steps to be performed for creating the object and connecting it to a
category.

6.3.4 PATTERN A-ODL: OBJECT DELETION

The object deletion pattern is used to eliminate one or more objects of a given class.
The pattern requires an Action characterized by:

¢ auser-defined name;

» areference to the dynamic behavior that the action must perform, which is
typically the invocation of a delete operation of the database; and

* the input parameters necessary to identify the object to delete.

The input to the action is conveyed by a set of ParameterBinding elements. Nor-
mally these values are one or more primary keys, although nonkey attribute values
can be used as input, and the Action encapsulates the business logic for exploiting
such information to retrieve the objects to delete.

At runtime, the user typically chooses either a single object displayed by a Details
ViewComponent or selected from a List ViewComponent, or a set of objects chosen
from a MultiChoice List ViewComponent. The identifiers of the chosen objects are
associated by a ParameterBindingGroup to the NavigationFlow exiting the View-
Component and pointing to the Action that actually deletes the objects.

Normal termination occurs when all the objects have been deleted. In this case,
the Action has no output parameters. Exceptional termination occurs when at least
one of the objects has not been deleted. In this case, the Action has an output param-
eter holding the OIDs of the objects that were not deleted. This can be useful to
display the list of items that could not be deleted, together with an error message.

The example of Figure 6.7 illustrates the object deletion pattern applied to a
single object. The ViewContainer includes the “ProductsList” ViewComponent con-
nected to the “DeleteProduct” Action. The NavigationFlow has a default parameter
holding the OID of the selected product, which is used in the Action. The SelectE-
vent fires the deletion of the chosen object. If the operation succeeds, the “Products”
ViewContainer is redisplayed, but the deleted product no longer appears. In case of
failure, a different ViewContainer with an error message is displayed, which may use
the information about the object whose deletion failed and any other useful param-
eter returned by the action (e.g., a human-readable explanation of the failure).

The example of Figure 6.8 shows a variant of the object deletion patterns in which
a multichoice list ViewComponent is used to let the user check a set of products and
invoke the deletion Action on them. In this case, the default ParameterBinding asso-
ciated with the “Delete” event of the “ProductList” ViewComponent holds the set
of OIDs of the selected objects. These are displayed in the “SelectedProducts” List
ViewComponent, which is associated with the “Confirm” event.

6.3 Business Action Patterns

«ParameterBindingGroup»
undeleted-> product
error-> explanation

Products

«modeless» Warning

Error Message

ExceptionalTermination

«List»
ProductList

NormalTermination

Products

Normal termination

Iron bar

1810234

Products (first object deleted) Ironbar 1810237
Iron bar 1810288 Select
Ironbar 1B4456 Select

Choose the product to delete

Copper bar CB78966 Select
Copper bar CB78123 Select

Steel Sheet SS754x _ Select »

> Steelbar SBuBAY7 Select
Ironbar 1810234 Select

Steelbar SBu9097 Select

Ironbar 1810237 Select Sndba SROGT et
lronbar 1810288 Select T x
lonbar 184456 Seiect b]
Copper bar CB78966 Select
Copper bar CB78123 Select Alert! The following product
Steelbor SBuB997 Select
Steelbar SBui9097 Select E ti I t inati Steel Sheet SS754x
Steelbar SBu00q7 Select xceptional termination

has NOT been deleted!
Failure reason: product is used in
ccombinations

ComboYX3001

ComboX35601

FIGURE 6.7
Basic object deletion pattern.

The NavigationFlow of the Delete set selection event has as default Parame-
terBinding that includes the entire set of objects output by the source List ViewCom-
ponent (“SelectedProducts” in this case) and triggers the “DelectedProduct” action
on all the objects bound to the event.

6.3.5 PATTERN A-CODL: CASCADED DELETION

The cascaded deletion pattern allows one to remove a specific object and all the
objects associated with it via one or more associations. In this case, the action is
implemented by a sequence formed by two or more delete operations, one for remov-
ing the main object and the others for removing the related objects (at least one). In
particular, cascaded deletion is used to propagate the deletion of an object to other
dependent objects, which are connected to it by an association with minimum cardi-
nality of 1, and thus could not exist without the object to which they refer. An example
of such a situation is illustrated in Figure 6.9, which shows the use of the pattern for
deleting an e-mail message and all its attachment. The “MessageDetails” ViewCon-
tainer includes a Details ViewComponent (“Message”’) showing the message, and a

I
123

124 CHAPTER 6 Modeling business actions

Products Confirmation

«Multichoice» _ Delete «List» connrm
ProductList SelectedProducts
«DataBinding» Product «DataBinding» Product

KI/I Cancel

Products

Confirmation

Products

Are you sure you want to delete these products?
Choose the products to delete yousure ¥ Choose the products to delete

[] Steel Sheet SS754x Tron bar 1810234 [] Steel Sheet SS754x
o Ironbor 1B10234 SO i O Copper bar CB78966
g Ironbar 1810237 lonba (310388) Copper bar CB78123

Kenbor 1810288

— | [ronver s O Steeibor s8u8a97

© lronbor 1B4456 —_— [Steelbar SBui9097
[] Copper bar CB78966 [Steelbor S8u0097

Copper bar CB78123

a

O Steelbar SBu8Ya7
[Steelbar SBui4097
a

Steelbar SBu0097 [CCancel [Confirm |

FIGURE 6.8

Multiple objects deletion pattern.

[XOR] MessageReader

[D] Messagelist

A

MessageDetails

«List»Attachments «Details»Message Delete Cascade

Delete

«DataBinding» Attachment

«ConditionalExpression»
self.Message=deletedMessage

«DataBinding» MailMessage ‘

«ParameterBindingGroup»
mailMessage> deletedMessage

FIGURE 6.9
Cascade delete pattern.

List ViewComponent (“Attachments”) displaying its attachments. The “Message”
ViewComponent is associated with an event that triggers the “CascadeDelete”
Action, which conceptually consists of a sequence of two operations, deleting both
the attachment and the e-mail message. The internal structure of the Action is not
specified in IFML and can be described by means of a behavioral diagram. For
example, Figure 6.10 specifies the cascade deletion using a UML sequence diagram.

6.3 Business Action Patterns 125

Client MailMessage || MailAttachment
i i
I CascadeDelete |
|

1

loop /[self.attachments.forAll()]
|

| destroy()

8
g
2
X-

FIGURE 6.10
UML sequence diagram specifying the behavior of the “CascadeDelete” Action.

An alternative Action design could exploit the native referential integrity mechanism
of the underlying data store (for example, the ON DELETE CASCADE clause of
SQL foreign key constraints) and delete only the message object, leaving to the data-
base the task of cascading the deletion.

The pattern of Figure 6.9 is a good illustration of the intertwining between the
business logic and the interface design. The NavigationFlow denoting the normal
termination of the “CascadeDelete” Action does not lead back to the source View-
Container but instead to the “MessageList” ViewContainer, which is the default
subcontainer of the enclosing “MessageDetails” ViewContainer. This is because
the object that was displayed in the “MessageDetails” ViewComponent (the deleted
message) no longer exists, and it would make no sense to redisplay it. The I[FML
model is the right place to express this kind of relationship between the semantics of
actions and their effect in the interface.

The resulting interaction is shown in the mock-up of Figure 6.11.

6.3.6 PATTERN A-OM: OBJECT MODIFICATION

The object modification pattern is used to update one or more objects of a given class.
An object modification pattern uses an Action that is characterized by:

¢ auser-defined name;

* the reference to the dynamic behavior that the action must perform, which is
typically the invocation of a setter method; and

* the input parameters necessary to identify the object(s) to modify and to supply
new values to their attributes.

When the user chooses multiple objects at runtime, the same update applies to all
the selected objects. The Action must be properly linked to ViewComponents of the
interface, to obtain the needed inputs.

126 CHAPTER 6 Modeling business actions

Your E-Moil
QD XQ G — S}
vl [[Ta]
Mail v Ow O More W 1-80i3 & | > By
ey T R AT T 318
Starred ‘WaltersCompany ADY Review- Maybe normal in diferent. Jun 15
Imports Youtv Your Youtv Digest - Jan 20, 2013 Jun 11
e o e e G |
Sent Mail Brandy Lewis Your E-Mall
Drotts Wolterscompeny | <D T X {3 (TR —
Ao e
Spom me ol [2) [] M
Trosh For Jonkings - Delete message
More w Fracesco Tietto Mail » o] ey 8 - 2> v
a::’l‘;":“c'“w:uw Cowme | [ey ey \® Forwera \ | + attachments &
v R)
- \ redisplay message list
——

Select message
from message
list

FIGURE 6.11
Mock-up of the interaction for deleting a message and its attachments.

* The new attribute values: these are typically defined as a ParameterBinding-
Group associated with a NavigationFlow coming from a Form ViewComponent.

* The objects to modify: these are usually specified as a ParameterBindingGroup
holding one OID or a set of OIDs.

e Asan alternative to the usage of object identifiers as parameters, the objects to
modify can be retrieved by the Action based on logical criteria, exploiting the
values associated as parameters with InteractionFlows incoming to the Action.
In this case, the Action encapsulates the object retrieval business logic.

The normal termination of the Action occurs when all the objects have been
successfully modified. In this, case the ActionEvent is associated with a default
parameter holding the set of OIDs of the modified objects. An exceptional termina-
tion occurs when at least one of the objects could not be modified. In that case, the
ActionEvent is associated with a default parameter holding set of OIDs of the objects
that were not modified.

The example of Figure 6.12 shows a Form ViewComponent used to supply values
to an object modification Action. The “ProductEditor” ViewContainer comprises a
Details ViewComponent (“Product’), which shows the name of the product to mod-
ify, and a Form (“EnterProductData”), whereby the user can modify the existing
product attribute values. A DataFlow from the Details ViewComponent to the Action
has a default parameter holding the OID of the product to modify, which is used by
the Action to identify the instance to update. The Action is activated by a Submit-
Event associated with the Form. The NavigationFlow has a ParameterBindingGroup

6.3 Business Action Patterns 127

.

ProductEditor
. «ParameterBindingGroup»
«Details» Product

ExceptionalTermination Product > product

«DataBinding» Product «
«ConditionalExpression»
self = product

[«Form» EnterProductData

«SimpleField» Code: string

UpdatedProduct

«Details» NewProductDetails

Modify ‘
Product NormalTermination

«DataBinding» Product

«SimpleField» Name: string

itionalExpression»

Modify
«SimpleField» Price: integer roduct
«SimpleField» Description: text «ParameterBindingGroup»
Code-> Product.code
Name-> Product.name
Price > Product.price
Description > Product.descr
Product Editor
Updated Product
Product Details s Enter Product Data
Product Details
Nome Galvanized Steel Rod
Code SR6678 Code SR5678
Code SR5678
Price 10.00
Description: Steel rod. Diameter 8 Description: rod.
mm Description: Galvanized steel rod.
Diameter 8 mm.

FIGURE 6.12
Single object modification pattern.

element, which associates the value of the fields of the Form with corresponding
input parameters of the Action. The normal termination leads to the “UpdatedProd-
uct” ViewContainer, which shows the modified values of the product attributes. The
exceptional termination points “back” to the “ProductEditor” ViewContainer, which
redisplays the old values.

Note that for classes with many attributes, the specification of the pattern can
be cumbersome due to the need to repeat the relevant attributes twice: once as form
fields and once in the parameter binding. However, a tool such as the one described in
chapter 11 can easily provide a wizard for building the pattern with less effort (e.g.,
by inserting all the class attributes in the model automatically).

The example of Figure 6.13 illustrates the modification of a set of objects. The
“MessageList” multichoice List is associated with a SelectEvent (“MarkAsRead”)
for updating the status of the chosen messages, marking them as “read.” The outgo-
ing NavigationFlow of the event is associated with a ParameterBindingGroup that
holds the OIDs of the objects selected in the multichoice list and a constant value
(“read”) for updating the status of the messages. The operation succeeds if the modi-
fication can be applied to all the objects chosen from the list, in which case the normal
termination ActionEvent is raised. After this event, the “Messages” ViewContainer is
redisplayed, with a notification of the number of marked messages.

128 CHAPTER 6 Modeling business actions

¢ «ParameterBindingGroup» BackToMessageList
.y selected-> messages
Messages “read” > Status «Modeless» Alert
«MultiChoice» N
MessageList v Change ~ ExceptionalTermination Error Message
Status)
«)

NormalTermination t
Notification -
/ «ParameterBindingGroup» %
#updated-> count ope .
Post-update notification

MarkAskead /

B

o Mol

~
v
Y
<

Tt

LR 3

S8
asged

FIGURE 6.13
Multiple objects modification pattern.

The Action fails if the modification cannot be applied to some of the selected
messages, which causes the exceptional termination ActionEvent to be raised and an
modeless alert window to be displayed.

6.3.7 PATTERN A-AM: ASSOCIATION MANAGEMENT

An association management pattern is about maintaining the instances of associa-
tions specified in the domain model. Specifically, it is used to create/replace/delete
instances of an association by connecting and/or disconnecting some objects of the
source and target classes. The association management pattern exploits an Action
characterized by:

e auser-defined name;

» the reference to the dynamic behavior that the action must perform, which is
typically the invocation of a setter method acting on the attribute that imple-
ments the association in one or in both classes; and

* input parameters for locating the objects of the source class and of the target
class.

The Action is triggered by a NavigationFlow and receives as input pairs of objects
of the source and target classes, identified by the ParameterBindingGroup of the Navi-
gationFlow. It provides as output the pairs of OIDs corresponding to the objects of the
source and of the target class for which an association instance has been created/replaced/
deleted. These values can be used to define a ParameterBindingGroup associated with
the normal and exceptional termination ActionEvents. The latter is raised when the

6.3 Business Action Patterns 129

«ParameterBindingGroup»
DisplayedProduct-> Product *

ProductCategories

>{/« Details» Product

«DataBinding»
Product

] «List» Categories

«DataBinding» Category

»
in

«ConditionalExpression

self.products>
cludes (Product)

«DataBinding» </ —
Category

«Details» CurrentCategory

Update
Product-
Category

relationship

Assign

4

Normal
Termination

Termination

«Modeless» Alert

-/ «ParameterBindingGroup»
Selected-> Category

\‘7

Close

Product Categories

Product Categories

Product

Code: SR2386h

Nome: Steel Rod

Price: 150 USD

Calewrles_‘
Bar Select
Rod Select
Sheet Select

Current Category: Rod

i\ Code: SR2386h

Product

Name: Steel Rod

Price: 150 USD

Categories

Bar Select
Rod Select
Sheet Select

Current Category: Bar

FIGURE 6.14
Association management pattern.

management of at least one association instance fails, whereas the normal termination
ActionEvent signals that all the association instances have been managed properly.

Figure 6.14 shows an example of the association management pattern for updat-
ing the category of a product, which corresponds to a one-to-many association in the
domain model. The “Product” Details ViewComponent in the ‘“ProductCategories”
ViewContainer displays a current product, as the result of a previous selection in
another ViewContainer (not shown in Figure 6.14). The ViewContainer also includes
the “CurrentCategory” Details ViewComponent, which displays the category of the
displayed product. The primary key of the displayed product—necessary for deter-
mining the actual category in the “CurrentCategory” ViewComponent—is supplied
by a ParameterBindingGroup associated with the DataFlow from the “Product” to
the “CurrentCategory” ViewComponent.

Finally, the “ProductCategories” ViewContainer comprises a List ViewCompo-
nent (“Categories”) showing all the categories from which the user can select the
desired one and trigger the “Assign” SubmitEvent. This event triggers the Action
for updating the relationship instance between the displayed product, whose primary
key is supplied by a DataFlow with a ParameterBindingGroup, and the new category
selected from the list. The normal termination event of the Action causes the “Pro-
ductCategories” ViewContainer to be redisplayed, showing the updated category of
the product. In case of abnormal termination, an Alert window is presented before
letting the user go back to the original ViewContainer.

130 CHAPTER 6 Modeling business actions

6.3.8 PATTERN A-NOTIF: NOTIFICATION

This pattern models the case in which the interface is (typically asynchronously)
updated by the occurrence of a system generated event. Figure 6.15 shows an exam-
ple of the notification pattern.

In the e-mail application, actions on messages (such as sending, deleting, and
moving to a different folder) are triggered by an Event and executed by an Action
at the server side. When the action terminates, the system produces a completion
event and sends an asynchronous notification to the interface. The effect of catching

O SendNotification

[XOR] Mail

[D] [L] Messages

\ 4
«Listy [XOR] MessageSearch -
MailBoxList Message
0 Notification
ReadMore

[XOR] MessageManagement

[D] MailBox [L] Settings

«List»

Message List [L] MessageWriter

Your E-Mail
C‘ Q x G (Lup.l/wwwmall.comllnbox/] @
Mail] | oM | *
The message has been moved to the Trash Read more Undo
Mail ¥ Ov O T —— 1-8ef13 & D> By
Inbox (2) . Brandy Lewis People Company Reporting Anomalie Jun 18
Starred WaltersCompany ADY Review- Maybe normal in diferent.. Jun 15
Important Mandy Batilla Request to share ADY_P_WorkPlan.doc Jun 10 ll
Chats Brandy Lewis ADY Company Reporting 2 Jun 10
Sent Mail WaltersCompany ADY brainstorming - The send action is ... May 6
Drafts] WaltersCompany IFML b ming - What kind of x May §
All Mail me test May 2
Spam Flor Jenkings ADY Verona meeting minutes May 1
Trash Fracesco Tietto (no subject) Apr 31
More w
Q
L4
FIGURE 6.15

Notification pattern.

6.4 Running Example 131

— = Message Writer
[L] Message Writer
[— TS
(o [S
«Form» Message Writer
el 1
Discard Dear Mr John,
please find attached the first version of the
\ Fi
\H/ IFML specifications.
Send Save Kind Regards
Piero & Marco

v 4

NormalTerminaﬁ% NormalTermination
SendNotification .{—\ Send Save >—P‘ SaveNotification

FIGURE 6.16
Model of the production of a SystemEvent that notifies the completion of an action.

a notification event is represented by a SystemEvent, which triggers the display of a
“MessageNotification” ViewComponent, as shown in Figure 6.15.

The production of a SystemEvent can be left undetermined, in which case it is
assumed that the system sends the event in a completely unspecified manner, or be
associated with an Action of the interface model to convey that the notification is
connected with the termination of an Action. For example, all the notification events
of the e-mail application can be associated with the termination of the respective
Action, as shown in Figure 6.16.

6.4 RUNNING EXAMPLE

The e-mail application allows the users to perform a variety of operations on mes-
sages, including composing a new message, replying to a received message, and
moving a message to a new or to an existing folder. When one or more messages are
selected, they can be moved to another folder by means of the “MoveTo” command.

Figure 6.17 shows the mock-up of interface supporting a command. A ViewCon-
tainer is displayed in a new window with the list of available MailBox and Tags. The
user can select from such a list the destination Folder to which he wants to move the
messages. This functionality can be modeled with an instance of PATTERN A-AM:
Association management, shown in Figure 6.18: the “MessageToolbar” ViewContainer
is associated with the “MoveTo” Event, which causes the display of the “Chooser” mod-
eless window. This ViewContainer comprises a list for selecting the target folder. The
selection event triggers the “MoveTo” Action that performs the command and sends a
notification event upon termination, which is captured by the ‘“MessageNotification”
ViewComponent in the top-level container (as already illustrated in Figure 6.15).

Note that in this example of association management pattern, the messages to
move are associated as a ParameterBinding to a DataFlow that connects the “Mes-
sageToolbar” ViewContainer to the Action, whereas the OID of the destination folder

132 CHAPTER 6 Modeling business actions

Ow
Move To: 4
[=
Brandy Lewis People Company Repor| AnotherBox Jun 18
WaltersCompany ADY Review- Maybe no| ASecondBox Jun 15
Vi Youtv Your Youtv Digest - Jar| -~ Jun 11
Mandy Batilla Request to share ADY_| Jun 10
Brandy Lewis ADY Company Reportin Jun 10
WaltersCompany ADY brainstorming - Thf --=--=-==--=--=--moomoomoen May 6
WaltersCompany IFML brainstormina - W Create new Mav §
me test Manage labels - May 2
Flor Jenkings ADY Verona meeting minutes May 1
Fracesco Tietto (no subject) Apr 31
Daniel Parinni Research Project Apr 30
Camil James Internship in Asmat SA Apr 16
WaltersComopany ADY bainstorming Mar 15

FIGURE 6.17
Mock-up of the “MoveTo” command showing the step for selecting the folder.

Message toolbar

«Parameter» MessageSet

. O
«ParameterBindingGroup» /' __ ___________ 2 MoveTo
MessageSet > Messages 1
1
1
!
A -
i AssignFolder
|
1
]
MoveToNotification - «Modeless» Chooser
Update \@#------------ - v
Folder- S

| [«List»

Select
[@ FolderList
| N

Message
association

FIGURE 6.18

Model of the interface for moving messages to a folder.

is associated by default with the NavigationFlow of the “Select” Event and thus omit-
ted from the diagram.

As visible in the mock-up of Figure 6.17, the window for choosing the target
folder also contains a command for creating a new folder that opens a modal window
for entering the name and parent folder of the new folder. Figure 6.19 shows the
mock-up of this functionality.

The model including the functionality for moving a message to a newly cre-
ated folder is shown in Figure 6.20. The “CreateNew” event associated with the
“Chooser” ViewContainer opens a modal ViewContainer with the form for entering

6.4 Running Example

New Label

Please enter a new label name

(O Nest label under:

| Create I| Cancel I

FIGURE 6.19

I
133

Mock-up of the modal window for creating a new folder.

«ParameterBindingGroup»

MessageSet-> Messages

MoveToNotification
Update

Folder-
Message

=g

g

- 1
) E ! | AssignFolder

1 1

I 1

!

I 1

Message toolbar

«Parameter» MessageSet

)
: N

«Modeless» Chooser

«List»
Select

association

MoveToNewNotification
Create Folder +
Folder-Message
association

<—| Create

«ParameterBindingGroup» /.

Name > Folder.name
Parent > Folder.parent

FIGURE 6.20

FolderList

Create New

«Modal» Creator

«Form» NewFolder

«SimpleField» NewName

«SelectionField» Parent

«DataBinding»
MailMessageGroup

Complete model of the interface for the “MoveTo” command.

134 CHAPTER 6 Modeling business actions

[XOR] Message Reader

[D] Message List Message Details

«List»
Message List —

MessageSelection

«Details»

Message Details

Delete <

Archive <

Delete

Archive «Parameter» MessageSet

Report

O

Update
Folder-
Message
relationship

|mmmmmmmm e MoveTo

AssignFolder

«Modeless» Chooser
Create ‘@ . q

Bt « select J «List»

Folder- | Folder List

Message ‘

relatlonshlpA ? Create New

«Modal» Creator

«Form»
Create
.‘ «l) New Folder

FIGURE 6.21
Complete model of the toolbar commands on messages.

the name of the new folder (using a SimpleField) and selecting the parent folders
(using a SelectionField). The “Create” Event in the modal window triggers an Action
for creating the new folder and associating it to the specified parent folder and to the
messages selected previously. Upon normal termination, the Action emits a notifica-
tion message.

Besides the commands for moving messages, the toolbar provides functional-
ity for archiving, reporting, and deleting message. Figure 6.21 completes the partial
model viewed so far with the remaining Actions.

An additional note concerning the allocation of the business logic to the archi-
tectural tiers of the application is needed. So far, the illustration has been purposely
neutral as to where an Action is executed within the architecture of the application,
because the platform-independent model should not incorporate unnecessary archi-
tectural assumptions. However, this does not mean that all actions are executed on
the same tier or that only server-side business logic can be modeled. To illustrate this
aspect, we conclude the running example with an expansion of the model of the mes-
sage composition functionality, already described in chapter 5.

6.4 Running Example

The model of the “MessageWriter” ViewComponent can be refined by zooming in
inside the “Body” field, which supports client-side business logic (such as rich format-
ting of the text) and mixed server- and client-side functionality (such as spellchecking).
Figure 6.22 shows a mock-up of this functionality.

The embedding of a full-fledged microapplication such as a rich text editor inside
a Form ViewComponent can be modeled by replacing the SimpleField with a more
complex ViewComponentPart called RichTextEditor, as shown in Figure 6.23. Such

Send Save now Discard

Tol I

Ce I I
Add Bec Edit Subject Attach File Insert: Invitation

B7ZU afep:=i=|C|BEO Chack Spelingi¥

Welcome to our newest program, | sent you some documentation that I think will be
useful for you in this process

Enjoy!

Walter Miran

FIGURE 6.22
Mock-up of the “Body” field of the “MessageWriter” ViewComponent.

[L] Message Writer

«Form» Message Writer

«SimpleField» to: String

«SimpleField» cc: String

«SimpleField» bee: String

«SimpleField» subject: String

«SimpleField» attachment: Blob

«Parameter» State

S ; i . Remove «Modal» Alert k
«Egimi::i» P 5« RichTextEditor» text: Text format . ol «Clientside»
< - ApplyFormat
Format ttalie oo A
\ Cancel
«ClientSide»
ApplyBold <4+

Format

FIGURE 6.23
Model of the rich editing functionality of the “Body” field.

I
135

136 CHAPTER 6 Modeling business actions

ViewComponentPart could support events and further nested ViewComponentParts
as required to express its interface. The execution tier of an Action could also be
expressed as a stereotype. For example, Figure 6.23 tags the Actions executed at cli-
ent side with an appropriate stereotype.

6.5 SUMMARY OF THE CHAPTER

We have discussed the IFML concept of Action, which describes a black-box compo-
nent that embodies arbitrary business logic triggered from the interface. Actions can
be connected to interface elements with navigation and data flows to enable param-
eter passing. Next we illustrated several design patterns involving actions, mostly
for updating the objects and associations of the domain model. In addition, system
events and notification have been exemplified.

6.6 BIBLIOGRAPHIC NOTES

Several works have addressed the design of user interfaces and their integration
with the business logic based on the MVC paradigm [LRO1] [HLS+14]. The work
[FCBT10] discusses a model for representing the execution of Rich Internet Applica-
tions. The model allows expressing advanced aspects such as the partition of func-
tionality and data across multiple architecture tiers, asynchronous communication
patterns, and the selective computation of interface parts after the occurrence of
events.

CHAPTER

IFML extensions

The IFML standard comes organized as a core set of concepts and a number of
extensions that embody general characteristics found in many interactive applica-
tions. The extension mechanism applies to all the main concepts of IFML. The exten-
sions included in the standard are:

¢ ViewContainer extensions: Window

¢ ViewComponent and ViewComponent Part extensions: Details, Field, Form,
List, SelectionField, SimpleField, Slot

¢ Event extensions: SelectEvent, SubmitEvent, SystemEvent

¢ ContextDimension extensions: Device, Position, UserRole

» Expression extensions: ValidationRule

Further custom extensions are allowed for the main concepts of IFML: ViewCon-
tainers, ViewComponents, ViewComponentParts, Events, and domain and behavior
concepts (and their extensions).

The purposes of extensions are manifold:

¢ Adding expressive power to the modeling language;

¢ Making the concepts and notation less abstract and closer to the intuition of
designers;

* Allowing different specialized concepts to be distinguishable visually, for
improved readability of diagrams; and

e Assigning more precise meaning to concepts to enable deeper model checking,
formalization of semantics, and executability (through code generation or model
interpretation).

Figure 7.1 shows the use of IFML extensions (equipped with customized icons)
for making the visual notation more intuitive, enabling model checking, and support-
ing code generation. This example will be expanded in chapter 11.

The advantages of extensibility persist and even increase when one considers
IFML under the perspective of a specific category of applications that exhibit their
own interface styles, technological constraints, and sometimes even peculiar termi-
nology or jargon.

This chapter introduces several specializations of IFML that exploit extensibil-
ity to capture features found in different classes of applications, including, desktop,
web, and mobile applications. The assignment of an extension to a class of applica-
tion is somewhat arbitrary. The convergence of the implementation languages and
platforms makes it impossible to distinguish the features of desktop, web, and mobile

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00007-2
Copyright © 2015 Elsevier Inc. All rights reserved.

137

138 CHAPTER 7 IFML extensions

: . =)
Custom icons for ViewComponents % facetedsearch
| € > ¢ # (D localhost 08 =
&) *IFML_book £ ‘ WEB .. RATIO®
Wl 3| ¥ ¢S (0% Qfla & aledl = B [}
S
; (11[L] FacetedSear: \ 5 IS
= — .- YearFacet | 1 search
7 Results | = remore
= - - Document
ok Search e 1 ‘[ﬂﬂecun(ams”}, '''''
Results VenueFacet
-0 ~_ W wwe venue year
: e 2
1 _VenueFacet
, . =
il Document
6 : [ile Contains 7] YearFacet
Dv.

%* Project |28 Domain Model | Site View 1
Layout {2 Problems &3, &, Generation Errors
1 error, 153 warnings, 0 others (Filter matched 101 of 154 items)
Description
4 @ Errors (1 item)

® The mandatory input parameter 'KeyCond' is not provided to the component 'YearFacet'

Model Checking

Generated code /

FIGURE 7.1

Use of IFML extensions for visual notation, model checking, and code generation.

application sharply. For a better organization of the chapter, though, we have placed
each extension under the category in which it originated or is most often or exclu-
sively used.

7.1 DESKTOP EXTENSIONS

Under the umbrella term of desktop applications we mean applications that allow
the most precise control over the user interface, developed with a variety of different
technologies, ranging from window-based applications developed in such technolo-
gies as Java Swing or Windows Forms to rich Internet applications implemented with
JavaScript and HTML 5. Although this equivalence is imprecise from the program-
ming point of view, it is sufficient to identify cross-platform features that are general
enough to provide good candidates for IFML extensions.

7.1.1 EVENT EXTENSIONS

Probably, the most relevant capability of desktop applications is the very detailed
management of the events that the user can generate in the interface. Therefore, an
important area of extensibility of IFML regards the event types supported by desk-
top interfaces. These events are so numerous as to make it unfeasible to review all
of them and the properties to be modeled for creating an IFML extension. Rather,
we will discuss what makes an event type worth an extension and the features that

ProfileManagement

/ «Form» ProfileEditor

«OnFocusLost»

7.1 Desktop Extensions 139

«ParameterBindingGroup»
Firstname - first

‘«ParameterBindingGroup»
Username —> name

Verify

«SimpleField» Username: String C T

«SimpleField» Password: String ‘

" .) N «OnFocusLost»
«SimpleField» Firstname: String —

«OnFocusLost»

«SimpleField» Lastname: String C ;

C
0

«OnFocusLost»

«SimpleField» State: String

QmpleField» City: String

«ParameterBindingGroup»
Lastname = last

«OnFocusLost»

State > state

Availability

] — —p/

Autosave

«ParameterBindingGroup»

City=> ity

«ParameterBindingGroup»

FIGURE 7.2

Example of extended event for Form and SimpleField ViewElements.

should be modeled as additions to the basic notion of Event. When considering a new
event type as a candidate for extension, the following questions should be addressed:

What ViewElements can the event be associated with? ViewContainers, View-

Components, ViewComponentParts, a specific extension of such elements, or a

mix thereof?

In there any restriction on the type of ViewElements that can be the target of the

InteractionFlow associated with the event?

What parameters can be associated with
event?

the InteractionFlow connected with the

Figure 7.2 shows an example of event specialization.

ONFOCUSLOST

SimpleField in a Form. The event is triggered when
using the tab key or by clicking on another field). It

the SimpleFields of the Form.

The OnFocusLost event is an extension of ViewElementEvent that captures the loss of focus of a

an entire Form. Its outgoing InteractionFlow can have any ViewElement as a target and a Param-
eterBindingGroup comprising as input parameter the value of the SimpleField or the values of all

the user moves away from the field (e.g., by
can be associated with a SimpleField or with

Figure 7.2 demonstrates the usage of the

OnFocusLost event to invoke Actions. In

one case the event is associated with the “Username” field for checking the availability

|
140

CHAPTER 7 IFML extensions

of the username provided by the user. Other OnFocusLost events are associated with
other fields for auto-saving the value input by the user when the focus leaves the field.

7.1.1.1 Drag and Drop

The OnFocusLost event and other similar event extensions detect an atomic self-
contained user interaction. Desktop applications also support more elaborate behav-
iors that span a sequence of interactions, such as drag and drop. A drag and drop
behavior consists of the correlation of two event types: OnDragStart and OnDrop.

ONDRAGSTART AND ONDROP

The OnDragStart event is an extension of ViewElementEvent that captures the beginning of a drag
interaction. It can be associated with Details or List ViewComponents (and specializations thereof).
It has no outgoing InteractionFlow element. It has a mandatory property “OnDropEvent” that
denotes an event of type OnDrop, which is the target of the OnDragStart event.

The OnDrop event is an extension of ViewElementEvent that captures the termination of a drop
interaction. It can be associated with a Details or List ViewComponent (and specializations thereof).
It must appear as the value of the OnDropEvent property of an event of type OnDragStart, which is
the source of the OnDrop event. It has one outgoing InteractionFlow element. Such InteractionFlow
can have any ViewElement as a target and a DataBindingGroup comprising two input parameters:
(1) the value of one or more class instances of the ViewComponent associated with the source
OnDragStart event and (2) the value of one or more class instances of the ViewComponent associ-
ated with the OnDrop target event.

As shown in Figure 7.3, the drag and drop behavior is modeled with a pair of
events: one (OnDragStart) binds to the object(s) that are dragged, and the other
(OnDrop) binds to the object(s) on which the dragged item(s) are dropped. These
two (sets of) instances can be used as parameter values associated with the Interac-
tionFlow exiting the OnDrop event. In the case of Figure 7.3, one or more messages
are dragged from the message list of the currently open mail box and dropped on
another mail box. The drop termination event triggers the “MoveTo” Action, which
moves the dragged messages to the drop mail box.

7.1.2 COMPONENT EXTENSIONS

Container and component extensions add features to the basic IFML ViewElements.

7.1.2.1 Tree explorer

A “classic” component of desktop interfaces is the Tree component, used to display
hierarchical data. Essentially, a tree is a special kind of list that displays not only
objects but also their containment associations. Therefore, the data model of a tree
component consists of a class, which represents the common type of the objects
displayed in the tree, and a recursive association, which represents the hierarchy. In
the simplest case, interaction with the tree is done by selecting one node at a time.

7.1 Desktop Extensions 141

TREE VIEWCOMPONENT

A Tree is an extension of the List ViewComponent that displays hierarchical data. It owns a
DataBinding element that refers to a class of the domain model and a RecursiveNestedDataBinding
element that refers to a one-to-many association defined on the instances of the class.

MailBoxesMessages

ﬁ<List» MessageList

«List» MBoxList ‘
«DataBinding» MailMessageGroup ‘
@———> «ConditionalExpression»

‘ mailMessageGroup = MailBox
«OnDrop» 7 L

«ParameterBindingGroup»
Selected -> MailBox

«DataBinding» MailMessage

«OnDragStart»

«ParameterBindingGroup»
* Dragc ges > Messages
Di

ropMailBox = MBox

MoveTo

FIGURE 7.3
Extending IFML with drag and drop events.

Figure 7.4 shows an example of the Tree component for publishing a selectable
list of nested mailboxes. A Selection event allows the user to select one element in
the tree and thus display its details.

7.1.2.2 Table
Another popular component of desktop applications is the table editor, also
called a record set editor or data grid. The component displays a table of data and
allows the user to add and delete rows and edit cell content. The data model of
the component is any piece of tabular data. For simplicity we illustrate the case
in which instances of a class are used as data, but alternative data bindings can be
defined, as already possible with the standard concept of DataBinding. The only
constraint is that the rows of the table should correspond to identifiable objects,
if one wants to trap events like row deletion and therefore update the underlying
data accordingly.

The Table component can be associated with such events as the update of a cell
or the insertion and deletion of a row.

142 CHAPTER 7 IFML extensions

TABLE VIEWCOMPONENT

A Table is an extension of ViewComponent that displays tabular data and allows the user to edit
them. It has a DataBinding element that typically refers to a class of the domain model. The
attributes of the class are mapped to the columns of the table using the ColumnAttribute ViewCom-

ponentPart. The Table component can be associated with events of type CellUpdate, RowInsertion,
and RowDeletion.

MailBox Hierarchy

«List» MessageList
«Tree» MBoxTree

«DataBinding» MailMessage
«DataBinding» MailMessageGroup

«RecursiveNestedDataBinding»
GroupToSubGroups

«ConditionalExpression»
mailMessageGroup = MailBox

«ParameterBindingGroup»
SelectedMailBox > MailBox

Your E-Mail
G Q x Q {http://wwwmail.com/inbox/chats/friends) @
a
Mail] | 1l
Mail v Ow Q MoreW i Mark as read 1-180f3 & D Bw
Inbox (2) Mandy Batilla Happy new year Dic 31
Starred Gustavo Salamanca Merry Christmas Dic 24
Importantw Falcao Garcia Hello Dic 23 ll
Work Gabriel Marquez Hi Nov 15
Personal Mandy Batilla How was it? Nov 10
Chats w Brandy Lewis Hello. How are you?

Nov 10
525 GB (34%) of 15 GB used ©2013 MailkCo Terms & Privocy
Manage

Last aceount activity: 38 minutes ogo
Famil

Sent Mail
More «

FIGURE 7.4

Example of usage of the Tree ViewComponent

Figure 7.5 shows an example of usage of the Table component for editing a record
set of products. At each cell update, a data update Action “SaveProduct” is invoked
with a parameter binding that holds the modified field value. The deletion of a row
triggers the deletion of the corresponding class instance, identified by a parameter
binding corresponding to the object displayed in the affected table row. The creation

«ParameterBindingGroup» "
SelectedRow = product ProductEditor

«Table» ProductEditor

«RowDelete»

Delete

«DataBinding» Product ‘

Product

«CellUpdate»

«ColumnAttribute» code Q—|_)

«ColumnAttribute» name O

«CellUupdate»

«ParameterBindingGroup»
NewCode > code

Product Editor

«CellUpdate»

«ColumnAttribute» price O——‘—

«Rowlnsert»

Create
Product

«ParameterBindingGroup»
RowCode = code

RowName—> name
RowPrice - price

FIGURE 7.5

«ParameterBindingGroup»
NewCode - code

«ParameterBindingGroup»
NewCode = code

Code

Name

l MPST347 l

IMETAL PACKS |
COPPER BAR

L1

Delete

Delete

Insert

Example of usage of the Table ViewComponent.

X3 dopiseq 1°L

SuUoIsua

14!

|
144

CHAPTER 7 IFML extensions

of a row invokes the creation of a new object based on the values entered in the Table
row by the user. After the execution of the Actions, the Table is redisplayed with the
updated content. (Recall that an InteractionFlow pointing to the source element of
the action is assumed by default and thus can be omitted from the diagram).

The basic example discussed in this section can be extended, for example, with
event types supporting the explicit synchronization of the table content with the data
in the data store, such as “Refresh” and “SaveAll,” and with more compact param-
eters (e.g., representing the content of an entire row or of all the rows of the table).

7.1.3 COMPONENTPART EXTENSIONS

Extensions can also be defined at a finer granularity, such as at the ViewComponent-
Part level. An example could be an editable selection field that mixes the functional-
ity of SimpleField and SelectionField by allowing the user to edit the value of the
input field or choose it from a list of options.

EDITABLESELECTIONFIELD

An EditableSelectionField extends the Field element and denotes an input field that is both edit-
able and selectable.

Figure 7.6 shows an example of usage of the EditableSelectionField extension.
The “ProductCreator” form contains the “Category” EditableSelectionField that
allows the user to pick the category from a list of existing categories or invent a new
one. The internal business logic of the “CreateProductAndCategory” Action must
distinguish whether the category is new and, if so, create the category in addition to
the product. Such a behavior can be described in a separate UML diagram associated
with the Action.

ProductEditor

/ «Form» ProductCreator

«SimpleField» Code: String

Product Editor

Code

Name

Create
Product
And
Category

Price

«SimpleField» Name: String

«SimpleField» Price: Integer

«EditableSelectionField» Category

g UL

«ParameterBindingGroup»
Code - code
Name - name
Price - price
Category - category

«DataBinding» Category

«VisualizationAttributes» name ‘

FIGURE 7.6

An example of usage of the EditableSelectionField.

7.2 Web Extensions 145

7.2 WEB EXTENSIONS

Web applications have brought several new concepts and an almost completely new
terminology to user interface development. These are based on the fusion of previ-
ously segregated areas such as hypertext, multimedia, and form-based GUIs. The fun-
damental concepts of a web application are pages and links, which are borrowed from
hypertext documents. Both can be viewed as specializations of core IFML concepts.

7.2.1 CONTAINER EXTENSIONS: PAGES, AREAS, AND SITE VIEWS

In this section, we introduce IFML extensions that make the specification of the web
interface composition patterns introduced in chapter 4 adhere more closely to the termi-
nology and characteristics of web applications. The basic unit of dialogue with the user
in a web application is a page, a ViewContainer produced statically by a human editor
or generated automatically at the server side by a program (a page template or a server-
side script). As user interfaces, pages embed navigation commands; as resources of a
document system, they have a human readable address, called uniform resource locator
(URL). Web applications offer service to multiple users over a multitier, client-server
architecture; therefore they are concerned with the security of data transmission, achieved
by delivering the interface over the HTTPS protocol, and with the control of access,
achieved by enforcing user’s authentication, identification, and permission control.

PAGE

A page is an extension of ViewContainer that denotes an addressable web interface unit.

As already mentioned in chapter 4, pages in a large web application can be
arranged hierarchically to facilitate user navigation.

AREA

An Area is an extension of a disjunctive (XOR) ViewContainer that denotes a collection of pages or
other areas, grouped according to an application-specific purpose.

Examples of areas in an e-commerce web application can be products, special
deals, shipping rates and conditions, and returns and complaints.

As noted in chapter 4, web applications often offer different viewpoints on the
same content to different classes of users. This characteristic can be captured by
associating a ViewPoint with a specific type of ViewContainer called SiteView.

SITEVIEW

A SiteView is an extension of a disjunctive (XOR) ViewContainer that denotes web application
areas and pages grouped together according to an application-specific purpose, typically because
they serve the needs of a UserRole.

146 CHAPTER 7 IFML extensions

In summary, a web application can be modeled as a collection of pages logi-
cally grouped into Areas and SiteViews. Pages are presented to the user one at a
time. This is expressed by the disjunctive form of the enclosing ViewContainer. To
express the requirements of a multiuser application, SiteViews, Areas, and Pages can
be treated as resources of a role-based access control (RBAC) system. As such they
can be associated with a ViewPoint, which in turn is associated with a Context, which
is described, for instance, by a UserRole context dimension. The SiteView consti-
tutes the typical item referenced by a ViewPoint. Appropriate activation rules can be
defined for specifying that the SiteView is enabled for a given UserRole.

The definition of activation rules upon a SiteView/Area/Page denotes the access
permission to that particular object for the specified UserRole. A SiteView/Area/
Page not associated with any role is treated as public and can be accessed even
when the UserRole is undetermined. In an e-commerce application, for example,
different SiteViews could be associated with the UserRoles named “registered cus-
tomer,” “product content manager,” and “sales manager.” A public SiteView could
be addressed to nonregistered customers.

A SiteView/Area/Page has the following characteristics, which extend the stan-
dard properties of IFML ViewContainers to cope with specific web application
features:

* URL label: A string denoting the (fixed part of) the SiteView/Area/Page
address. If the page is implemented with a dynamic template, the URL label is
typically concatenated with the parameters for the computation of its content.
The URLs of a SiteView and of an Area are an alias for the home page of the
SiteView and the default page of the Area.

* Security: If the property value is “secured,” all the pages of the Area or Site-
View, or the individual Page, are served under the secure HTTPS protocol.

¢ Protection: If the property value is “protected,” all the pages of the Area or
SiteView, or the individual Page, are subject to access control. The access con-
trol rule is expressed by the association of the SiteView/Area/Page with one or
more UserRoles through an ActivationExpression.

Notice that the association of a UserRole with multiple levels of nesting
components—such as Pages, Areas, and SiteViews—is purposely redundant and
enables the incremental expression of access control rules. For example, access to a
SiteView could be granted in general to the UserRoles Rolel and Role2. However, an
Area or Page of the SiteView could be associated with a more restrictive ViewPoint
that overrides the general one (e.g., to grant access only to Rolel).

An important concept in a Web application is that of the home page, the page
served to a user when accessing the application without requesting a specific resource.

Figure 7.7 reconsiders an example of web application interface organiza-
tion already specified in chapter 4 using only the standard IFML concepts, and
illustrates it with the concrete syntax of the described web extensions. Stereo-
types are used to denote SiteViews and Pages and to identify the home page
of a SiteView, as well as to determine whether the ViewContainer is Public

7.2 Web Extensions

«ActivationExpression» «Page» «Public> Login «ActivationExpression»
Context.UserRole="Editor" Context.UserRole="Reader"

| «SiteView» «Prote::ted» Editor «SiteView» «Protected» Reader

[L] «<Home» «Page» Editor [L] « Home » «Page» Reader||[L] «Page» Content rating

L] «P; Content updat:
[L] «Page» Content update [L] «Page» Content search

[L] «Page» Content access

[L] «Page» Category browsing

[L] «Page» Content deletion [L] «Page» Content reading

FIGURE 7.7

An IFML model of a typical web application for e-commerce.

or Protected. An ActivationExpression (e.g., Context.UserRole="Editor”) is
employed to specify that a SiteView is accessible only by a specific UserRole.

7.2.2 EVENT AND INTERACTION FLOW EXTENSIONS

Interaction in web applications occurs in two ways: by submitting the content of a
form and by clicking on hypertext anchors. The standard IFML extensions Forms
and SubmitEvent already capture the essential characteristics of web forms. The
IFML NavigationFlow faithfully mirrors the concept of hypertext link but may be
extended to reflect the terminology and properties of web links.

LINK

A WebNavigationFlow is an extension of a NavigationFlow that incorporates additional properties
specific to hypertext links on the web.

A WebNavigationFlow can be endowed with properties specific to web navigation:

* Rel: specifies the relationship between the current document and the linked
document; its values are codified by the HTML standard.

* Target: specifies where to open the linked document, typically in a browser
window; the browser window can be the same one as the original document or a
new window.

I
147

148 CHAPTER 7 IFML extensions

«ParameterBindingGroup»
Document-> doc

TechnicalSupport l"‘:.‘ Licensing Information

«List» DocList «Details» TechManual «Details» LicenseInfo

«DataBinding» «DataBinding» | icensing i «DataBinding» Document
Document Document N T SR —
«ConditionalExpression»

v

self.document = doc

Rel = "license"

Target = "_top"

Doc repository

A0 X} Fermoeems) €)

Doc repository

QD X} Gormmecomioar) @ |

License Information

Document's List Product Licensing
Product version 1 and version 2 are distributed under the
Company License XYZ123, copyright (c) the Company
Group. This is an Open Source license, certified by
several public companies, including Open Source
Initiative.

This license is a BPMS license which does not have the

Technical Manual

Document 1 See Details

Document 2 See Detajs | Thi® Technical Manual
222299 | contains specific information|

Document 3 See Details | ng practical solutions for

your XYZ Company.
The scope of the objectives
are understand the way

“copyleft” restrictions associated with XXX,
| Some documents, code and files have been contributed

Licensing

FIGURE 7.8
Example of usage of WebNavigationFlow.

Figure 7.8 shows as example of usage of the WebNavigationFlow extension used
to open the licensing information in a new browser window. It also informs search
engines of the nature of the linked document via the WebNavigationFlow outgoing
from the technical manual to the licensing information.

The WebNavigationFlow extension shows a typical issue in the design of
extensions: the tradeoff between platform independence and utility. The Rel and
Target properties are clearly dependent on the version of HTML, which is an
implementation language. However, a code generator could exploit the additional
platform-dependent information to inject the proper attribute values in possibly
thousands of automatically generated HTML links, which is an extremely use-
ful feature. An alternative approach would factor out implementation-dependent
properties from the model extensions and weave them into the code generator.
However, since the values of the properties can be set by each WebNavigation-
Flow, in this example we prefer utility over purity and make them definable
directly in the model extensions.

7.2.3 COMPONENT EXTENSIONS

The List component in the IFML standard offers a minimalistic functionality that can
be extended to support more realistic interfaces.

7.2 Web Extensions

MailBox

«List» MailBoxes «List» MessageList

«DataBinding» MailMessage

«DataBinding» MailMessageGroup
«ConditionalExpression»
self.mailMessageGroup=MailBox

«OrderBy» name ASC

«OrderBy» date DESC

«ParameterBindingGroup»
SelectedMailBox - MailBox

Your E-Mail
G C:} X Q (Ftto 77 wwwmall com/inbox/) @
r
Mail B | Tal
Mail ¥ v () Morew &
Chats Brandy Lewis Company Reviews Jun 18
Drofts WaltersCompany ADY Review- Maybe normal in diferent Jun 15
Important Youtv Your Youtv Reviews - Jan 20, 2013 Jun 11
Inbox (2 Mandy Batilla Request to share ADY_P_WorkPlan.doc Jun 10 1]
Sent Mm@ Brandy Lewis ADY Company Reporting 2 Jun 10
Spam WaltersCompany ADY brainstorming - The send action is May 6
Starred WaltersCompany IFML brainstorming - What kind of containers. May 5
Trash me Review date reminder May 2
More o Flor Jenkings ADY Verona meeting minutes May 1
Fracesco Tietto ADY Apr 31
Daniel Parinni Research Pro;ectﬁiwew Apr 30
Camil James Review Meeting i-Asmat SA Apr 16
WaltersComopany ADY bainstorming Mar 15 -
v

Example of usage of sorted list.

7.2.3.1 Dynamically-sorted list
As illustrated in chapter 5, the OrderBy ViewComponentPart can be used to enable
sorting of the items in a List ViewComponent. This compenent defines the sorting
criteria (attribute plus sort direction).

Figure 7.9 shows an example taken from the running case.

The “MailBoxes” List ViewComponent has an OrderBy part that sorts instances
by name, whereas the “MessageList” ViewComponent sorts its DataBinding
instances by date.

The OrderBy ViewComponentPart is specified at design time and thus does
not model a situation in which the user can change the sorting of data at run-
time. This additional behavior, popular in both web and desktop applications,
can be achieved by introducing an extension of the List ViewComponent called
DynamicSortedList.

I
149

|
150 CHAPTER 7 IFML extensions

DYNAMICSORTEDLIST

The DynamicSortedList is an extension of the List ViewComponent that allows the user to sort
data using visualization attributes. The DynamicSortedList has a one-to-many association, named
“SortAttributes,” with the metaclass “VisualizationAttribute,” which denotes the subset of the visu-
alization attributes usable for sorting.

Figure 7.10 shows a variant of the pattern of Figure 7.9, which uses a Dynamic-
SortedList for displaying the list of messages. Note that the default ordering of
instances can be defined through an OrderBy ViewComponentPart, which the user
can override by exploiting the SortAttributes specified in the component.

7.2.3.2 Scrollable list

A very popular behavior in web applications is the paging of long lists of elements
into fixed-size blocks, with commands for scrolling. This is often used, for example,

MailBox

«List» MailBoxes «DynamicSortedList» MessageList

— - «DataBinding» MailMessage
«DataBinding» MailMessageGroup

«ConditionalExpression»
self.mailMessageGroup=MailBox

«OrderBy» name ASC

«SortAttributes»
subject, date, from.name

«ParameterBindingGroup»
SelectedMailBox > MailBox

Your E-Mail
<3 D X Q ((htto:7/wwwmail com/inbox/ —) @
0
Mail B | Tal
Mail ¥ v Q More W &
Chats Brandy Lewis Company Reviews Jdun 18
Drafts WaltersCompany ADY Feview- Maybe normal in diferent Jun 15
Important Youtv Your Youtv Reviews - Jan 20, 2013 dun 11
Inbox (2 Mandy Batilla Request to share ADY_P_WorkPlan doc Jun 10 1|
Sent Mm{') Brandy Lewis ADY Company Reporting 2 Jun 10
Spam WaltersCompany ADY brainstorming - The send action is May 6
Starred WaltersCompany IFML brainstorming - What kind of containers. May 5
Trash me Review date reminder May 2
More o Flor Jenkings ADY Verona meeting minutes May 1
Fracesco Tietto ADY hpr 31
Daniel Parinni Research Pro;eclﬁ:wew Apr 30
Camil James Review Meeting i-Asmat SA Apr 16
WaltersComopany ADY bainstorming Mor 15 -
4

Example of usage of the DynamicSortedList.

7.2 Web Extensions

as the base of search engine interfaces. A variant is the scrolling of blocks consisting
of individual objects, as found, for instance, in image galleries.

SCROLLABLELIST

The ScrollableList is an extension of the List ViewComponent that allows the user access ordered
DataBinding instances grouped in blocks. The ScrollableList ViewComponent has an attribute
called “block size” that specifies how many instances constitute a block. It also has an implicit
parameter (named current), which holds the block currently in view, and implicit events for moving
to the first, last, i-th, next, and previous block.

Figure 7.11 revises the search pattern introduced in chapter 5 to cater to the
scrolling of paged results.

7.2.3.3 Nested list

The multilevel master detail pattern illustrated in chapter 5 can be compacted into a
ViewComponent, by nesting one list inside another.

«ScrollableList» PagedResults

«Form» Search «DataBinding» Document

«ConditionalExpression»
if (Keyword.size() <= title.size()) then
Sequence(1..title.size() - Keyword.size()) ->

Search

«SimpleField» SearchKey: string

exists(i |
title.substring(i,i+ Keyword.size()) = Keyword)
else
false
«ParameterBindingGroup» «BlockSize» 20 ‘
SearchKey - Keyword
Your E-Mail
QO X} oo D)
=
Mai [] [AOY review [a 5
Mail v v QO Mrew 1-2000134 & > By
Chats Brandy Lewis ADY reporting Jun 18
Drafts WaltersCompany ADY Feview- Maybe normal in diferent Jun 15
Important Youtv Your Youtv Review- Jan 20, 2013 Jun 11
Inbox (2) Mandy Batilla Request to share ADY_P_WorkPlan doc w0 (I
Sent Mall Brandy Lewis ADY Company Reporting 2 Jun 10
Spam WaltersCompany ADY brainstorming - The send action is May 6
Starred WaltersCompany IFML - What kind of May 5
Trash me Review remainder Moy 2
More o Flor Jenkings ADY Verona meeting minutes May 1
Fracesco Tietto Review due Apr 31
Daniel Parinni Research Review Apr 30
Camil James Review meeting in SA Apr 16
WaltersComopany ADY b Mar 15
0|

Example of usage of the ScrollableList.

151

|
152

CHAPTER 7 IFML extensions

NESTEDLIST

The NestedList is an extension of the List ViewComponent that denotes the nesting of multiple
lists, one inside another.

Catalog

/ «NestedList» ProductCatalog \ [XOR] Product Information

Bed 1

«DataBinding» Category

«NestedDataBinding» products
«
A\
NestedDataBinding» 0T «DataBinding» Product
similarProducts (,/’
4

«NestedDataBinding» (J\‘ H ‘
accessories N AccessoryDescription

{
i e Y
\— «Details» AccessoryInfo

‘ ProductDescription

‘ "/ «Details» Productinfo

J

L9 | «DataBinding» Product
{
A

FIGURE 7.12
Example of usage of NestedList.

The data model of the NestedList comprises one top-level DataBinding, which
typically refers to a class of the domain model. Within the top level DataBinding,
one or more first-level NestedDataBindings can be specified that refer to one of the
association roles of the class referenced in the top-level DataBinding. Each first-level
NestedDataBinding in turn can comprise one or more second-level NestedDataBi-
nding. A second-level NestedDataBinding refers to one of the association roles of
the class target of the association role used in the first-level NestedDataBinding.
Figure 7.12 shows an example of usage of the NestedList ViewComponent.

The product catalog consists of a three-level nested list. At the top level, catego-
ries are displayed. At the next level, the products of each category are listed. At the
innermost level, two separate nested lists are presented: the accessories of a product
and the other products frequently sold with it. When the user selects a product at the
second or third level and an accessory at the third level, the chosen object is displayed
either in the “ProductDescription” or in the “AccessoryDescription” ViewContainer.

7.3 MOBILE EXTENSIONS

Mobile applications have rich interfaces that resemble on a smaller scale those of
full-fledged desktop applications. Mobility and the availability of sensors, such as
cameras and GPS, introduce features that are best captured by providing extensions
of the IFML core specialized for mobile application development.

7.3 Mobile Extensions 153

7.3.1 CONTEXT EXTENSIONS

The context assumes a particular relevance in mobile applications, which must
exploit all the available information to deliver the most efficient interface. Therefore,
the context must gather all the dimensions that characterize the user intent, the capac-
ity of the access device and of the communication network, and the environment
surrounding the user.

Various dimensions of the context relevant to mobile applications have been
catalogued and characterized in several standards and standard proposals, briefly
overviewed in the bibliographic notes at the end of this chapter. In this section, we
exemplify the most interesting ContextDimensions and ContextVariables that char-
acterize mobile application usage. The illustration is not meant to be exhaustive.
Rather, its aim is exemplifying how the contextual features can be represented as
IFML extensions and used to model the effect of context on the user interface. The
main aspects of the Context are listed below. Some of them have to be considered
as ContextDimensions (and thus allow the selection of a Context or another), while
other are ContextVariables (thus enabling the use of their value as parameters within
the IFML models).

* Device: this family of context features can be exploited to specify the adap-
tation of the interface to different device characteristics, most notably the
size and resolution of the screen. These features are usually exploited as

ContextDimensions:
* DiagonalSize: the physical size of the screen, measured as the screen’s
diagonal;

» SizeCategory: for convenience, screen sizes can be grouped in classes that
can be treated homogenously (e.g., SMALL, NORMAL, LARGE, EXTRA
LARGE); and

* DensityCategory: for convenience, screen density measures can also be
grouped in classes treated homogenously (e.g., LOW, MEDIUM, HIGH,
EXTRA HIGH).

The following information becomes handy as ContextVariables, so as to calibrate
precisely the Ul rendering based on some calculation over the size data:

¢ PixelSize: the actual horizontal and vertical size of the screen, measured in
pixels;
* Density: the quantity of pixels per unit area measured in dpi (dots per inch).

Other characteristics of the device may be considered, such as internal memory
size, processing power, and battery status. However, they are less frequently used in
the design of applications.

* Network connectivity: this dimension can be used to adapt the quantity or
quality of content published in the interface, based on the capacity of the
network link (e.g., replacing the display of a large media file with a lighter
preview when bandwidth is limited). The relevant ContextDimension is

154 CHAPTER 7 IFML extensions

ConnectivityType, which denotes the kind of network available; it can have
such values as NONE, BLUETOOTH, NFC, ETHERNET, MOBILE (E, G, 3G,
4G, ...), WIFL, and WIMAX;

* Position: this family of features can be used to adapt the interface to the
presumed activity of the user (e.g., simplifying the interaction commands when
the user is moving) or to publish content that depends on the location (e.g., local
news or alerts). The ContextDimensions related to position are:

* SensorStatus: denotes the activity status of the position engine of the
device. It can have values such as: ACTIVE, INACTIVE.

e Activity: denotes the physical user’s activity inferred by the sensor data;
possible values are: still, walking, running, cycling, and in-vehicle.

The ContextVariables that can be exploited when the SensorStatus is ACTIVE are:

* Location: denotes the position of the device, expressed in latitude and longitude
coordinates;

e Accuracy: denotes the accuracy of the position.

* Speed: denotes the ground speed of the device.

* Altitude: denotes the altitude above sea level of the device.

7.3.2 CONTAINERS EXTENSIONS

As shown in chapter 4, the composition of mobile application interfaces can be
expressed properly with the core IFML concepts of ViewContainers and ViewCom-
ponents. However, a characteristic trait of mobile interfaces—also present in desktop
applications although less pervasively—is the utilization of predefined ViewContain-
ers devoted to specific functionalities. These system-level containers provide econ-
omy of space and enforce a consistent usage of common features. Examples are the
“Notifications” area or the “Settings” panel. These special ViewContainers can be
distinguished (e.g., by stereotyping them as «system»).

SYSTEM VIEWCONTAINER

A ViewContainer stereotyped as «system» denotes a fixed region of the interface, managed by the
operating system or by another interface framework in a cross-application way.

Figure 7.13 shows an example of the usage of system ViewContainers by
revisiting the e-mail application running example with a simplified composition
of the interface more suited to a small screen. A system-level ViewContainers
is employed to deliver notifications, which are typically placed in a fixed posi-
tion within the header region of the interface. Another system ViewContainer,
“Settings,” is also used to denote that the standard “Settings” command and win-
dow of the operating system are exploited to open the configuration functionality
of the e-mail application in the interface region normally devoted to this task for
all the applications.

7.3 Mobile Extensions 155

Mail
Search
[XOR] MessageManagement [L] «system>» Notifications
[D] MailBox [L] Message Writer
[XOR] MessageReader
[D] MessagelList MessageDetails
[L] «system>» Settings
FIGURE 7.13

Example of «system» ViewContainers.

Flexible layouts, another pattern using ViewContainers, are very useful for mobile
applications. These are illustrated at the end of this section.

7.3.3 COMPONENT AND EVENT EXTENSIONS

Like ViewContainers, ViewComponents can be predefined in the system as default
interface elements that provide basic functionality in a consistent manner to the
application developer. An example is the media gallery present in most mobile plat-
forms. The «system» stereotype can be applied also to ViewComponents to highlight
that the interface uses the components built into the system.

7.3.4 CAMERAS AND SENSORS

Mobile applications can interact with one or more cameras onboard the device. The
basic interaction with the camera requires modeling the ViewContainer for visual-
izing the camera image and commands, the invocation of an Action for taking the
picture, the asynchronous event that notifies that the photo has been taken, and the
visualization of the image in the system-level media gallery.

Figure 7.14 shows an example of usage of the camera and of the system-level
media gallery. The “PhotoShooter” ViewContainer comprises a system ViewCon-
tainer “CameraCanvas,” which denotes the camera image viewer. The “Settings”
event opens a modal window for editing the camera parameters, and the “Shoot”
event permits the user to take a picture. When the image becomes available, a viewer
is activated, from which an event permits the user to open the photo in the system
media gallery. The internal viewer is modeled as a scrollable list, with block size = 1
to show one image at a time, and an OrderBy ViewComponentPart with a sorting
criterion by timestamp to present the most recent photo first.

156 CHAPTER 7 IFML extensions

[XOR] Photo Shooter

[D] [L] «system» CameraCanvas ‘ . PhotoAvailable
= @.

Settings O PhotoAvailable
[UvViewer o

N 1 BlockSize=1 N
«Modal» CameraSettings ‘ «ScrollableList» Photos «system» MediaGallery

«DataBinding» Image -
«system» MediaGallery

«OrderBy» timestamp OpeninMediaGallery q

DESC L

«BlockSize» 1

FIGURE 7.14
Example of usage of the camera and media gallery.

7.3.5 COMMUNICATION

Mobile devices communicate in a variety of ways with other fixed or mobile devices
that can be discovered dynamically. The aspects of communication that may affect
the interface are:

* Connectivity update notifications: they signal the change of the available
communication channels and can be captured as system events that express an
update of one or more ContextDimensions; and

* Devices in range: other devices can enter or leave the communication range.
This feature can be modeled as a system event that signals the discovery of a
device. Data transfer activities can be modeled as Actions that encapsulate the
details of the protocol used to manage the conversation.

Figure 7.15 shows an example of communication-enabled interface: the usage of
near field communication (NFC) for exchanging the contact details of the user.

The application consists of two parts, a sender and a receiver. The “NFCCard-
Sender” interface is minimal, because NFC normally requires the communicating
devices to be very close and thus there is little space for user’s interaction. The
interface presents the personal data to the user who can confirm his intent to make
them available to NFC devices in range. The “SendViaNFC” Action abstracts the
steps necessary to build up the NFC record and notify the device that it is ready to
be dispatched.

The “NFCCardReceiver” ViewContainer models the application on the side of the
receiver. The reception of the NFC payload is modeled as an asynchronous event that
abstracts the system process of parsing NFC messages and triggering the registered

7.3 Mobile Extensions 157

«Details» PersonalCard 15" _ NFeDaaReady
4 Send)_"
\T‘ ViaNFC

-

NFCCardSender

Nome: Juon Voldez Nome: Juon Voldez
Telephone: +572222221 Telephone: +572222221
Seve Discard
«ParameterBindingGroup» Send NFC +))

Vs Payload.Name —> name
NFCDataReady \\R Payload.Phone > PhoneNumber

NFCCardReceiver |

v

(«Details» ReceivedCard \57%
‘/J>_ Save
AL Contact
- J

)
—/ Discard

FIGURE 7.15
Example of usage of NFC data exchange

applications that handle them. The interface is again very basic: the user can confirm
and save the data or discard the message.

Figure 7.16 shows an example of adaptation of the interface composition to the
network type.

The interface for reading a message is implemented in two versions. One version
presents a message with all its attachments downloaded automatically. The second
interface requires an explicit user command for downloading an attachment, and the
attachments are downloaded and shown one at a time using a ScrollableList. The
choice of which alternative interface to use is conditioned by means of an Activation-
Expression, illustrated in chapter 5, that tests the type of connectivity available based
on the ContextVariable ConnectivityType. On-demand attachment visualization is
selected when the connection type is “MOBILE” to reduce bandwidth consumption
and interface latency.

7.3.6 POSITION

Location awareness enables devices to establish their position so that mobile appli-
cations can provide users with location-specific services and information, set alerts
when other devices enter or leave a determined region, and adapt the interface to the
current user’s physical activity, such as walking, running, or driving.

Figure 7.17 shows an example of the usage of the position sensor.

The “Start” event in the “Tracker” ViewContainer allows the user to activate
the continuous position tracking system of the device. The Form ViewComponent
enables the specification of the position tracking parameters, such as accuracy and
frequency, which are communicated to the system service via the “ActivatePosition-
Updates” Action. After activating the tracking system, the application starts listen-
ing to incoming asynchronous SystemEvents, which provide updates of the current

[XOR] MessageDetails

«ActivationExpression»

= =

...l Context.ConnectivityType =
[D] FullMessageReader "WIFI" e
405 PM - ol 3Gy 405PM
Subject: Documents L Subject: Documents
i From: Pietro Ferrari [X] From: Pietro Ferrari
Message «List» Attachments L To: Pablo Marmol s To: Pablo Marmol
| «DataBinding» Message | - L«DataBinding» Attachment Dear Pablo, Dear Fablo,
Please find attached all the Please find attached all the
documents. Do not hesitate to documents. Do not hesitate to
contact me if something is not contact me if something is not
clear. cleor.
Best regards, Best regards,
«ActivationExpression» Pietro Ferrari Pietro Ferrari
ShortMessageReader e '(‘Iontext.(ionnectlwtyType = Download Next Attachment
MOBILE
«ScrollableList» Attachment] Dect docx

«DataBinding» Attachment

ey . @) ©®)

Attachments

FIGURE 7.16

SUOISURIXS TNl £ 431dVHD 8ST

example of interface adaptation to network capacity

[XOR] Tracker

[D] [L] ActivateTracking

[L] Trail

«Form» SetParameters

Stop

«List> TrackPoints

Start

Activate

«SelectionField» Accuracy |

O

«DataBinding» Point

W)}

Position

Updates

«SimpleField» Frequency |

m SaveAsTrack Q

il <y aoseM -

ActivateTracking

Set Parameters:

Accuracy: [Saect o]

FIGURE 7.17

Discard

all 6y 405PM -

ActivaleTracking

Set Parameters:

Track Points:

Name |Latitude
Begining

Stop 1

Stop 2

oot o | ocr

Deactivate

Position
Updates

«ParameterBindingGroup»
Context.Timestamp~> Time
Context.Location-> Position

Create
Point

PositionUpdate

Create
Track

all Gy 40sPM -

Trail

A new point has been recorded.

Save As Track | Discard

Stop Position

Example of usage of the position

SuoISUaIX3 9|IqON €°Z

ST

160 CHAPTER 7 IFML extensions

position at the established frequency. Such events carry parameters indicating the
timestamp of the recording and the geographical coordinates, and trigger a back-
ground action that stores such data as “Point” objects. The list of recorded points is
visualized in the “TrackingPoints” List ViewComponent. At any moment, the user
can clear the list of recordings, save the recorded points as a track object, or stop the
position tracking system.

7.3.7 MAPS

Maps are a powerful interface over geographic data. The integration of digital maps into
user interfaces has become very popular with the advent of the web. Mobile applications
add a special flavor to map-based interfaces by combining the dynamic position of the
user with the representation of topographic data. Digital maps have become a commod-
ity supported by many proprietary and open-source services. This rich offer boosts the
development of map-enabled applications on top of off-the-shelf functionality, for:

* connecting to the mapping service and downloading map tiles for display on
the device screen with controls such as pan and zoom for moving the map and
zooming in or out;

* setting the map type, choosing among several alternatives, such as normal, satel-
lite, hybrid, and 3D; and

* initializing and changing the viewpoint over the map (also called “camera,”
to highlight that the map view is modeled as a camera looking down on a flat
plane); the rendering of the map is governed by such properties as location,
zoom, bearing, and tilt.

A simple way of modeling the map view is to extend the concept of ViewCon-
tainer to denote an off-the-shelf map visualization interface. Application-specific
content and events can then be added to such an extended ViewContainer as further
ViewElements and Events.

MAPVIEW

A MapView is an extension of ViewContainer that denotes a map view. It supports the events for
panning and zooming and for changing the map type and the camera parameters.

Content—both static and interactive—overlaid on the map can be modeled by
extending the ViewComponent concept. For example, the «marker» stereotype can
be added to Details and List to denote that the DataBinding instances have a position
and are rendered on the map as interactive markers.

MARKER

A Marker is an extension of ViewComponent usable in MapView containers that denotes that the
underlying DataBinding instances possess a location attribute that is displayable in a map view. It
supports the events for selecting, dragging, and dropping.

7.4 Multiscreen Extensions 161

Another useful way to present an ordered set of locations is the path visualization.

PATH

A Path is an extension of the List ViewComponent usable in MapView containers that presents
underlying DataBinding instances (that must possess a location attribute) as a polyline in a map
view. It supports events for selecting the entire path or a single point on it.

Figure 7.18 elaborates the example of Figure 7.17 to show the usage of the Map View
ViewContainer and of the map-specific extensions of the List ViewComponent.

The plain visualization of the tracked points exemplified in Figure 7.17 is replaced
by two alternative map-based displays modes. The recorded points are viewable
either as a set of markers or as path on the map.

7.3.8 GESTURES

Touch screens enable the use of gestures for the direct manipulation of screen objects.
The gestures supported by touch devices include touch, double touch, press, swipe,
fling, drag, pinch in and out, and several more. These gestures have well-defined
semantics and consolidated conventions to which the interface design must conform
to provide a consistent user experience. They can be represented in [IFML by extend-
ing the core Event concept.

Figure 7.19 shows an example that uses the touch and press events. The distinc-
tion between these two gestures allow a finer control over the effect of acting upon
the screen objects, much in the same way as mouse click and double click do in
desktop applications.

Figure 7.19 revisits the master detail pattern to highlight the usage of touch ges-
tures. The conventions illustrated in the example adhere to the best practices in popu-
lar mobile operating systems, such as Android 4. In a master detail interface, the
touch gesture activates the default action on the object (in this case, the opening of
the details view). The press gesture instead activates the selection mode, whereby
one or more objects can be chosen with a touch event, and a toolbar of commands is
displayed to act upon the selected object(s). This behavior is represented in Figure
7.19 by using the «press» and «touch» event extensions and by conditioning the
effect of the touch event based on the existence of at least one previously selected
object. Other gestural conventions can be represented in a similar way.

7.4 MULTISCREEN EXTENSIONS

Single screen applications are conceived to work for a single class of access devices,
with homogeneous capabilities. They define the composition of the interface at
design time by specifying the hierarchy of ViewContainers and the disjunctive or
conjunctive nesting of containers. Multiscreen applications are instead designed to

[XOR] Tracker

[D] [L] ActivateTracking

[XOR] [L] «MapView» Trail

«Form» SetParameters

Activate \ """
Position)«
Updates

«SelectionField» Accuracy
J «SimpleField» Frequency

[L] TrailPath

[D] [L] TrailMarkers

«Path» «List» TrackPoints

«Marker» «List» TrackPoints

‘ «DataBinding» Point ‘

‘ «DataBinding» Point |

Deactivate
Position
Updates

«ParameterBindingGroup»
Context.Timestamp—> Time
Context.Location-> Position

: ; SaveAsTrack
Discard

Create g O
Point -
PositionUpdate
». Create
» Track

PR
Tracker
ActivateTracking

Set Parameters:

FIGURE 7.18

- FE -
ActivateTracking

Set Parameters:

rcowracy: [02imTv]

Start Position

il B% 405PM
Tracker
Trail Markers

Sov i ok
Stop Position

[[]

Savv As Track Dllcord

Example of usage of the MapView ViewContainer.

291

X N4l £ ¥431dVHI

SUoIsua

7.4 Multiscreen Extensions

AddressBook «ActivationExpression»
f—————————| SelectedContacs.isEmpty() AddressBook

«List> Contacts «Details» Contact

«Touch»

«ActivationExpression» «Touch» «Press»
SelectedContacts.notEmpty() |~

A \ 4
«modeless» ContextualToolbar

.../ «ParameterBindingGroup»
Selected > SelectedContacts

«Parameter» SelectedContacts ‘

__/ Delete

r/—\touch ™~

press

= — = e =]

Juan Va\d% Juan Voldez Jimmy Ponnini
Lulu Perez Juan Voldez
Mandy Bears Mobile +57122344 Lulu Perez

Home: +57184323 Lulu Perez
Pablo Marmol Address: Vio Siempre viva 123 Mandy Bears

il G 40sPM L [y 405PM -
Address Book Address Book Address Book [Viseectes T |
Jimmy Pannini

Juon Voldez

Mandy Bears

Pedro Marauez Fdio blormel Pablo Marmol

Roberto Devito Fedro Moravez Pedro Morauez

Roberto Devito
Tino Gomez Roberto Devito

FIGURE 7.19

Example of touch and press event handling.

work on different devices, possibly with different screen characteristics. A goal for
their development is to define the interface layout in a flexible way so that it can
adapt dynamically to the size, orientation, and density of the screen.

Figure 7.20 shows an application for updating the device settings, designed to
adapt to cellular phone small screens and to tablet wider screens. The interface sup-
ports two main tasks: picking the desired preference from a list, with the “Prefer-
ences” List ViewComponent, and editing its value, with the “PreferenceEditor” Form
ViewComponent. The two ViewComponents that address such tasks communicate
parameters to the “UpdatePreference” Action through their outgoing Navigation-
Flows and the ParameterBindingGroups associated with them.

The flexible interface composition is expressed by means of the “Settings” View-
Container, which hosts two distinct subcontainers: ‘“Tablet Settings,” in which the
two ViewComponents are kept together, and “Phone Settings,” in which they are
visualized one at a time. The ActivationExpression of the subcontainers ensures that
the proper composition pattern is activated based on the device information taken
from the Context.

Figure 7.21 shows a mock-up of the interface composition adapted to the type of
the screen.

I
163

164 CHAPTER 7 IFML extensions

[XOR] Settings
[XOR] Phone Settings | Tablet Settings
.
«Activati i
[D] [L] Choose Preference f:;tEXF;DEViCETVlJe: |
. one
T e n (T
(" «List» Preferences \l ol it SelectPreference
—— .~ e
| ataBindingopreference | @) «ActivationExpression»\‘ «Datainding) Preference @—
N Context.DeviceType= N\ .

< “Tablet” L
—_— «ParameterBindingGroup» ,
Selected -> Preference /
SetPreference Sy
AT ——— S [«Form PreferenceEditor
«Form» PreferenceEditor «ParameterBindingGroup» /-
i Selected - Preference «SimpleField»
«SimpleField» - stri
Value: string Value: string

o d)
smmpreference\‘J

@
SubmlPreference\l

« ParameterBindlngGrouV - e

Value - NewValue «ParameterBindingGroup» T
i Value > NewValue / e !
Update — Preference

Preference
/

FIGURE 7.20
Example of flexible interface composition.

Note that the model of Figure 7.20 duplicates the ViewComponents, Events,
InteractionFlows, and Actions that specify the content and behavior of the interface
in the two configurations. This duplication, which puts an unnecessary burden on
the designer and may result in misalignment errors, can be avoided with the use of
modules (explained in chapter 8).

7.5 SUMMARY OF THE CHAPTER

In this chapter we have illustrated the role of the extension mechanism natively pro-
vided by IFML. The basic constructs of the language can be extended to adhere to the
terminology and concepts of a specific class of applications and to improve model
checking and code generation. We have shown the extension mechanism at work in
the definition of several specializations of ViewContainers, ViewComponents, and
Events tailored for desktop, web, and mobile applications.

7.6 BIBLIOGRAPHIC NOTES

Example of containers and components for desktop interfaces are found in the librar-
ies of most operating systems and programming languages. For instance, the Java
development environment defines the classes for building containers and component
in the Package javax.swing [JavaSwing].

/'

° > (X J —
(::‘bl
G Settings r Settings Sound
Volume
Wi-Fi Wi-Fi @
Bluetooth Vol Device ringtone
Dm : e g Bluetooth @
ata Usoge Device ringtone
More settings o Data Usage Device vibration @
Device vibration (©)
Home screen mode " s
Default notiications () More settings Default notifications @
Blocking mode Vibrate when ringing Home screen mode Vibrate when ringing
Slowoe Keytones %] Sound
Keytones
Ba
hies). Blocking mode
Security L)
FIGURE 7.21

Mock-up of the adaptable composition of Figure 7.20.

SejoN dlydessolqig 9°L

G991

166 CHAPTER 7 IFML extensions

Mobile design best practices and patterns are fundamental chapters in the devel-
opment guidelines of the most popular mobile environments. The iOS and Android
developers’ sites provide excellent examples of such materials [Android, i0S].

Device properties are mapped in several standard vocabularies and capability
models, such as W3C’s Device Description Repository Core Vocabulary [Rabin10]
and the Composite Capabilities/Preference Profile (CC/PP) [Klyne04, Kiss07].

CHAPTER

Modeling patterns

This chapter presents [IFML under a problem-oriented perspective and thus comple-
ments the construct-oriented perspective of the preceding chapters. It introduces a
number of patterns that can be used to tackle typical problems in the design of the
interface, with a twofold aim: showing IFML at work in situations of practical use and
exemplifying interface design practices in a technology-independent way, so that they
can be applied to different development scenarios. The order of presentation is by type
of problem, rather than by class of application, because many patters have a general
utility that spans more than one type of application. Where appropriate, we will empha-
size when a certain pattern is more helpful in desktop, web, or mobile applications.

8.1 INTERFACE ORGANIZATION

In this chapter we complete the discussion about interface organization patterns
started in chapter 4 and continued in chapter 7 by illustrating two patterns focused on
improving the reuse of submodels within and across projects.

8.1.1 REUSABLE MODULES

In chapter 7, we introduced an example of multiscreen interface design that benefits
from the ability of placing the same interface content in different composition lay-
outs to be dynamically adapted at runtime to the screen characteristics. However, as
can be seen from the model of figure 7.19, the actual interface content is repeated
twice, once for each of the layouts. This solution is unsatisfactory because it forces
an unnecessary duplication of model elements and obliges the designer to update
each copy after a modification of the requirements.

A better way to organize the model is to factor out the definition of the common
part, in the form of a reusable fragment, and reference it from the part of the model
where it must be reused. This capability is granted by the notions of Module and
Module Definition.

MODULE DEFINITION

A ModuleDefinition is a portion of IFML model, comprising IFML model elements, that may be
reused for improving IFML model maintainability.

If needed, ModuleDefinitions can be aggregated in a hierarchical structure of ModulePackages.
ModuleDefinitions can exchange Parameters by means of input and output PortDefinitions.

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00008-4
Copyright © 2015 Elsevier Inc. All rights reserved.

167

|
168

CHAPTER 8 Modeling patterns

PORTDEFINITION

PortDefinitions represent interaction points with a ModuleDefinition. They hold Parameters for
transferring values to and from the ModuleDefinition. An input PortDefinition has outgoing Interac-
tionFlows to the inside of the ModuleDefinition. An output PortDefinition has incoming Interaction-
Flows from the inside of the ModuleDefinition.

ModuleDefinitions can be reused by adding Modules referencing them in IFML models. Mod-
ules that reference a ModuleDefinition may comprise Ports, which in turn reference the correspond-
ing PortDefinitions.

MODULE

A Module is a named reference to a ModuleDefinition that allows reuse of the model portion speci-
fied in the ModuleDefinition.

PORT

A Port is an interaction point between a Module and the surrounding model within which it is
defined. A Module is associated with a set of Ports, which in turn reference the corresponding
PortDefinitions. For every PortDefinition in the ModuleDefinition, each corresponding Module
must contain 0 or 1 Ports. An input Port has incoming InteractionFlows from the outside of the
Module for receiving input Parameters. An output Port has outgoing InteractionFlows to the outside
of the Module for shipping output Parameters.

Figure 8.1 shows the ModuleDefinition “PreferenceSetter” for encapsulating the
functionality of updating the value of a preference received in input.

The ModuleDefinition has one input PortDefinition, to acquire the preference
object to be updated, and one output PortDefinition. The input PortDefinition is con-
nected to the UpdatePreference Action inside the Module, which permits the actual
modification of the value attribute of the preference object based the user’s input.
Note that this quite trivial example could be made more realistic by modeling dif-
ferent ways to edit the value of a property depending on its nature, as customary
in mobile interfaces. Such complex interaction logic would be factored out in the
ModuleDefinition and thus would become reusable in multiple projects.

Figure 8.2 shows how to reuse the ModuleDefinition of Figure 8.1 in the multi-
screen design pattern discussed in chapter 7, obtained by placing two Modules that
reference the ModuleDefinition “PreferenceSetter.”

Another example of reusable functionality that can be encapsulated in a module
is the payment process of an e-commerce application. After filling a shopping cart,
the user proceeds to the check out and payment process, which typically consists of
the three steps exemplified in Figure 8.3.

When the user decides to order, a Customer Information Form is displayed, where
the user can provide personal information. Next, a Payment Information form lets
the user enter the bank account details. Finally, the transaction is executed, and its
outcome is presented as a final message.

8.1 Interface Organization

Input port

PreferenceSetter

«ParameterBindingGroup»
Selected > Preference

«ParameterBindingGroup»
Z Value > NewValue

Preference > Preference

«ParameterBindingGroup» -

«Form» PreferenceEditor

«SimpleField»
Value: string

Update
Preference
value

FIGURE 8.1

Output port

169

Definition of a module for setting preference values.

This recurrent functionality can be encapsulated in a reusable ModuleDefinition,

as shown in Figure 8.4.

ModuleDefinition PaymentExecution can be referenced in the interface model of
an e-commerce application by a Module, as shown in Figure 8.5.

8.1.2 MASTER PAGES

Another form of reuse occurs frequently in web applications, where the interface
is modeled as a set of independent pages. In this case, it is possible that the various
pages of the application share a common section, such as the header, the footer, or a

cross-site search form.

Modules do not address this situation properly, because even if the shared con-
tent or function is encapsulated within a Module, a reference to the Module must be
inserted into each page to denote its repeated appearance.

Settings

«XOR»Phone Settings

Tablet Settings

[D][L] Choose Preference

«List»Preference

«DataBinding» Preference

SetPreference

PreferenceSetter

«ActivationExpression»
Context.DeviceType=
“Phone”

SelectPreference

Context.DeviceType=
“Tablet”

«ActivationExpression»

«List» Preference

«DataBinding» Preference

«ParameterBindingGroup»
Selected -> Preference

«ParameterBindingGroup» /.~

Selected - Preference

PreferenceSetter

SelectPreference

FIGURE 8.2

Multiscreen design pattern reformulated with the help of a reusable module.

suioned SullSpON 8 ¥ALdVHO OLT

98 On-Line Book Store

{\ Home W Shopping Cart X Exit
~C Information
E-Mail Address Line 1
Title Address Line 2
Middle Name l: State or Province:
Last Name

Phone: +51348576444 Country

l

J

0¥ On-Line Book Store

1\ Home 4\ Back B shopping Cart X Exit

— Payment Information

Cardholder Name: Mr. Bill Feathers

Street Hamiton Postal Code 10138

Address Line 2 45

Address Line 1

Country United States

Bank Card Account 12763988733562
Bank Card Expiration

Total Amount: $ 156.95

City: New York

State or Province: [\ Vork

|

—

FIGURE 8.3

o8 On-Line Book Store

N Home & See categories Y Shopping Cart

X Exit

Payment Performed Successfully!
@ Payment Details
CREDIT CARD COMPANY

Charge to: 8765432567876 for. $156.95
Charge APPROVED

CUSTOMER: john feathers@mail.com
CHARGE APPROVED

Mock-up of the checkout process in a typical e-commerce application.

uoneziuediQ aoeBIu| 18

Payment Execution

Customer Information

Payment Information

«Form»

«Form»

Execute
Amount ICfustomt.er Payment the
—> F= nformation Information payment
«ParameterBindingGroup» «ParameterBindingGroup»,
Name > Name Name > Name
CreditCard - CC
FIGURE 8.4

Confirmation

Reusable module definition encapsulating the payment process.

[AA)

susened 3ullepolN 8 ¥ALdVHI

8.2 Navigation and Orientation 173

Shopping Cart Confirmation

«List»
Product List

«Details»
Confirmation
Message

Checkout

Payment
Execution

«ParameterBindingGroup» ‘ «ParameterBindingGroup»
Total > Amount Confirmation > Msg

FIGURE 8.5
Module PaymentExecution placed inside the model of an e-commerce application.

A modeling shortcut for avoiding the replication of the reference to the shared
functionality relies on the notion of a MasterPage, which further refines the Page
ViewContainer extension introduced in chapter 7.

MASTERPAGE

A MasterPage extends the Page ViewContainer to denote that its content is replicated in a set of
target pages. The target pages of MasterPage are, by default, those contained in the SiteView or
Area where the MasterPage belongs.

Figure 8.6 shows an example of MasterPage, which we assume to be defined
within the SiteView of a web application offering both public and protected pages.
The MasterPage contains the functionality for logging-in and out and for displaying
the name of a logged-in user, which repeat identically in all the pages of the Site-
View. The use of a MasterPage centralizes the definition of the shared functionality
and eases both the initial specification and the evolutive maintenance.

The use of the Login and Logout Actions and of the Context to identify a logged-
in user is explained later in this chapter.

8.2 NAVIGATION AND ORIENTATION

Designing an effective access to the application content and functionality is prob-
ably one of the most challenging tasks in interface design. The idea is simple: the
user should always be able to understand what can be done in the current interaction
context and how to “jump” to another context. Next, we discuss some design patterns
that have the common goal of helping users find their way in the interface.

174 CHAPTER 8 Modeling patterns

«MasterPage» Login
| «ActivationExpression»
L " logout | Context.loggedin=false
ogou -

Action P «Form» Login

«Simplefield» username: string ‘

| «Simplefield» password: string

«ActivationExpression»
Context.loggedin=true «Details» UserName

«DataBinding» Context ‘

«ParameterBindingGroup»
username-> username
password - password

username: string

«VisualizationAttributes» ‘

S

User

— Login
1 e
Username

FIGURE 8.6
Example of MasterPage.

8.2.1 TOOLBARS AND MENUS

The standard widgets for orienting the user during navigation are toolbars and menus,
used in different flavors in desktop, web, and mobile applications.

Two major categories of toolbars can be distinguished: content-dependent and
content-independent. These correspond to the two navigational categories discussed
in chapter 4 and 5. Content-dependent toolbars and menus group commands for
accessing or acting on objects, whereas content-independent toolbars and menus
group commands for navigating from one place to another in the interface.

In IFML, toolbars and menus are modeled as ViewContainers and/or View-
Components associated with the events representing the executable navigations and
actions.

8.2.1.1 PATTERN CN-SOT: Single object toolbar

Content-dependent toolbars are always modeled explicitly. Their role is to show the
user all the actions and navigations that are possible starting from the object(s) in
view. The basic case occurs when only a single object is in view.

In a first variant, the toolbar is modeled as a set of events associated directly
with the Details ViewComponent that displays the object. In such a realization, the
object and the commands for acting on it are displayed together synchronously. This
solution is normally employed in web applications, where pop-up menus are used

8.2 Navigation and Orientation 175

sparingly and the available commands are embedded as hypertext anchors in the
page that shows the target object. Figure 8.7a demonstrates an example of this design.

A second variant decouples the appearance of the object from that of the toolbar.
An event is shown together with the object, which can be used to display a menu
with content-dependent commands. This latter solution is viable when screen space
is scarce and the commands numerous, or the object demands all the available space
for a better visualization, as in an image or document viewer. Space economy is
obviously at the price of an extra interaction, so the tradeoff should be considered
carefully. Figure 8.7b shows an example of this solution.

In platforms endowed with multiple ways for selecting objects, such as left, right,
and double click, keyboard accelerators, and select and press touch gestures, the
basic pattern can be enhanced by assigning some of the Actions to a context menu
and some other Actions to dedicated events. Figure 8.7c exemplifies this enhance-
ment, where the right-click event opens a command menu and the double-click event
causes the navigation to the full screen view.

Hybrid designs between detached and in situ command placement are also pos-
sible, as well as multiple, logically equivalent realizations of the same set of com-
mands. Figure 8.8 shows an extreme case in which the commands for acting on an
image are embodied in three ViewContainers: the window menu bar, a toolbar placed
below the image, and the menu associated with the right click of the mouse.

Whatever the design pattern adopted—which may depend on the class of the
application—the general recommendation of all usability guidelines and textbooks
is consistency. The adopted interaction scheme should be repeated consistently
throughout the application.

IFML allows representing the chosen design patterns at a level higher than the
source code. This makes it possible to automatically check the model of a large
application for the consistent usage of patterns and even to apply model refactoring
automatically to improve uniformity. An example of these techniques is described in
[FLMMO04].

8.2.1.2 PATTERN CN-MOT: Multiple objects toolbar

To speed up the interaction, commands can be applied to multiple objects (e.g., to
move or delete them). In this case, the design of the toolbar must be coordinated with
that of the object selection mechanism. Different solutions are possible.

No choice. The commands are applied to all the objects indiscriminately. This
may happen, for example, when the set of target objects is identified by a categori-
cal entity, as explained in chapter 3. The toolbar can be modeled as a set of events
associated with the categorical object, using any one of the single object patterns dis-
cussed before. Particular care should be placed in mixing commands that refer to the
categorical object itself (such as renaming a whole photo collection) and commands
that apply to the individual members of the set implied by the categorical object
(such as setting one image of the collection as the background). A good practice
with bulk commands is to provide feedback to the user on the fact that the command
is applied to multiple objects (e.g., requiring confirmation or explicitly showing the

(a)

(b)

1y

Share Delete

F o

Rotate Set As

(c)

PhotoViewer
PhotoViewer
/" «Details » Photo D [—
e — (L (o2 Pt h -
7 oaere «Datainding» Image l ()share
aighticliclo =
-4 . () petete
() Rotate >
>j< () Rotate
() Rotate
S () sews | «ouble-dlick N =
) N ()SetAs
N L 7
P— «modal> | FullScreenPhotoViewer
/“DetailsrPhoto)\ Mend o -
/" «Details » \ /" «Detalls » Photo D

Share
Delete
Rotate

FIGURE 8.7

Set As

CTRL+H
CTRL+D
b4
>

a

>

\

|

~

() share
)

b
() belete
(") Rotate
./

() setas
\/

.

«DataBinding» Image

Content-dependent toolbar for a single object instance.

suseped SulepolN 8 ¥ALdYHD 9.1

8.2 Navigation and Orientation 177

T Y
{=] Robi - Windows Photo Viewer e)

File v Print v E-mail Burn v Open v @

Open With
Set as desktop background
Open file location

Rotate clockwise

Rotate counterclockwise

Copy
Delete

Properties

: =
(o = pedS)g 5 € TX)

FIGURE 8.8
Multiple realizations of the content-dependent commands on a single object.

number of objects that will be affected). Figure 8.9 shows an exemplary solution
applied to bulk commands for image collections. Each command for acting on all
the images of a collection is split in two steps: the selection of the target collection,
which visualizes the toolbar containing the name and the number of photos that will
be acted upon, and the actual bulk commands (RotateAll, MoveAllTo, DeleteAll),
which are triggered from the events associated with the toolbar of the “categorical”
collection object.

Preselection. The target object(s) are selected first and then the command is
applied to them. This pattern is ubiquitous in desktop and web applications, where
checkbox lists are used for the purpose. When multiple selections are allowed, the
events to be modeled are two: the selection items from the list and the triggering of
an Action on the selected objects. If the selection is single, these two events could
either be disjoint and asynchronous or collapse into an atomic interaction. Also in
the case of preselection, if space restrictions apply and the commands are numerous,
the display of the toolbar listing the available commands can be detached from the
container allowing the selection of the objects.

Figure 8.10 illustrates these aspects by revisiting the e-mail running example,
which contains an instance of the preselection design pattern applied to the “Mes-
sageList” ViewComponent. The two event schemes exploited for the selection are
clearly visible. On one side, the user can click on the message header, and this inter-
action immediately opens the “MessageReader” ViewComponent. In this case, the
selection and action triggering events coincide. On the other side, ticking a check box
only selects an item from the list. This event (“MessageSelection”) opens the toolbar,
where the actual commands that can be applied to the selected messages become

Image Collections

«Details» Collection

RotateAll
«DataBinding» Collection
L «VisualizationAttributes» MoveAllTo
name, cardinality | . FETT =
DeleteAl Image Collection

«List» Collections

[«DataBinding» Collection |

Q/J «DoubleClick»

__ /«ParameterBindingGroup»
_______________ Selected - Collection

«Details» Photo

XXX
XXX

PhotoViewer

«DataBinding» Image

«ConditionalExpression»
collection = Collection

FIGURE 8.9

suseped SulepolN 8 ¥ALdYHD 8.1

Content-dependent toolbar for multiple images, associated with the categorical class Collection. When a collection is selected, the number of
corresponding images is shown, together with the available actions. A double click on a collection opens the details of the first image.

8.2 Navigation and Orientation 179

[XOR] MessageManagement

[D] MailBox

[XOR] Message Reader

[D] Message List Message details

«Multichoice» MessagelList

«Details»

«DataBinding» MessageReader
MailMessage «DataBinding»
“} MailMessage
«Check» /™ ™\ S\
MessageSeIect—ion\rJ
/« ParameterBindingGroup»
+ S / SelectedMessage - Message
Delete MessageToolbar |/ «ParameterBindingGroup»
SelectedMessages > MessageSet
Archive «Parameter» MessageSet | |
Report
| «ActivationExpression»
VR VR MessageSet.notEmpty()
MoveToU U Labels |
FIGURE 8.10

Content-dependent toolbar for the preselection of instances.

available. In this case, the selection and the action are asynchronous and performed
in two separate interactions.

Postselection. The command is selected first, followed by the object(s) to which
it must be applied. This pattern is suitable to applications that comprise general pur-
pose commands (such as deletion and sharing), which apply to different classes of
objects. Figure 8.11 shows an example of postselection.

8.2.1.3 PATTERN CN-DT: Dynamic toolbars

The commands listed in a toolbar or menu may vary at runtime, based on the status
of the interaction. For example, the command “SetAsBackground” could be enabled
only when the selected object is an image.

The dynamic addition of commands to a toolbar is modeled in IFML with the
ActivationExpression element associated with the events of the toolbar. The Activa-
tionExpression denotes the condition that must be satisfied by the current interaction
context for the event that triggers an action to become active.

Figure 8.12 recalls two examples of dynamic toolbar from the e-mail application.

First, the “ReplyToAll” command appears in the toolbar (represented by the
events associated with the “MessageReader” ViewComponent) only when the user
has selected a message with more than one recipient. Second, the toolbar of the
“MessageWriter” ViewComponent (represented by the events associated with the

PhotoViewer

al K aosem C [03 aosem |

[image catecion | [image Cotection
= =

il G 405PM -

)

Menu - "
«MultiChoice» Photos
«DataBinding» Image

Confirm

Delete

Cancel
Rotate

«Parameter» Command |

D
FIGURE 8.11

suiened SullSpON 8 ¥ALdVHO 08T

Content-dependent toolbar for the postselection of instances.

8.2 Navigation and Orientation 181

[XOR] Message Reader

W yd «ActivationExpression»

s MessageRecipients->notEmpty() ‘
B

«Details» z /ﬁsp\yTnAH

LI} Message keyword \meerd

search J
Reply
S

:>‘

" «ActivationExpression»
[L] Message Writer State = “Reply” or |
v Vy State = “Forward” |
- s]

Discard (7)/ «Form» MessageWriter \\ i
Add cc,— |

«SimpleField» to: String

«SimpleField» cc: String ‘ «AmvanonExpresswn» B

«SimpleField» bce: String State = RepIyToAII or |
- - = - KR’emy ‘ State = “Forward” ‘\
«SimpleField» subject: String

«SimpleField» body: String ‘

State != “Forward” |

—
’?ActivationExpression» |

«SimpleField» attachment: ... \/ ~, Forward

«ActivationExpression» |
«Parameter» State ™. | State = “Reply” or ‘

'] State = “ReplyToAll” |

Add attachment @/ Send \"Dsm

FIGURE 8.12
Dynamic addition of commands to a toolbar.

“MessageWriter” Form) comprises several events dynamically activated based on
the status of the interaction. For example, the “EditSubject” command is active only
when replying to a message and not when forwarding.

8.2.1.4 PATTERN CN-MSC: Multistep commands

As a corollary to the content-dependent toolbar patterns, we discuss the case of mul-
tistep commands, which are often found in toolbars and menus. These commands
involve multiple steps. For example, a content sharing command requires the user to
select the connection method or application and then the recipient of the shared object.

Figure 8.13 shows the model of a three-step command for sharing a piece of
content over a network connection. The command sequence is modeled as a chain
of modal windows that can be triggered open when one object is in view. The user
is asked to select the network service (e.g., Bluetooth or DLNA) and then to choose
among the recipients that are in range.

Note that the interaction is stateful, and thus the user’s choice in all the interme-
diate steps must be represented as parameters associated with the appropriate View-
Containers, as shown in Figure 8.13.

Composite commands can be rather complex—even dynamic—especially in desktop
applications, because external applications or plugins can register themselves as provid-
ers or recipients of services. To illustrate the case, Figure 8.14 models the command menu
(which is a contextual menu) for working with images in the Windows explorer interface.

«ParameterBindingGroup» «ParameterBindingGroup»
Selected > ImagelD Selected - Serviceld

PhotoViewer «modal» ChooseService «modal» ChooseRecipient

«Details» Photo Share «List» SharingServices i «List» Recipients
Delete b> .
Rotate
SetAs

«Parameter» ImagelD, ServiceID ‘

«Parameter» ImageID

«ParameterBindingGroup»
ImagelD - ImagelD

ail 3G 40sPM - | | il G aoseM
[image Cotectin | [image Gotection]
¥ \ <3 \ < 1
4L Gustavo Salamanca
., Helena Rubio
Juan Valdéz
Juana Sénchez
Laura Florez
Liliana Rojas
Luis Pineda
Marco Ferrari
Miguel Gulim«:z
Moises Fernandez
5, Oscar Vaquero
9, Omar Perez
, &, Pedro Fernandez

FIGURE 8.13

4]}

suiened SuljSpoN 8 ¥ALdVHI

Three-step command for sharing a file over a network connection.

FolderViewer

(" «List»MyPictures

AN

«DataBinding»Image

«Rightclick»

d
-

ImageMenu

«Parameter» SelectedImage

«List»ExtraCommands

«DataBinding»
RegisteredCommands

SendToMenu

«List»ExtraTargets

«DataBinding»
RegisteredTarget

Folder

Pictures library

R el

Tulips

Cut

Copy

SendTo

Mail recipient

«modeless» BluetoothWizard

FIGURE

8.14

Bluetooth

«Parameter» SelectedImage

Jelly:

B

Crea file PDF e Bitmap con PDFCreator
Set as desktop background

Edit

Print

Rotate clockwise

Rotate counterclockwise

7-Zip

Share ...

Scan with Microsoft Security Essentials..
Open with

Share with

Scan selected files with Avira
Restore previous versions
Send to

cut

Copy

Create shortcut

Delete

Rename

Open file location

Properties

Penguins Chrysanthemum

) Bluetooth
Compressed (zipped) folder

B Desktop (create shortcut)

Documents
Dropbox

Fax recipient

3 Mail recipient

B siype

Desert

Hydrangeas

Command menus for working with images in a typical window-based explorer.

UoNeuBLI() pue uonedineN '8

€81

184 CHAPTER 8 Modeling patterns

In desktop applications, commands contextual to an object are normally rendered
using menus that provide a compact representation and allow the nesting of multistep
command chains. Figure 8.14 shows the nested structure of the menu for sending an
image to a target destination. A right-click event triggers the display of a ViewCon-
tainer that represents the first-level menu (ImageMenu). It contains both statically
defined events (SendTo, Cut, Copy) and a List ViewComponent (ExtraCommands),
which denotes a further list of commands that are dynamically added by exter-
nal applications. Selecting the SendTo command from the first-level menu opens
a second-level submenu represented as a nested ViewContainer (SendToMenu).
This in turn may contain statically defined subcommands (Mail Recipient, Folder,
Bluetooth) and dynamically registered subcommands. In the example, selecting the
Bluetooth subcommand triggers the display of a window containing a full-fledged
microapplication (a wizard) for configuring the transfer.

8.2.1.5 PATTERN CN-CII: Commands with inline input

A pattern that helps shorten user interaction consists of collapsing in the toolbar
several steps needed to perform an action. The typical case occurs when a command
sequence requires a short input by the user, as shown in Figure 8.15.

The search pattern of the e-mail application is revised to collapse the search input
box within the command toolbar. In this variant, the toolbar is always in view when
messages are accessed. The ActivationExpression associated with the “Delete,”
“Archive,” “Report,” and “MoveTo” events makes the command active only when
at least one message is selected. Conversely, the keyword input form and its submit
event are permanently pinned to the toolbar.

8.2.1.6 PATTERN CN-CIM&B: Content-independent navigation bars
and menus

Content-independent toolbars, although apparently similar in the rendition to their
content-dependent counterparts, express quite a distinct aspect of the interface. They
group commands that do not act upon specific objects but shortcut the navigation or
help the user go back quickly to the most important view elements, possibly from a
deeply nested part of the interface. For this reason, they are often called navigation
menus or bars.

In IFML, content-independent navigation menus can be modeled in two ways.
The first way, discussed in chapters 4 and 7, is implicit through the concept of land-
mark. When a ViewContainer is tagged as landmark, a navigation link to it is con-
sidered part of an implicit navigation menu ViewContainer. Such a ViewContainer
is again implicitly nested within all the ViewContainers where the landmark is vis-
ible. In this way, an explicit toolbar does not need to be modeled for the purpose.
It is left to the implementation (e.g., to a code generator) to insert the navigation
menu with appropriate navigation commands wherever it is appropriate according
to the landmark visibility rules. This way of modeling is practical in web applica-
tion specification, in which the lack of a top-level ViewContainer would force the
designer to replicate the same navigation bar in all the pages. Moreover, the implicit

[XOR] MessageManagement

[D] MailBox

[XOR] Message Reader

[D] Message List

«List» Message List

Message details

Your E-Mail

O X Q)

Wl

2]

Mail v Ow Q L) 4

Inbox (2) Brandy Lewis

Starred WaltersCompany

Important Youtv

Chats. Mandy Batila

Sent Mol Brandy Lewis

Drofts. WaltersCompany

All Mail WaltersCompany

Spom me

Trash Flor Jenkings

More w Fracesco Tietto
Daniel Parinni

Camil James
WaltersComopany

People Company Reporting Anomale
ADY Review- Maybe normal i diferent

Your Youtv Digest - Jan 20, 2013

Request to shore ADY_P_WorkPlan doc

ADY Gompany Reporting 2

ADY brainstorming - The send action is

IFML braistorming - What kind of conteiners.
test

ADY Verona meeting mintes

(o subject)

Research Project,

Intership in AsTdS A

ADY bainstorming

1-130f 13

<

MessageSet->notEmpty()

FIGURE 8.15

Delete

N
«Form» Message
keyword search

-

Archive

Report

MoveTo

«Parameter» MessageSet

SelectedMessages > MessageSet

Your E-Mail

ADXQ ®

| = |

W

People Company Reporting Anomalie
ADY Review- Maybe normal in diferent
Your Youtv Digest - Jan 20, 2013
Reauest 1o share ADY_P_WorkPlan doc
ADY Company Reporting 2

ADY d

Mail ¥ Ov O teey
Inbox (2) Brandy Lewis
Starred WaltersCompony
Important 14 Youtv
Chats Mandy Batila
Sent Mol Brandy Lewis
Orotts
Al Mai WaltersCompony
Spam me
Trash Flor Jerkings

More w Fracesco Tietto
Doniel Pario

Comil James
WaltersComopany

IFML brainstorming - What kind of containers
test

ADY Verona meeting minutes

(o subject)

Research Project,

Internship in Asmi/SA

ADY bainstorming

Report MoveTow 1-Bof 8 & D> By

Jun 18
Jun 15
Jun 1
Jn 10
san
May 6
Moy §
May 2
Moy 1
Aor 31
Apr 30
Apr 16
Mor 15

An input field collapsed with the related command in the toolbar.

UoNeuBLI() pue uonedineN '8

G81

186 CHAPTER 8 Modeling patterns

representation supported by landmark is also more resilient to changes in the model.
If the navigation commands are explicitly listed in the navigation bar, a change in the
visibility of areas and pages requires updating the model. Conversely, if the content
of the global navigation bar is inferred by the landmark specifications, the model
does not need to be updated after a change of visibility of pages and areas.

The second modeling option is to have the navigation bar represented explicitly
by means of a toolbar-like ViewContainer. This solution is suited to cases in which
some extra semantics must be conveyed that are not captured by the specification of
the landmark property of ViewContainers.

Examples in which the explicit modeling could be appropriate are:

* When the navigation bar should exploit a predefined region of the screen, such
as a «system» ViewContainer, for enforcing uniformity of navigation across
applications or take advantage of system-provided capabilities, such as the auto-
matic splitting of the toolbar or the management of commands overflow based
on the screen size and orientation.

* When the content-independent navigation bar should be merged with the
content-dependent toolbarfor economy of space or for enforcing a unique place-
ment and style of all the commands, irrespective of their nature.

8.2.2 PATTERN CN-UP AND CN-BACK: UP AND BACK NAVIGATION

The “Up” and “Back” links are classic orientation aids, present in many navigational
interfaces, most notably in web and mobile applications. Their semantics are distinct:

e The “Up” link refers to some hierarchical structure associated with the inter-
face; it leads the user to the superior ViewElement in the View hierarchy.

e The “Back” link refers to the chronology of the user’s interaction; it leads back
in time to the last visited ViewElement. When the previously visited ViewEle-
ment coincides with the parent of the current ViewElement, “Back” and “Up”
lead to the same target. However, based on the navigation history, the “Back”
button can return the user to a screen not logically related to the current one or
even to a different application.

The “Up” link can be represented in IFML either implicitly or explicitly. The
implicit representation relies on the nesting structure of ViewContainers. Since the
parent ViewContainer can be inferred from the composition, there is no need to
explicitly represent the “Up” link, and one can delegate its insertion in the interface
to the implementation (e.g., to a code generator). However, the “Up” link is not
necessarily confined to the content-independent navigation across ViewContainers.
Many applications, especially mobile apps where the data navigation patterns are
quite repetitive, also associate a meaningful “Up” event to some content-depen-
dent navigation patterns, such as master detail navigation (recall the pattern from
chapter 5). In these cases, the implicit representation of the “Up” link requires a
clear definition of the content-dependent design pattern where the “Up” link is
presumed.

8.2 Navigation and Orientation 187

Alternatively, the “Up” link can be represented explicit by means of an Event and a
NavigationFlow. For example, Figure 8.16 reconsiders the master detail design pattern
of chapter 5 and makes evident the “Up” nature of the link from the detail to the master.

upP

The Up Event extends the Event to denote navigation upward in a hierarchy.

Using an extension to qualify the event, as done in Figure 8.16, helps in the
implementation. For example, a code generator could produce code where both the
content-independent and the content-dependent “Up” NavigationFlows are rendered
homogeneously.

A word of caution is warrented for situations in which a ViewContainer can be
accessed using multiple navigation paths. Such a situation is frequent in both web
and mobile applications. For example, a web page with the details of a product could
be reached both by a direct link from the home page, where some products are high-
lighted for promotion, or at the end of a sequence of navigations traversing the cat-
egory—product hierarchy. In these cases, the semantics of the “Up” command is not
well defined, and most usability guidelines suggest to give the “Up” link the seman-
tics of “Back” or even to disable it to avoid confusion.

The “Back” navigation can be represented in IFML with a stereotyped event, as
shown in Figure 8.17.

BACK

The Back Event extends the Event to denote navigation in reverse chronological order.

The extension is necessary because the event has extra semantics that cannot be
inferred from the rest of the model. The destination ViewElement is not specified
by means of an InteractionFlow but is defined as the last accessed ViewElement in
reverse chronological order.

8.2.3 PATTERN CN-BREAD: BREADCRUMBS

A breadcrumb (or breadcrumb trail) is a navigation aid that shows the user’s location
in the application interface. The term derives from the Hansel and Gretel fairytale
in which the two children drop breadcrumbs to mark the trail back to their home.
Breadcrumb navigation is used especially in large web applications endowed with
a hierarchical organization of pages or content items (e.g., in e-commerce websites
where products are structured hierarchically).

Three types of breadcrumb navigation can be distinguished:

* Topological: the trail represents the position of the current ViewContainer
within the static hierarchy of the ViewContainers. With reference to the e-mail
application use case, when the user is composing a message, the trail could be
something like “Email>Messages>MessageComposer.”

[XOR] Message Reader

[D] Message List

«List» MessageList

«DataBinding»
MailMessage

«Up»

| Message details

«Details»

MessageReader
«DataBinding»
MailMessage

\

«ParameterBindingGroup»
SelectedMessage - CurrentMessage

FIGURE 8.16

T — e
) €O QO XG () COXQ == A
- N [= w2 3] 1
. = .
Ov 0 ey 1Ran & > By 1w &> By Mail - - - oo K MY
T
— R -
T ne - e e, =
{2 o e From Doniel Porins <dporinm@maicom> Sumd = Sl
R EESEte O s oo e ool s Your e i Dm0, 200 st
e Youtvy Your Youts Digeet - Jen 20, 208 Jmtl Date Tue, Apr 30, 2014 ot 1156 AM. Chats % Mondy Batilo 110 share ADY_P_WorkPlan Jn 10 |
. Mandy Batita Request to shore ADY_P_WorkPiandoc Ll | Subject Ressorch Project Sant Mo - Brondy Lewis ADY Company Repartng 2 a0
e Brandy Lewss ADY Company Reperting Jn 10 Ovatts o WoersCompany ADY brainstormng - The send action is Moy 6
e Wscomey A0t e ek s Oner Pt o e i i i s
o Mokt P e - Yt et il
A R Pl o s - =4
e - vz Pt O el it ot
. Flor Jankings. ADY Varona maeting mnctes Moy 1 Best rogords, Mere v - Frocesco Titto (10 subject) o3t
oot (ombiens o P il e pabi
Do g o e -
s BT e s Waescomoo O bamring b
% WeltarsGomopony ADY baistorming Mar 15 (RO, A 2
150K View Download 7]
%]

Master detail pattern with “Up”

navigation.

suseped SulepolN 8 ¥ALdYHD 881

«Home» HomePage

«List» ProducsInOffer

«DataBinding» Product

[L] Catalog ProductDetails
«List» ProductList Dl Pk e Wp»
I Product

«ParameterBindingGroup»

Selected - Product

FIGURE 8.17

Home

Products In Offer

WOODENBOARD ~ WOBO783 Select

WOODEN STICK ~ WOST276 Select
COPPERPLATE ~ COPL789 ct
PLASTICBALL PLBAM2 Sélect

PLASTIC CHAIR ~ PLCH345 Select

Product Details

Catalog

Product List

ALUMINUM TUBE - RECTANGLE ATRE243 Select
ALUMINUM TUBE - ROUND ATROB44 Select
ALUMINUM TUBE - SQUARE ATSQ765 Select
COPPER ROUND BAR CRBA345 Select
GOPPER PLATE copL7a st
COPPER SHEET SAMPLE PACK COSP876 Select
COPPER SQUARE ROD CSRO785 Select
METAL PACKS - STAINLESS ~ MPST347 Select

[NEY Home
Nome. COPPER PLATE
Products In Offer
Code COPL789
WOODENBCARD ~ WOBO783 Select
Price 2000 WOODENSTICK ~ WOST276 Select
COPPERPLATE ~ COPL789 Select
Eoch pack contans @
Deecription: B N sactioer PLASTIC BALL PLBANM2 Select
12 02(01627)
R tor) PLASTIC CHAIR PLCH345 Select
20 02 (0410%)
22 02(06307)
Catalog
Product Details
H 2
Product List
Name COPPER PLATE
ALUMINUM TUBE - RECTANGLE
Code jcopLzed) ALUMINUM TUBE - ROUND
Fion Es) ALUMINUM TUBE - SQUARE
'COPPER ROUND BAR
Description: Each pack contains @ COPPER PLATE
2%x 4" section of-
12 62(0%2 'COPPER SHEET SAMPLE PACK
% 02(0216) COPPER SQUARE ROD
2002(0410%)

22 02(06307)

METAL PACKS - STAINLESS

ATRE243 Select
ATROB44 Select
ATSQ76S5 Select
CRBA34S5 Select
COPL789 Select
COSP876 Select
CSRO785 Select
MPST347 Select

Example of ViewContainer with multiple access paths and “Up” and “Back” navigation.

UoNeuBLI() pue uonedineN '8

681

190 CHAPTER 8 Modeling patterns

* Content-based: the trail represents a path of access classes that index the core
object currently in view. For example, in a online computer hardware shop, the
trail appearing in the page of a product could look like “Products>Laptops>Aspi
re>AspireE.”

¢ Dynamic: in applications that do not provide a notion of a “Back” link, history-
based navigation is sometimes provided by a breadcrumb trail constructed by
chaining the last few visited ViewContainers. This variant should be used spar-
ingly, because it overlaps with the usual “Back” navigation and may confuse
users accustomed to the structural interpretation of this navigation aid.

Breadcrumb links can be modeled in IFML in different ways depending on their
nature. Topological breadcrumbs can be inferred from the composition of the inter-
face, so in principle they could be left implicit in the model and their insertion could
be delegated to the implementation. Content-based breadcrumbs, by contrast, can-
not be inferred from the model because the designer must specify the path of access
classes and the core class to use for their construction. For homogeneity of design, it
may thus be convenient to extend the ViewComponent concept to denote the inser-
tion of the breadcrumb links trail in a ViewContainer.

BREADCRUMB

The Breadcrumb is an extension of ViewComponent that denotes a breadcrumb trail. It has a
property type, which can have the values Topological and Content-based. If the type is Content-
based, the Breadcrumb incorporates nested DataBinding elements that specify the path of classes
and association roles that support the creation of the content-based trail.

Figure 8.18 shows an example of content-based breadcrumb navigation, situated
in the “ProductCatalog” Area of a web application.

The “Catalog” Breadcrumb specifies the path of association roles that support the
construction of the trail: from the access class “Category” to the access class “Fam-
ily,” and from “Family” to the core class “Product.” Note that the ViewComponent is
placed inside a MasterPage within the Area container, which is equivalent to repeat-
ing the Breadcrumb ViewComponent inside all the pages of the Area.

8.3 CONTENT PUBLISHING, SCROLLING, AND PREVIEWING

In this section, we illustrate a few more patterns to complete the gallery of content
and navigation patterns started in chapter 5.

8.3.1 PATTERN CN-MMD: MASTER MULTIDETAIL

The master multidetail pattern is an extension of the basic master detail pattern
introduced in chapter 5. It occurs when the class providing the detail is internally

Catalog Fomiies Articles

Home Home >> Families Home >> Families >> Articles
Categories

Product Families Products

ALUMINUM %{p
COOPER Select ALUMINUM PLATE Select ALUMINUM TUBE - RECTANGLE ATRE243
PLASTIC ~ Select ALUMINUM ROUND BAR ~ Select ALUMINUM TUBE - ROUND ATRO644
STEEL Select ALUMINUM SQUARE Select ALUMINUM TUBE - SQUARE ATSQ765
WOOD Select ALUMINUM TUBE Seffet

«Area» ProductCatalog

«MasterPage» Catalog

«Breadcrumb» Catalog Y
«DataBinding» CategoryToFamily
«NestedDataBinding»
FamilyToProduct
«Home» Catalog Families Atides
/" List» ProducFamiles «Details» Products
«List» Categories a/ c; > Product
>
«DataBinding» Category | ProductFamily
T «ConditionalExpression»
«ConditionalExpression» family = Family
category = Category

«ParameterBindingGroup» «ParameterBindingGroup»
Selected - Category Selected—> Family

FIGURE 8.18

Content-based breadcrumb navigation.

d pue ‘8uljj0103 ‘Bulysiiand Juejuo) €8

Suimalnal

161

192

CHAPTER 8 Modeling patterns

substructured with further components and associations. The pattern provides a
compact representation of the salient aspects of the core class and of its internal
organization.

Figure 8.19 shows an example of master multidetail pattern.

Notice the use of DataFlows to provide the Product OID to the ViewComponents
that publish the accessories and the guarantee, which constitute the multidetail parts
together with the product information.

8.3.2 PATTERN CN-PG: PAGING

Another pattern of content publication occurs when multiple objects form a sequence
that has a meaningful sense to the user (e.g., they are sorted by date or by relevance)
and the screen space is too limited for displaying all the objects simultaneously. The
paging pattern displays a block of objects at a time and allows the user to scroll rap-
idly back and forth in the collection.

A popular instance of this pattern is provided by the “swipe view” of mobile
applications: one object is shown, and the swipe gesture is used to scroll over the col-
lection. Figure 8.20 shows an example of the paging pattern applied to a collection
of multimedia objects.

Notice that the pattern specifies the ParameterBinding associated with the ges-
ture events explicitly, because the choice of the left (right) swipe for accessing the
previous (next) object cannot be inferred from the model. The “next” and “previ-
ous” parameters are shortcuts for the previous and next block with respect to the
current one, which is a default parameter of the ScrollableList ViewComponent (see
chapter 7).

The pattern is adequate when the objects to display cannot be easily summarized,
and thus the display of one exemplary instance is a good way to start user interaction.
However, the pattern requires the collection to contain objects grouped according
to a meaningful criterion (e.g., images pertaining to the same photo album) sorted
in a way that anticipates user intention (such as sorting by date). The next pattern
provides a way to highlight the context of the current object within the collection to
which it belongs.

8.3.3 PATTERN CN-PR: COLLECTION PREVIEW

When the paging pattern is used to show one object at a time, the user may lose the
notion of the logical placement of the object in the collection to which it belongs.
Having a preview of the object’s position in the sequence and of what comes before
and after it may greatly help the user locate the content of interest quickly. This func-
tionality is granted by the collection preview pattern, shown in Figure 8.21, which
is essentially the synchronization of two ScrollableList ViewComponents: one for
scrolling one object at a time (represented by the Photos ViewComponent) and one
for having a preview of the objects that are close in the collection to the one in view
(represented by the Blocks ViewComponent).

[Cotalog Product Multi Detail
r Product Inft

Product List
Name SUPERKIT

ALUMINUM TUBE - RECTANGLE ATRE243 Select

ALUMINUM TUBE - ROUND ~ ATROB44 Select Description o

ALUMINUM TUBE - SQUARE ATSQ765 Select AR IO

COPPER ROUND BAR CRBAJ45 Select 3 ALUMINUM Y'ugﬁe

3 ALUMINOM TUBE,

copPER PLATE cortzsa st 1 ALum Ty

COPPER SHEET SAMPLE PACK COSP876 Select

COPPER SQUARE ROD (CSRO785 Select

METAL PACKS - STAINLESS MPST347 Select Sionminsi
ALUMINUM TUBE This product has a six month
COPPER BAR Quarantee. Bad use of the

Product is not included on the |
CoPPER PLATE i
. METAL PACKS
ProductList ProductMultiDetail
«Details» ProductList

«DataBinding» Product

«Details» GuaranteeTerms
«Datail» ProductInfo

_______ -+ | «DataBinding» Guarantee

«ConditionalExpression»
product = ProductOID

«List» Accessories

«DataBinding» Product

« VisualizationAttributes »
Name

Description
Image

«ParameterBindingGroup»
Selected = ProductOID

«DataBinding» Product

«Conditional Expression»

040G ‘BUIysI|qnd JUslU0) €°8

product = ProductOID

FIGURE 8.19
Example of master multidetail pattern.

d pue ‘8ul

Suimalnal

€61

[XOR] MediaGallery

[D] MediaGallery

«List» AllImages

CollectionBrowser

select

«ScrollableList» Photo

«DataBinding» Image

ftSwipel

«BlockSize» 1

Rights)

ipe»

«ParameterBindingGroup»,
Selected - Current

«ParameterBindingGroup», «ParameterBindingGroup»
Previous > Current

Next > Current

FIGURE 8.20

Media Gallery

| Collection Browser l

| Collection Browser |

| Collection Browser I

d

Example of paging pattern.

suseped SulepolN 8 ¥ALdYHD 61

«ParameterBindingGroup» «ParameterBindingGroup»
Selected > Current i Current &> CurrentBlock.first

[XOR] MediaGallery

[D] MediaGallery SynchronizedScrollers

«ScrollableList» Blocks

«DataBinding» Image
«BlockSize» 10

«ScrollableList» Photos

«DataBinding» Image
«BlockSize» 1

«List> Alllmages (of

«DataBinding» Image

select

«ParameterBindingGroup»
CurrentBlock.first> Current

«LeftSwipe»

«LeftSwipe»

«RightSwipe; «RightSwipe»

«ParameterBindingGroup»/ /«ParameterBindingGroup»,

«ParameterBindingGroup»/ /«ParameterBindingGroup», BaEE => QU Next> Current

Previous > Current Next> Current

Media Gallery Collection Browser i Collection Browser i Collection Browser i l Collection Browser |

<
XX

DD PIX <PX RO

FIGURE 8.21

Example of the collection preview pattern.

Suimalnaid pue ‘8uljjoiog ‘Sulysijgng Jusjuo) €8

S61

196 CHAPTER 8 Modeling patterns

Notice that two DataFlows are used to communicate the value of the current
block and current image between the two ScrollableList ViewComponents. The
Blocks ViewComponent communicates the first object of the current block to the
Photos ViewComponent. The Photos ViewComponent in turn communicates the
current image to the Blocks ViewComponent. When one gesture event occurs, the
ViewComponent that has changed the value of its “current” parameter communi-
cates the new value to the other ViewComponent, which may in turn synchronize the
object or block in view.

8.3.4 PATTERN CN-ALPHA: ALPHABETICAL FILTER

When the objects to be accessed are numerous but possess a meaningful attribute (for
instance, Title) that allows them to be accessed alphabetically, a useful access pattern
consists of providing an alphabetic filter to partition the collection into chunks. Fig-
ure 8.22: Example of the alphabetical filter shows an example. The personnel list of a
company is split into subcollections using the first letter of the surname of employees
as the indexing criterion.

Note that the DataBinding of the AlphabeticalFilter ViewComponent is defined
as an enumeration of all the letters of the alphabet (called LettersOf Alphabet).

The pattern can be improved by making the filter display the number of objects
in each chunk. This also allows the removal of characters from the display that do
not correspond to any object. Figure 8.23 shows the improved pattern, which exploit
a DynamicBehavior content binding: the reference to the Employees::getGroupCou
ntsBySurname() operation of class Employee, which returns a collection of objects
of type GroupCount, each of which contains the group name (i.e., one alphabetic
character) and a count of the objects in the group.

PersonnelList

\ <
[«List» AlphabeticalFilter [«List» Employees
wDataBinding» Employee

«DataBinding»
LettersOfAjphabet T
U . 2

Personel List Personel List

«ParameterBindingGroup» Employees
I h
EEEED T F:q Gaitén, Jorge Ellecer

Galén, Luis Carlos

Garcia, Radamel
Gaviria, Pablo
Gomez, Pedro
Gonzalez, Andres
Gutierrez, Mario
Guzman, Marcela

FIGURE 8.22

Example of the alphabetical filter pattern.

8.4 Data Entry 197

PersonnelList Personel List Personel List
p . P ~ Alphabetical Filter Alphabetical Filter | Employees
[«list> AlphabeticalFilter («List> Employees \ A-20 A-20
Gaitén, Jorge Eliecer
DynamicBehaviors B-10 B-10 Galén, Luis Carlos
1Gr N i
c-15 c-15 Garcia, Radamel
D-12 D-12 Gaviria, Pablo
VisualizationAttributess / 20 20
character: char / a o a Yo Oomez, bedro
Count: integer / (10 10 Gonzalez, Andres
X ol 1-7 1-7 Gutierrez, Mario
/ 3 J-3 Guzman, Marcela
‘«ParameterBindingGroup» |
Selected > char

FIGURE 8.23
Example of alphabetical filter with preview of the number of objects.

8.4 DATA ENTRY

IFML is not meant to express the purely visual or platform-dependent properties of
ViewComponents and their parts, which are better delegated to the implementation,
be it manual or tool supported. However, the designer may want to adorn the IFML
diagram with stereotypes that provide hints to the implementation about fundamental
usability issues to ensure that the final application will incorporate the best inter-
action practices. Data entry is surely an aspect of the application where usability
concerns are prominent. Entering data is a cumbersome procedure. Facilitating the
user’s task is a key factor in ensuring the acceptance and success of the application.
In the following, we extend the list of data entry patterns initiated in chapter 5 with
more examples that can be used to improve the usability of form-based application
interfaces.

8.4.1 PATTERN DE-TDFP: TYPE-DEPENDENT FIELD PROPERTIES

Best-of-breed desktop, web, and mobile applications exploit a wealth of widgets and
techniques for accelerating user input. These can be suggested in the IFML model
by adequately stereotyping the Field element. Table 1 exemplifies a number of fre-
quently used data entry facilitation patterns. The list is by no means exhaustive but
aims at illustrating the kind of model extensions that are worth expressing to address
data entry usability requirements in the IFML model.

shows an example of a form for uploading and captioning an image that exploits
a Field of type image enhanced with the capabilities to drag and preview the file to
be submitted Figure 8.24.

8.4.2 PATTERN DE-RTE: RICH TEXT EDITING

As shown in chapter 6, the editing of text could be specified in an even more detailed
way by modeling a microapplication that embodies the commands applicable to the
text. The model of such a microapplication could be encapsulated within a Module
and be reused. Figure 8.25 shows the definition of such a Module.

|
198 CHAPTER 8 Modeling patterns

Table 1 Stereotypes for Type-Dependent Field Properties.

Type Stereotype / Input parameters Behavior

Date «Calendar» The user can pick a date from a
perennial calendar

Date «ConstrainedCalendar» Choice is restricted to dates in a

startDate, endDate given calendar interval

Date range «DateRange» choice of a start date and an
end date to represent a range of
dates.

String «Password» Input is masked

Boolean «ToggleButton» The user can toggle a two-states

button, a checkbox or a two-
options radio button

Text «FormattedText» Text is displayed with format (e.g.,
CCS-style properties)

Text «RichTextEditor» Text is displayed with format that
can be changed in the editor

Blob «Draggable» A blob can be dragged onto the
input field

Blob/Image «Preview» Image is previewed before
submission

Blob/Image «Crop» Image is previewed and can be
cropped

Blob/Image «RichlImageEditor» Image is previewed and can be

edited with a rich image editor

8.4.3 PATTERN DE-AUTO: INPUT AUTO-COMPLETION

Auto-completion is the procedure of automatically providing suggestions for completing
input based on what the user has already typed in a field. Functionally, the pattern is simi-
lar to a SelectionField, but its ubiquitous presence in data entry and search applications
make it worth a dedicated pattern and an extension of the SelectionField ViewElement.

AUTOCOMPLETION

AutoCompletion is an extension of SelectionField that denotes the dynamic formation of a
suggestion list from the attribute values of objects. It has a parameter UserInput, which denotes the
input progressively inserted by the user. The property ConditionalExpression is used for retrieving
the DataBinding instances to match the user’s input. The property VisualizationAttributes identifies
the attributes of the matching DataBinding instances used

to construct the selection list.

The auto-completion design pattern is preferred over a simple form with a Selec-
tionField when the list of values from which the user should select is very long.
Figure 8.26 shows an example of the auto-completion pattern.

8.4 Data Entry 199

«Form» ImageUploader
Submit

«Draggable» «Preview»
Photo: image

. Cancel
Comment: string

= Image Uploader

Comment:

[suwmit || cancel |

FIGURE 8.24

Example of image uploader with preview. The “upload photo” button and the image
preview represent the rendition of the type-dependent field “Photo.”

RichTextEditorModule

Cancel

O «Modal» Alert
¢ Remove format
«RichTextEditor» Text ()

Ok

m Search mail

Italic Bold
«ClientSide»
«ClientSide» «ClientSide ApplyFormat
ApplyItalic ApplyBold
Format Format -

FIGURE 8.25

A Module encapsulating a rich text editing microapplication.

/

«Form» TravelSearch

\

«SimpleField» Depart: date

«SimpleField» Return: date

«AutocompleteField» Departure:string

«DataBinding» Airport

«ConditionalExpression»

if (Departure.size() <=
name.size())

then Sequence(1.. name.size()

— Departure.size()) -> exists(i |
name.substring(i, i +
Departure.size()) = Departure)

else false

«VisualizationAttributes»
name: string

code: string

country: string

Search

)

AutocompleteField» To:string

«DataBinding» Airport

«ConditionalExpression»

if (To.size() <=
name.size())

then Sequence(1... name.size()

— To.size()) -> exists(i |
name.substring(i, i +
To.size()) = To)

else false

«VisualizationAttributes»
name: string

code: string

country: string

2

FIGURE 8.26

Departure: L] To: lﬂm

oeset. (BT e (T3]

Departure: I

j To:

Milan

Return:

Milan (MALP)
Italy

Milan (BER)
Italy

Milan (LIN)
Italy

Search
|

Example of auto-completion pattern.

suseied 3ullepolN 8 ¥A1dVHI 002

8.4 Data Entry 201

8.4.4 PATTER DE-DYN: DYNAMIC SELECTION FIELDS

Dynamic selection fields are used when the application requires the user to input
data that have dependencies. In this case, the choice of one object in a Selection-
Field may affect the options available for filling another SelectionField. The typi-
cal case occurs with hierarchical data. For example, when filling one’s address, the
choice of the country determines the list of available states or provinces, which
in turn determines the list of available cities. Figure 8.27 shows a form with three
SelectionField elements. The first one, Country, is preloaded from the database, as
shown by the DataBinding associated with it. It displays the list of country names
extracted from the Country entity. The second SelectionField, StateProvince, is
dynamic; it extracts the state or province names related to the currently chosen
country. The dependency is expressed by the parametric ConditionalExpression,
which exploits the country relationship role between class Country and StateProv-
ince. The parameter is supplied to the dynamic SelectionField by means of a Data-
Flow associated with the appropriate ParameterBinding element. When the country
is not selected, the Selected parameter is undefined and thus the StateProvince
SelectionField has an empty list of options. After a user’s selection in the Country
SelectionField, the parameter becomes defined and the StateProvince Selection-
Field displays the provinces or states of the selected country. The third Selection-
Field (City) is also dynamic and has a behavior similar to that of the StateProvince
SelectionField.

8.4.5 PATTERN DE-INPL: IN-PLACE EDITING

In-place editing allows the user to edit content without abandoning the current
view to access a data entry form. The pattern is useful when the user only needs to
specify a few values in a simple format, such as a text string or a selection from a
list of options. It is applicable when authentication is not necessary or the user is
already authenticated. In-place content editing requires extending the Visualiza-
tionAttribute ViewComponentPart, to denote a piece of content that is displayed
and edited.

EDITABLEVISUALIZATIONATTRIBUTE

EditableVisualizationAttribute extends VisualizationAttribute to denote a piece of content that is
at the same time displayed and edited. To capture the termination of the editing, the element can be
associated with events triggered by the completion of the editing, such as OnFocusLost.

Figure 8.28 shows an example of the in-place editing pattern. The Photo View-
Component displays an image, with its timestamp, name, and description. These two
latter attributes are also editable in-place.

In this way, the user can quickly update the title or the description of an image
while looking at it and without the need of being redirected to an edit form.

/

/

«Form» EnterProfileData

«SimpleField» Firstname: string
«SimpleField» Lastname: string

«SelectionField» Country

«DataBinding» Country
«VisualizationAttributes»
name: string

«SelectionField» StateProvince

«DataBinding» StateProvince

«ConditionalExpression»
» country=CountryOID

«ParameterBindingGroup»
Selected > countryOID

name: string

«SelectionField» City
«DataBinding» City

«ConditionalExpression»
stateProvince=stProvOID

FIGURE 8.27

«VisualizationAttributes»
name: string

J)sve

«ParameterBindingGroup»
Selected > stProvOID

Abbeville
Adamsville

— Profile Data Profile Dat.
comry. [y o] stamprovce [Country: [U5A 9] StoterProvince
City: { I+ City [I
= Profile Dat:
PR e N —
Country: [USA [v] Stote/Province: [Alabama Tw]
P =N C

Example of dynamic selection field.

coc

susened 3ullepolN 8 ¥ALdVHI

8.4 Data Entry 203

f «Details» Photo \

«DataBinding» Image

«VisualizationAttributes»
picture: blob
date: date

«EditableVisualizationAttributes» «OnFocusLost»
name: string » Save

description: text

A >/

= Photo = Photo
Date: 13/03/2014 Date: 13/03/2014
Name: Lmogew-os-m-omjog l Name: Lmog=.-13-03-14-001j9g l

Description: | This photo was taken by Juan Description by Juan
Valdez. {b Saved

FIGURE 8.28
Example of in-place editing pattern.

8.4.6 PATTERN DE-VAL: INPUT DATA VALIDATION

A recurrent pattern associated with data entry is the validation of the input provided
by the user to ensure that it meets the application requirements. When the data are
submitted to a business operation, a simple way to model this functionality is to
exploit the termination events of the Action to signal the receipt of incorrect data
from the user. Alternatively, data validation can be modeled explicitly as an Action.
This solution is shown in Figure 8.29.

The “DocuSearch” Form includes three search fields for retrieving documents.
A constraint requires that at least one of the three values is supplied. This is checked
by the “Validate” Action. If the “Validate” Action terminates normally, it forwards the
input to the “Results” ViewComponent, which shows the results of the search. It the
Action terminates abnormally, this signals a validation error, which can be displayed
in the “Search Documents” ViewContainer to instruct the user about the missing

|
204

CHAPTER 8 Modeling patterns

«ParameterBindingGroup»
From > start
To-> end

[L] Search Documents Keyword > key Documents Found
V%
L «ParameterBindingGroup»
«Form» DocuSearch S/ stadrt _)—) stgrt «List» Results
/ end > en
N key > ke
«Simplefield» From: date U g ~ «DataBinding» Document
Simplefield» To: date Search \ . «ConditionalExpression»
«imp ” \\ (from.isNull() or date > from) and
N s Validate —> (to.isNull() or date < to) and
«Simplefield» Keyword: string ‘ Validinput (key.isNull() or (if (key.size() <= title.size()) then
Sequence(1..title.size() - key.size()) ->
——) { exists(i | title.substring(i, i + key.size()) = key)
Error Notification l else
< N\ false))
«InParameter» Msg - . [_
o ValidationError

~

«ParameterBindingGroup» «Annotation»
ErrorMessage > Msg not (from.isNull() and

to.isNull() and
key.isNull)

FIGURE 8.29

Example of input data validation.

values. For better readability of the model, an annotation is associated with the “Vali-
date” action, expressing the constraint that must be respected by the input values.

8.5 SEARCH

The basic search patterns illustrated in chapter 5 can be refined with further function-
ality to improve the effectiveness of information retrieval.

8.5.1 PATTERN CS-RSRC: RESTRICTED SEARCH

Search over large collections of objects can be made more efficient by restricting the
focus to specific subcollections. This can be done by a mixed pattern that exploits
both content search and access categories. Figure 8.30 shows an example of the
restricted search pattern.

The user can search the product repository by providing a keyword and selecting
a product category. The search keyword is only matched to the name and description
of the products of the specified category.

8.5.2 PATTERN CS-SRCS: SEARCH SUGGESTIONS

The use of popular search engines has made it customary for users to expect search
hints in the form of suggested keywords that complete the partial input they provide.
The search suggestion pattern exploits the autocomplete pattern and requires the log-
ging of keywords previously inserted by the user along with their frequency. The log
data can then be used to construct a list of matching keywords, sorted by frequency,
as shown in Figure 8.31.

8.6 Content Management 205

«Form» ProductSearch

f «List» ProductList \

«DataBinding» Product

SearchProduct

«Simplefield» SearchKey:string

«SelectionField» Category «ConditionalExpression»

if (keyword.size() <= name.size())
then Sequence(1.. name.size() —
Keyword.size()) -> exists(i |
name.substring(i, i +

«DataBinding» Category

«VisualizationAttributes»

name: strin
9 Keyword.size()) = Keyword)
else false
AND .. -- same for description
L AND category = CategoryOID
«ParameterBindingGroup» /
SearchKey > Keyword
Selected > CategoryOID
= Product Search — Product List
ALUMINUM TUBE - RECTANGLE ATRE243
Keyword: ALUMINUM TUBE - ROUND ATRO644
ALUMINUM TUBE - SQUARE ATSQ765
Category: [Select v
- ALUMINUM TUBE - SMALL ATSM765
ALUMININM
copp ALUMINUM TUBE - LARGE ATLA765
METAL PACKS | ALUMINUM TUBE - MEGA ATME765
FIGURE 8.30

Example of restricted search pattern.

8.6 CONTENT MANAGEMENT

Content management patterns allow the user to manipulate the objects of the applica-
tion. They were overviewed in chapter 5 when introducing Actions. Content manage-
ment patterns require a mix of data publication to ensure the user is always aware of
the object(s) being manipulated and of data entry, which enables the insertion of new
or replacement data. After the completion of a content update action, the user should
be given a confirmation of the action’s effects, which can be achieved by displaying
the modified status of the affected object(s).

8.6.1 PATTERN CM-CBCM: CLASS-BASED CONTENT MANAGEMENT

A typical content management pattern addresses the creation, modification, and dele-
tion of an object and its association instances. Figure 8.32 shows an example of the
content management pattern in a situation in which the user is requested to manage the
entire lifecycle of instances, including creation, modification, and deletion. The illus-
trated design allocates the content management commands in as few ViewContainers
as possible and strives to keep the context of the ongoing modification always in view.

/7 sty Productlist Y

/ «Form» ProductSearch

SearchProduct «DataBinding» Product

«AutocompleteField» ‘J/ L «ConditionalExpression»
. ot AN if (Keyword.size() <=
SearchKey: string N\ description.size())

then Sequence(1.. description.size()
— Keyword.size()) -> exists(i |
description.substring(i, i +
Keyword.size()) = Keyword)
else false

«DataBinding» Log

«ConditionalExpression»
if (SearchKey.size() <=
logKey.size())
then Sequence(1.. logKey.size()
— SearchKey.size()) -> exists(i |

«OrderBy» description ‘

suseped SulepolN 8 ¥ALdYHD 902

logKey.substring(i, i + «ParameterBindingGroup»
SearchKey.size()) = SearchKey) SearchKey > Keyword /
else false
«VisualizationAttributes» = Product Search i
‘ logKey ‘ — Product List
ALUMINUM TUBE - RECTANGLE ATRE243
«OrderBy» logKey ‘
Keyword: | T ALUMINUM TUBE - ROUND ATRO644
TITANIUM ALUMINUM TUBE - SQUARE ATSQ765
\ / i i ALUMINUM TUBE - SMALL ATSM765
ALUMINUM TUBE - LARGE ATLA765
ALUMINUM TUBE - MEGA ATME765
COPPER TUBE - SMALL CTSM775
COPPER TUBE - ROUND CTMES534
METAL TUBE - MEGA MEME645
METAL TUBE - SQUARE MESQ342

FIGURE 8.31

Example of search suggestions.

Selected > Product

Froge

[L] Products [XOR] ProductEditor

oo Eaver
Product List Data Entry

O ALUMINUM TUBE - RECTANGLE. ATREZ43 Modiy G T
5 ALUMINUM TUBE - ROUND 4t Medty e
D ALUMMM TURE -SOMRE ATSO7ES Madly

0 Corpen RoUND 848 CRoAMS Moty prie:

0 corren e Conie g
O corren seer sveiE ik cosrrs 1y
0 corren sauane o snorts st
v moxs - ShEss rwsTaer sty

Gt [T8)

Froauetovie
Cose ORISR
Neme: COPPER PLATE
Pice 3000
Cotegery COPPER

Descrten geon .

«Multichoice» [D] DataEntry

ProductDisplay

ProductList

Modify «Furms EntarProductData

«DataRindings Praduct 5
wsimpleField Code: string
>
J | | «simpleFields
CreateNew «SelectionField category

o

Modify

Delate:

«Details» ProductDetails

«DataBinding» Product

Product List

O ALUMNUM TUGE - RECTANOLE. ATREZA3 Hods
0 AL TueE - RO

| Submitata

0 AL T - SUARE
o

] COPPER SHEET SAMPLE PAGK
0 coepeR sousse ROD
CIMELPACKS - STAMESS MPSTOA? Moty

o [- comerine
- 0

«ParameterBindingGroups
ProductOid > Oid
Code > code

«maodal> Confirmation

«Multichoices
SelectedProducts

«DataBinding» Product

Cancel

FIGURE 8.32

«ParameterBindingGroup»
Product - Product.

==

Product List
ETALUMIUM TUBE - RECTANGLE ATREZ4D Modiy
ETALUMINM TUBE -ROUND ATROSAS oty
DI ALUMINOM TUBE - SQUARE ATSQ765 Pty

] COPPER FOUND B4R CRBAI4S ooty
0 corperpLATE OB woaty
I COPPER SHEET SAMPLEPACK COSPAZ6 oty
] coppeR sauaRe RoD CSRO78S voaty

CIMETALPACKS - STAMESS MPSTIN7 Hosty

=

‘Are you sure you want 1o delete these prodt

ALUMINGM TUBE - RECTANGLE. ATRE243
ALUMINGM TUBE FOUND ATROBA4
(COPPER SHEET SAMPLE PACK.COSP76

Gl

=0

Product List

0 copren RO 8AR
VL 0 copreRPLTE
0 cosren saunne AoD

O ALUMINUM TUBE - SQUARE ATSQ76S ety

CRBAIMS Must
COPLTER sty
CoRoTEs eaty

CIMETALPACKS - STAILESS MPSTa47 sy

Example of class-based content management pattern.

Juswadeue|p 1USILUOD 9°8

L0¢

208 CHAPTER 8 Modeling patterns

The pattern displays the objects to be managed in the “ProductList” ViewCompo-
nent, where the user can select multiple instances for deletion. The “Choose” event
causes a modal confirmation window to appear, which previews the objects to delete
and giving the user the option either to trigger or to cancel the delete action. The
“CreateNew” event starts a content-independent navigation that accesses the “Pro-
ductEditor” ViewContainer, which by default displays the “DataEntry” ViewCon-
tainer. The user can enter the data for a new product in the Form and submit them
to the “CreateOrModifyProduct” Action, which creates a new object (if no OID is
supplied) or modifies an existing object (if an OID is provided in input). Upon suc-
cessful termination, the new product’s details are displayed in the “ProductDetails”
ViewComponent to confirm the effect of the action to the user. The two “Modify”
events available in the “Products” ViewContainer (for selecting the product to update
from the list) and in the “ProductDisplay” ViewContainer (for updating the specific
product in view) allow the user to edit the data of a product. Note the ParameterBind-
ing Oid—ProductOid associated with the InteractionFlow emanating from both the
“Modify” events, which makes the identity of the product available in the Form to
enable the preloading of the fields with existing attribute values of the identified
object (not shown for brevity; refer to chapter 5). For simplicity, Figure 8.32 omits
the specification of the error page displayed when any of the invoked actions fails.

8.6.2 PATTERN CM-PBCM: PAGE-BASED CONTENT MANAGEMENT

Another popular content management pattern occurs in blogs and page-based content
management systems. These applications have a fixed schema consisting of a hierar-
chical collection of pages and offer the user an intuitive interface for adding pages,
editing their content, organizing pages in hierarchies, defining the pages’ order in
menus, and setting the graphical properties and visibility of pages.

Figure 8.33 shows a simplified example inspired by a popular blog platform.
The “AllPages” ViewContainer shows all the existing pages and supports an event
(“Trash”) for deleting one or more pages. The “Edit” and “AddNew” events open the
“PageEditor” ViewContainer, where a form allows the user to define all the attributes
of the page: the title, the body content (created with a rich text editor), the parent page
in the hierarchy, the menu order, the visibility and publication status, and the graphic
template. The temporary modifications can be previewed in the “PageView” ViewCon-
tainer or made persistent with the “Save” event. The basic example of Figure 8.33 can
be enriched with more functionality, such as the addition of widgets, the creation of a
new page from a clone of an existing page, and the management of the revision history.

8.7 PERSONALIZATION, IDENTIFICATION,
AND AUTHORIZATION

Personalization is the adaptation of the interface to the user’s characteristics. It may
assume an elementary form, such as the insertion of the user’s name into a welcome
page, or employ sophisticated patterns such as the display of content that depends on

8.7 Personalization, Identification, and Authorization 209

0id > PageOid

[L] AllPages \ PageEditor PageView

\ Form» Editpage «Details» PageContent

‘ «SimpleField» Title «DataBinding» Page

\ «RichTextEditor» Bady «ConditionalExpression»
Edit \ «SelectionField» ParentPage Edit Page.0ID = 01D
«SelectionField» Status y

AddNew «SelectionField» Visibility
I

«Multichoice»
Pages

«DataBinding» Page

«SimpleField» MenuOrder Preview

o) save

«ParameterBindingGroup»
PageOQid > Oid

«modal» Confirmation

«Multichoice»
SelectedPages

«SelectionField» Template
«DataBinding» Page

«ParameterBindingGroups | -~
Page0id > Oid .
Title > title
SetSelect
Delete
Cancel
» Delete

Pages Edit Page
O L
7 WebML Edn e [] parentoge [Feseoiv]
[ModelDrivenstar Edit oge . O Body
0 IFML-OMG Edit 1 = = e
O WebMLIFML Edit BT U= =EIO) Meew
[Research Edit
Stotus [Fabiarad Jv] Meno Order

vty (e Tv] Torwlete (oo

o &

The standard Interaction Flow Modeing Languoge.
(IFML) is designed for expressing the content, user

New Page

e [rerenrene [F)
Bty

BT U:i=3mi= =7 SEQ Meev
Toe stdord Intracton Fow Vodeing Longuoos
(IFML) is designed for expressing the content, user

interaction and control behaviour of the front-end of
software applcations.

:

Staws [Fublshed [v] Menw Order

S twomd o ot b crmt
— et
vy [g] ol The Interactic Flow Madaling Languoge has been
y[Prvate Tv) ‘adopted as o standard by OMG in March 2013
InPemy R 050 i e it s

standard, which is candidate to become the official IFML
10

FIGURE 8.33
Example of page based content management pattern.

the user’s context. The personalization of the interface requires the user to be identi-
fied, so the personalization patterns are treated together with the identification and
authentication ones. In chapter 3, we discussed the Context and UserRole classes and
showed examples of the personalization domain model, which allow the designer to
represent the information needed for adapting the interface to the individual user. In
this chapter, we show how to exploit such features to build interface models that take
into account the user’s identity and role. The patterns in this category are identified
by the acronym IA (Identification and Authorization).

8.7.1 PATTERN IA-LOGIN: LOGIN

The identification and authentication of the user are the procedures whereby the
application recognizes and checks a user-provided identity for validity. The most

210 CHAPTER 8 Modeling patterns

common means to achieve this functionality is the login process. The user enters
credentials using a Form in a public access ViewContainer, and such input is verified
against the content of an identity repository. Upon success, the «NormalTermina-
tion» ActionEvent is raised by the login Action, the user is authenticated, and this
information is preserved in the Context. Upon failure, the «Exceptional Termination»
ActionEvent is raised, which can be trapped by the application to give the user an
appropriate warning message.

Figure 8.34 illustrates the simplest login pattern. The “Login” form models the
mask for entering the user’s credentials, and the “Login” Action triggered by the sub-
mit event denotes the process of identification and authentication, which has two pos-
sible outcomes. Upon the successful completion of the Action, the Context object
becomes initialized with the identity of the user, represented by the unique username.
As we will see, this information allows exploiting the Context to build several person-
alization patterns. Figure 8.34 shows a basic one in which the source ViewContainer—
reaccessed after a successful login—displays the username of the authenticated user.
Upon unsuccessful termination, the pattern of Figure 8.34 simply redisplays the
source ViewContainer. This time, however, the identity information of the Context is
undefined, and thus the “UserName” ViewComponent displays no content.

8.7.2 PATTERN IA-LOGOUT: LOGOUT

The information about the user’s authenticated identity preserved in the Context can
be cleared by the initiative of the user by means of a “Logout” Action, as shown in
Figure 8.35.

The typical pattern comprises an event that triggers the “Logout” Action, which
normally terminates without exceptions. In Figure 8.35, after the Logout Action is
completed, the user is shown the same source ViewContainer, but, as a side effect of
the logout process, the identity information in the Context is no longer defined, and
thus the “UserName” ViewComponent has no content.

8.7.3 PATTERN IA-CEX: CONTEXT EXPIRATION NOTIFICATION

The Context information holding the authenticated identity of the user can also be
cleared by the system (e.g., for security reasons). This pattern is frequently used
in web applications where storage of the Context information associated with an
authenticated user is implemented by means of a session object in the server. Irre-
spective of how the Context is implemented, the update of the interface after the
expiry of the authentication information can be modeled with a system event, as
shown in Figure 8.36. In this pattern, the interface is notified by the “expiration”
system event, which causes the redisplay of the “SourceViewContainer,” expunged
of the content that depends on the Context.

Note that the Context is more abstract than the Session object of a web applica-
tion, which is implementation level. The example implies no commitment as to the
way in which the Context is preserved. It could be stored in the data-tier or in the

Vo

Login

ITermination

«Form» Login

| «Simplefield» username: string

|

«Simplefield» password: string

(Details» UserName

«DataBinding» Context

«VisualizationAttributes»
username: string

AC

login

FIGURE 8.34

NormalTermination

«ParameterBindingGroup»
username-> username
password > password

Login

Username | JValdez

User

JValdez

Alert

Invalid Username or
Password. Please try
again.

= Login

Username | JValdez
el G
Login

Username | JValdez

Invalid Username or Password.

Please try again.

&

Example of the login pattern.

UOIBZIIOYINY PUB ‘UOIIRDIIUSP| ‘UOoIeZI[eUOSIod /'8

11¢

212 CHAPTER 8 Modeling patterns

NormalTermination

ExceptionalTermination

Login

«Form» Login \

«Simplefield» username: string

«Simplefield» password: string

logout login

N\
(«Details» UserName) N\
\

«DataBinding» Context

«VisualizationAttributes» «ParameterBindingGroup»
username: string username -> username
password > password

A

User Login

JValdez
Username

FIGURE 8.35

Example of the logout pattern.

NormalTermination
+ ExceptionalTermination
Login

«Form» Login /_L

. - login Login
(«Simplefield» username: string o) : Action D)
«Simplefield» password: string

«Details» UserName

logout

«DataBinding» Context

«VisualizationAttributes»
username: string

LogOut
Action

«ParameterBindingGroup»
Username -» username
password = password

User
IVoldez @

expiration

AN

L

Username

Password

Login

] m—
—

User - =
swiee [t] s e
L =)

FIGURE 8.36
Example of the authentication expiration pattern.

8.7 Personalization, Identification, and Authorization 213

middle-tier of a web application, in the model objects of a desktop application, or in
a “fat” client of a mobile or rich Internet application.

8.7.4 PATTERN IA-SPLOG: LOGIN TO A SPECIFIC VIEWCONTAINER

The examples of Figure 8.34 and Figure 8.35 assume that the login and logout actions
redisplay to the user the same source ViewContainer from which the action has been
triggered. This is not always the case, because in many applications—especially on
the web—the authentication is performed in one ViewContainer to obtain access to
another ViewContainer. This is the case, for example, in a web content management
system, where the authentication is provided in a public page, and then the authen-
ticated user accesses the collection of private pages. A simple model that represents
such a situation is shown in Figure 8.37.

The “Login” and “Logout” Actions now have an explicit InteractionFlow that
specifies the destination ViewContainers.

8.7.5 PATTERN IA-ROLE: USER ROLE DISPLAY AND SWITCHING

As discussed in chapter 3, the role played by the user in a role-based access control
system can be modeled with the UserRole extension of the Context. The Login pat-
tern has a second side effect in addition to identification: if users are classified in
roles, the Login Action defines the default role of the logged-in user by initializing
the content of the UserRole object. Again, notice that the Login Action is an abstract
concept, which can be implemented in several ways (e.g., using RBAC data stored in

FIGURE 8.37

Exceptiona\Termmanonl

«ParameterBindingGroup»
Username > username
password - password

logout l
LogOut \

Action /

Public Login

PublicLogin PrivateZone
P N Y P ~
/ - ‘ _ p - N
(«Form» Login N7\ NormalTermination («Details» UserName)

g / ,
«Simplefield» username: string | () —————— Logln o DataBinding» Context
et Action > =
| | «implefied> passord: tring [\ WisualizationAttributes»
A J e username: string

A\)

Login

Password

Username [jvaldez

Private Zone

User

JValdez

Logot

Example of the login pattern with an explicit destination ViewContainer.

|
214

CHAPTER 8 Modeling patterns

a relational database with a directory service such as LDAP). For IFML, its essence
of the Action is the authentication of the user and the assignment of a default role (if
defined) to the verified identity.

Figure 8.38 illustrates the publication of the role information in addition to the
username after a successful login.

Figure 8.38 shows also an example of the role switching pattern, usable in RBAC
systems that enable users to embody multiple roles (e.g., a conference management
system where the user could be both an author or a reviewer).

The “CurrentRole” ViewComponent has a DataBinding to the UserRole
object, the extension of the Context object that stores the current role imperson-
ated by the authenticated user. The list of potential rules is instead displayed by
the “PossibleRoles” List ViewComponent. This component determines the list of
allowed roles for the user thanks to a ParamaterBinding that makes available the
identity of the logged-in user held in the “CurrentUser” ViewComponent.

Noticethatthe ConditionalExpressionusers.username->exists(name)exploits
the “users” association end of the “Membership” association between the User and
the Group classes, introduced in chapter 3. The content of the “PossibleRoles”
List ViewComponent could be determined in other ways (e.g., with a Dynamic-
Behavior element denoting the call to a role lookup method of an RBAC system).

SourceViewContainer

CForm» Login

logout

login

LogOut
Action

«Simplefield» username: string ‘

«Simplefield» password: string ‘

«Details» UserName \

«DataBinding» Context

«ParameterBindingGroup»
Username - username
password -> password

username: string

«VisualizationAttributes» ‘

</<Details» CurrentRole

«DataBinding» UserRole

«ParameterBindingGroup»
Selected -> role

\&

AN «List» PossibleRoles

roleName: string

«ParameterBindingGroup»
Username - name

A
1
1
i
|
1
1
1
|
1
i
1
i
i

«VisualizationAttributes» ‘ i
h
1
1
1
1
i
i
|
1
1
1
i

«DataBinding» Role

Switch «ConditionalExpression» <
Role changeRole users-> exists(self.name=
‘ name)

FIGURE 8.38

Example of role switching pattern.

8.7 Personalization, Identification, and Authorization 215

The SelectionEvent associated with the ‘“PossibleRoles” List ViewComponent
triggers the “SwitchRole” Action, which assigns to the user the role specified in
input. After the successful completion of the Action, the source ViewContainer
is reaccessed (by default) and the updated role is displayed in the “CurrentRole”
ViewComponent.

8.7.6 PATTERN IA-RBP: ROLE-BASED PERMISSIONS FOR VIEW
ELEMENTS

When the user is authenticated, the Context information can be used to implement
access permissions that depend on the user’s role. The access control rules presented
here should not be confused with those implemented at the back end to control the
access to the data by applications. We use the term ‘“access control rules” with a
slight extension to denote the interface design pattern that shows in the interface only
the ViewElements that the user is entitled to see or the objects the user can see and
manipulate. However, bypassing the user interface to access the data tier is possible
in multitier applications, and thus the access control rules embodied in the front end
descend from, reinforce, and do not substitute for those specified in the role-based
access control policies and implemented in the back-end tiers.

Access control at the level of ViewElements is typical of web applications, where
the interface is split into distinct pages. Since pages are addressable and their address
could be “forged,” they should be treated as resources under role-based access con-
trol. As noted in chapter 7, the level of accessibility of pages can be expressed in
the interface model with the «protected» stereotype to distinguish pages that require
user authentication from public pages that are freely accessible. The «protected»
access requirement can be associated also with logical containers such as Area and
SiteView, with the meaning that the property applies recursively to all the contained
ViewElements.

The ViewPoint concept, which identifies a set of interrelated InteractionFlow-
ModelElements defining a functional portion of the system, can be used to express
the access rights to protected resources. Role X is associated with ViewPoint Y to
denote that users in the role X are authorized to access the resources of the ViewPoint
Y. In practice, web user roles are associated—through ViewPoints—with SiteViews.
For example, an authenticated user with content manager role would be granted per-
mission to access the protected SiteView containing the content management pages.
Figure 8.39 shows an example of RBAC applied to the SiteViews of a web applica-
tion. The Login Action has multiple termination events, one for each defined User-
Role. An ActivationCondition associated with each event tests the default role of the
authenticated user and activates the corresponding NavigationFlow, which specifies
the SiteView to be accessed. Notice that specifying the NavigationFlow is equivalent
to associating the destination SiteView with the ViewPoint of the UserRole men-
tioned in the event’s ActivationCondition (e.g., SiteViewRolel with the ViewPoint of
the UserRole named “role1” and SiteViewRole2 with the ViewPoint of the UserRole
named “role2”).

216 CHAPTER 8 Modeling patterns

«ActivationExpression»
Context.UserRole.name="role1”

PublicLogin «private» SiteViewRolel

ExceptionalTermination

«Form» Login

login

NormalTermination

«Simplefield» username: string ‘

NormalTermination «private» SiteViewRole2

L—»

«Simplefield» password: string ‘

/ «ActivationExpression»
«ParameterBindingGroup» Context.UserRole.name="role2"”

Username - username
password - password

[L]
LogOut Action

SiteViewRole1 00®

Role 1 Content

Public Login 00® Administrator
JValdez | Logout

Login

Password |][[StteViewRole2 00®
Role 2 Content

Public

.

FIGURE 8.39

Example of the role-based access control pattern applied to the pages of a web application.

Notice that the “Logout” action invalidates the authentication and thus clears the
permissions to access a protected resource, which entails that the SiteView accessed
after its successful completion should be public. If the “Logout” Action can be trig-
gered from any page of the application, as customary in web applications, it can be
denoted as landmark, as shown in Figure 8.39.

8.7.7 PATTERN IA-NRBP: NEGATIVE ROLE-BASED PERMISSIONS FOR
VIEW ELEMENTS

When the access rights for a role are a subset of those of another role, separating the
ViewPoints in two segregated SiteView is improper because it results in SiteViews
sharing most of their ViewElements, with consequent design and maintenance inef-
ficiency. In this case, an alternative design pattern may be more adequate: designing
a unique SiteView for both roles and enforcing “negative” permissions (denials) for

8.7 Personalization, Identification, and Authorization 217

PrivateZone

—_— * ExceptionalTermination «Details» UserName
PublicLogin

«Form» Login

(«DataBinding» Context
NormalTermination «VisualizationAttributes»
sername: strin
«Simplefield» username: string ‘ - LogIn _ usert g
\

‘ «Simplefield» password: string ‘

«Details» Role1&2Content

«DataBinding» EntityX

«ParameterBindingGroup» «VisualizationAttributes»
Username > username attribute1: typel

password > password

v

«Details» Role10nlyContent

«ActivationExpression» | «DataBinding» EntityY

Context.UserRole.name="role1” l

\‘ «VisualizationAttributes»
attribute2: string

FIGURE 8.40
Role-based access control over ViewElements with denial conditions.

the role with stricter access rules. Figure 8.40 shows how to express the pattern using
ActivationConditions.

After the successful login, the “PrivateZone” ViewContainer is accessed. The
“UserName” and ‘“Rolel&2 Content” ViewComponents are visible to users with
both “rolel” and “role2.” The ActivationCondition UserRole.roleName="rolel”
expresses an access restriction: the ViewComponent is displayed only to users of
“rolel.” This clause is actually a denial of access for all roles different from “rolel.”

8.7.8 PATTERN IA-OBP: OBJECT-BASED PERMISSIONS

Another complementary kind of access control is expressed over the content objects
using the concept of personalization associations introduced in chapter 3.

The “MyBlog” ViewContainer displays the user’s identity and the list of his blog
articles, determined by means of the personalization association end “author.” One
article can be selected for modification, or a new article can be edited, using the “Arti-
cleEditor” Form. Submitting the form data triggers the “CreateOrModifyArticle”
Action, which either creates a new article and associates it with the authenticated
user or updates an existing article owned by the user. Therefore, the “author” asso-
ciation end acts as a kind of permission, which dictates the articles that a specific user
is entitle to update.Figure 8.41

8.7.9 PATTERN IA-PRO: USER PROFILE DISPLAY AND MANAGEMENT

The user profile is the application-dependent information associated with the identity
of an authenticated user. Such information can be represented explicitly in the data

= ArticleEditor

MyBlo
Y=o JValdez
)) «Form» ArticleEditor i
«List» MyArticles MyArticles Title :
«DataBinding» Article «SimpleField» title: string Article 1 Text
«ConditionalExpression» SimpleField i O riicle
self.AuthoredBy = user O Article 2
.
«ParameterBindingGroup» 4 l,,A O Article 3 Subject E
username > user [L 2
§) CreateOrUpdate O Article 4
«Details» UserName

«DataBinding» Context

«VisualizationAttributes»
username: string

— ArticleEditor
\ 4 JValdez e
b ofﬁg;?fy MyArticles
Article Text The present

® Article 1
O Article 2
O Article 3
O Article 4

artick® is based
on o survey

Update

FIGURE 8.41

suieped SullSpON 8 ¥ALdVHI 81¢

Example of the access control pattern applied to content objects.

8.7 Personalization, Identification, and Authorization

model, as shown in chapter 3. The key to personalization is associating the identity
of the authenticated user with the attributes in the user profile. This can be achieved
simply by using the same identifier (e.g., the unique username or e-mail address) as
a key attribute both in the Context object and in the User class that stores the profile
information. Figure 8.42 shows a very simple pattern for displaying the user profile
and changing its data.

«ParameterBindingGroup»
username -> username

ProfileEditor

CDetails» UserName

219

«DataBinding» Context

«VisualizationAttributes»
username: string

kS

C Details» CurrentRole

«DataBinding» UserRole

«VisualizationAttributes»
roleName: string

«Details» CurrentProfile

«DataBinding» User

«Conditional Expression»
username = username

«VisualizationAttributes»
password: string
firstname: string
lastname: string
address: string

image: blob

| —

/ «Form» ProfileEditor \

[«SimpleField» password: string ‘

|
|
|

«SimpleField» firstname: string

«SimpleField» lastname: string

«SimpleField» address: string

«SimpleField» photo: blob ‘

FIGURE 8.42

ProfileEditor 00®
JValdez = Current Profile
Possible Roles First Name
® Role1 Last N
O Role 3 Address Via Chia, 3

(List» PossibleRoles o SubmitDat
ubmitData
«DataBinding» Role
«ConditionalExpression»
self.RoleToUser = user
v
________________________________ Modify
Profile

Example of profile display and editing.

220 CHAPTER 8 Modeling patterns

Figure 8.42 applies the class-based content management pattern to the profile
information. The “ProfileEditor” ViewContainer displays the essential context infor-
mation (the user’s identity and current role) and retrieves the list of available roles.
The identity information (username) is propagated to the ViewComponents and
Action through appropriate DataBinding elements to enable the display of the profile
attributes in the “CurrentProfile” ViewComponent, the preloading of field values in
the “ProfileEditor” Form, and the identification of the object to modify in the
“ModifyProfile” Action.

8.7.10 PATTERN IA-IPSI: IN-PLACE SIGN-IN

The in-place sign-in pattern, typical of web applications, occurs when a user who is
not currently authenticated in the application wants to perform an action that requires
identification. When the user attempts to trigger the action, he must be warned of the
need to sign in first and be routed to the login form. When the user has successfully
signed in, he must be returned to the interface element from which he requested the
initial action. When handling the submission of information, any data entered prior
to the login procedure must also be preserved.

Figure 8.43 shows an example of the in-place sign-in pattern applied to the com-
ment section of a blog article. The Blog ViewContainer comprises a Details View-
Component displaying the article’s text, a list of comments, and a form for entering
a new comment. When an unauthenticated user submits a comment, the Navigation-
Flow guarded by the Context.username.oclIsUndefined() ActivationExpression
is followed, which causes the display of the InPlaceL.ogin modal windows whereby
the user can enter credentials. Upon submission, the Login&CreateCommand Action
is executed, which authenticates the user and creates the comment (if the credentials
are valid). Conversely, when an already authenticated user submits a comment, the
NavigationFlow guarded by the NOT Context.username.oclIsUndefined() Activa-
tionExpression is followed, which simply creates the comment.

8.8 SESSION DATA

Session data management is an issue arising in some online applications, whereby
users can produce temporary information lasting only for the duration of their inter-
action with the system. The interface model of an application that exploits session
data is similar to that of a general purpose content management application. [FML
is neutral with respect to policies for managing data and thus does not represent the
way information is preserved or aligned between different architecture tiers. This is
apparent from the initial example of chapter 2, where we introduced the model of
the bookstore toy application, which dealt with a shopping trolley, a data structure
typically endowed with session duration. The “AddToCart” Action of Figure 8.2.16
encapsulates the business logic for inserting an item into the trolley at an abstract
level that hides the actual data management policy.

Create &

Comment

«ParameterBindingGroup»

-7/ Article > article

Blog <
«Details» Article

«DataBinding» Article

«modal» InPlaceLogin

«List» Comments

«DataBinding» Comment

«Farm» Login

«Simplefield» username: string

«Simplefield» password: string

«parameter» comment

«Form» EnterComment

NormalTermination

LogIn &
Create
Comment

«SimpleField» Comment

comment (o

ondition»
Context.username.ocllsUndefined()

«ParameterBindingGroup»
Comment > comment

«ActivationCondition»
NOT Context.username.oclisUndefined()

username - username
password > password
comment > text

FIGURE 8.43

Login

Username: :
Password: :]

Example of the in-place sign-in pattern.

Ble(] UOISSeS 8'8

(44

I

222

CHAPTER 8 Modeling patterns

One aspect in which session data management interfaces differ from generic data
management is in the necessity of handling the asynchronous invalidation of the ses-
sion by the system. In this case, the interface must handle a user request referring to
session data in a safe way by showing alternative content with respect to what is no
longer available. Another aspect is the possibility for the user to change the duration
of session data by making it persistent.

8.8.1 PATTERN SES-CR: CREATING SESSION DATA FROM

PERSISTENT DATA

Figure 8.44 shows an example of session data creation from persistent informa-
tion. The “FlightSearch” form allows the user to enter the usual flight selec-
tion criteria. The submit event triggers the “RetrieveFlight” Action, encapsulates
the business logic for extracting the flights that match the user’s need, and uses

TripPlanner

«Simplefield» origin
«Simplefield» destination
«Simplefield» departDate

«Form» FlightSearch

SearchFlight

«Simplefield» returnDate

/

SearchResults

Retrieve
Flights

«List» Matches

«Form» NarrowResults

includeHops
«Simplefield» maxTime

«DataBinding» FlightSolution

«Conditi

onlyDirect = direct AND
flightTime >= time

«ParameterBindingGroup»

origin> from

destination > to
departDate > dDate
returnDate - rDate

«ParameterBindingGroup»
true > onlyDirect
100 > flightTime

«ParameterBindingGroup»
includeHops > onlyDirect
maxTime > flightTime

FIGURE 8.44

TripPlanner 00® SearchResults 00
Fllgh(Search Matches Narrow Results
Departure Armival Duration Stops
Origin : 10:00 12:00 2 hours O Include Hops
Destmation [1200 1600 4hours O Maximum Time
Departure Date [5/12/2014 E 1400 1600 2hours O
Hatum Bota E 1600 1900 3hours O
1800 20:00 2 hours 0
00
Matches
[Departure Arrival Duration Norrow Rasulta
1000 1200 2hours O InciudeHops []
1400 1600 2hours 0 Maximum Tme []
1800 2000 2 hours 0 [CSeah]
2000 22:00 2 hours 0
22:00 0000 2 hours

Example of session data creation from persistent data.

8.8 Session Data

such data to create instances of the FlightSolution class in the session. The ses-
sion objects are displayed in the “Matches” List ViewComponent, which initially
shows all objects. Another form in the SearchResult ViewContainer allows
the user to narrow the displayed session objects based on further restrictive
conditions.

8.8.2 PATTERN SES-PER: PERSISTING SESSION DATA

Figure 8.45 exemplifies a pattern that is the reverse of that of Figure 8.44: the cre-
ation of persistent data from session data. From the “Matches” List ViewComponent,
the user can pick one flight option and activate the book event. This triggers the Cre-
ateBooking Action, which inserts the data of the booking into the persistent store. To
complete the example, the in-place sign-in pattern could be added to have the user
login prior to creating the persistent booking.

SearchResults
Booking

«List» Matches

«Details» Booking

«Form» NarrowResults

«Simplefield» includeHops
«Simplefield» maxTime

DataBindi FlightSoluti
«DataBinding» FlightSolution Create «DataBinding» Booking

«Conditi / Bookin, ;
onlyDirect = direct AND 9 i «ConditionalExpression»
flightTIme >= time / self = booking

/ /
/

_«ParameterBindingGrf)up» «ParameterBindingGroup» «ParameterBindingGroup»
includeHops -> onlyDirect origin > from Booking - booking
maxTime - flightTime destination > to

departDate> dDate
returnDate > rDate

SearchResult O@® | | Booking 00
Narrow Results ————— Matches Booking
Departure Arrival Duration Stops Book |&
Include Hops Username: JValdez
. e I:I 1000 12:00 2 hours O g{'_% FirstN 5 ©
irst Name: uan
Maximum Time
Book
: 12:00 16:00 4 hours 0 —_— Last Name: Valdez
m Book
- 1400 16:00 2hours 0 Book Origin: Milan
1600 1900 Shours 0 Book Destination: Rome
18:00 20:00 2 hours 0 Book I Departure Date: 03/12/2014
Return Date: 07/01/2015

FIGURE 8.45

Example of the pattern for persisting session data.

223

224 CHAPTER 8 Modeling patterns

8.8.3 PATTERN SES-EXC: SESSION DATA EXPIRATION CATCHING

PATTERN IA-CEX, discussed earlier in this chapter, handles the asynchronous noti-
fication of the expiry of the Context to the user interface by causing an automatic
refresh of the content that expunges the parts that depend on the Context object (e.g.,
the user’s identity). We now show an alternative way of handling the expiration of
the Context or of the session data based on a “lazy” policy. Instead of refreshing
the interface based on a system event, the pattern conditions the effect of a user-
generated event on the validity of the Context object, which is assumed to be silently
invalidated by the expiration of the session.

Figure 8.46 shows that ActivationConditions trapping the invalidation of the
session are added to the NavigationFlows associated with the events of the View-
Container publishing session data. If the Context is still valid, the interaction proceeds
normally; otherwise, the effect of the events is redefined (e.g., to display a page that
does not contain session-dependent data).

TripPlanner SearchResults

«List» Matches

«Form» FlightSearch

«Smpleficdy origin @ «Form» NarrowResults «DataBinding» FlightSolution book
«Simplefield» includeHops ConditionalExpressi T >
- . « pression» /
«Simplefield» destination onlyDirect = direct AND «ActivationCondition»
«Simplefield» maxTime flightTIme <= time Context.isValid=true
«Simplefield» departDate

«Simplefield» returnDate

«ActivationCondition»

+ Context.isValid=true
«ActivationCondition»
Contextisvalid=false
«ActivationCondition»
Contextisvalid=false
SearchResults OO® | | TripPlanner 00®
Matches Flight Search

Departure Arrival Duration Stops Book [&] = Narrow Results

10:00 12:00 2 hours 0 Book

Your session has expired

Maximum Time Destinaton [
@ Departure Date [5/12/2014 E

12:00 1600 4hours 0 Book

14:00 1600 2hours 0 Book

1600 1300 3hours 0 Book

1800 20:00 2hours 0 Book |- Retum Date [6/12/2014 E

SearchResults OO®| | searchResuits 0e®
Matches Matches

Departure Arrival Duration Stops Book [&] = Norrow Results Departure Arrival Duration Stops Book 4] [~ Nerrow Results

1000 1200 2hours 0 Book inckida Hopa 1000 1200 2hows 0 gl Include Hops

Book

1200 1600 4hours 0 Book Moximum Time 1400 1600 2hours 0 Book Maximum Time
14:00 16:00 2hours 0 Book 18:00 20:00 2hours 0 Book

1600 1900 3hours 0 Book 2000 2200 2hours 0 Book

1800 2000 2hows 0 Bok |5 2200 0000 2hows 0 Book |5

FIGURE 8.46

Example of lazy management of session expiration.

8.9 Social Functions 225

8.9 SOCIAL FUNCTIONS

Social networks are applications popular with both web and mobile users. They
focus on the social activity performed by users, such as posting, rating, liking, com-
menting, and sharing. Such activities are made visible to a specific user based on
friendship connections and the privacy rules set by the originator.

8.9.1 PATTERN SOC-AW: ACTIVITY WALL

Figure 8.47 shows the pattern for modeling the log of social activity typical of a
social network platform. The interface model corresponds to a protected appli-
cation, which entails that the user’s identity is known and accessible via the
Context object. The “PersonalActivityWall” ViewContainer models the interface
for accessing the log of the social activities in the user’s circles. The log is split
into two ViewComponents. The “AllVisible” ViewComponent displays the com-
plete stream of activities that are visible to the user via a compact visualiza-
tion: only the author’s username and the activity description are shown. A system
event “activityNotification” signals the arrival of a new activity, which causes
the ViewComponent to refresh its content. The “onMouseOver” event associated
with the “AllVisible” List allows the user to see a preview of the full details of
each activity in a modal ViewContainer. The “Activity” Details ViewComponent
shows all the attributes of the activity, the comments made about it by other users,
and the likes received. The likes are displayed differently depending on their
number, using two separate «NestedDataBinding» elements. If only one like is
present (as specified by the ActivationCondition 1ikes->size()=1), the Visual-
izationAttributes comprise the name of the user who liked the activity (not shown
in Figure 8.47 for simplicity); otherwise, only the number of likes is displayed
(againm Figure 8.47 omits the VisualizationAttributes ViewComponentPart, for
space reasons).

The events “comment,” “like,” and ‘“‘share” associated with each activity allow
the user to perform the corresponding social action on one activity. The “like” event
is also associated with each comment of the activity.

The “Selected” NestedList ViewComponent displays only the activities flagged
as highlighted for the user. For each activity, the username of the author, image,
and description are shown. Also in the “Selected” ViewComponent, each activity is
accompanied by the list of comments and likes and by several events that allow the
user to act on both the activities and their comments. Finally, the “Personal Activity-
Wall” ViewContainer also contains a Form whereby the user can post status updates
and media elements, such as images or a videos.

The “post,” “comment,” “like,” and “share events all create activity instances
that are then displayed on the walls of other users based on the visibility rules set
by the author and on the social network platform internal activity highlighting
algorithm.

226 CHAPTER 8 Modeling patterns

like

comment

share

username > user

[L] PersonalActivityWall

«modal» ActivityView

«Details» CurrentUser

«DataBinding» Context

«isualizationAttributes
» username: string

«NestedList» Selected

 ——

«DataBinding» Activity
«NestedDataBinding»
comments

«NestedDataBinding» likes
«ActivationCondition»
likes->size()=1

«NestedDataBinding likes
«ActivationCondition»
likes->size()>1

«WisualizationAttributes»
username, description, image

. like

onMouseOver

«List» Allvisible

«DataBinding» Activity

«ConditionalExpression»
visibleTo->
exists(username=user)

commes

«VisualizationAttributes»
usernarme, description

onMouseOver

«Simplefields status
«Simplefield» media

«Form» PostStatus

post

JValdez

elected

= AllVisible

Marcela Socha
ag9ed you in o comment

Rigoberto Urén
Added a photo of you

JValdez
Selected
Marcela Socha

«NestedList» Activity

«DataBinding» Activity

«NestedDataBinding»
comments

«NestedDataBinding» likes
«ActivationCondition»
likes->size()=1

«NestedDataBinding likes
«ActivationCondition»
likes->size()>1

«ConditionalExpression>
self= activity

«VisualizationAttributes»
username, description, image

or

MMouseOver

o
§ Likes Lise) Commant5 share e
Carlos Rubio
Replied your comment
12 Likes L) Commens 5@ s20re%p
ania Arroy

a Phoyloo of you

3 Ut iar) pomr G snee

Rigoberto ldrén
U S

™
Marco Ferrari
Mariana Pajén
Tagged you in o photo

Dario Sanchez
Replied your comment

youin o comment

Activity

(= POSSHAtUS e

Status :
Media :

FIGURE 8.47

Rigoberto Urén

Added a phat
5 Likes é’%

Tagged you in a comment
fagged you in o comment 2
5 Likes Lie) Comment Marco Ferrari ot Rigoberto Urén
9 usi?c G 5108 Moroo Ferrant - crienit 5 Likes Lier) Conment 5 sn0re %9 At pasen of yii
Carlos Rubio Mariana Pajén Carlos Rubio Marco Ferrari
Replied your comment Tagged you in @ photo Replied your comment Tagged you in a comment
12 Likes Lie (") Comment 5. share® Darlo Sanhas 12 Likes i) Comment 5. Shore®e Mariana Pajén
Tonia Arroyo Repled your comment, Tuniu Arroyo Lot Yo
'Added a photo of you, r PostStatus |Added a photo of you — PostStatus
3 Likes o) Gommen §.d snars®g o 3 Likes Lie) ommant5 shore®Q. .
Wig: atus. tat
Juanita Pineda :] Juanita Pineda atus I:
Tagged you in a photo] Media Tagged you in a photo.
8 Chae aatth et —/ by ikt P |
JValdez
— AlVisible
- Selected .

iR med

Luna Salamanca
1liked so much! Lie:

Juanita Pineda
X] ot) =

Example of the activity wall pattern.

8.9.2 PATTERN SOC-SH: SHARING, LIKING, AND COMMENTING

The activity stream typical of social networks is the result of the user’s interactions,
such as posting, commenting, liking, and sharing content produced by other com-
munity members.

Figure 8.48 exemplifies the design pattern for the sharing action. Posting, com-
menting, and liking are similar.

8.9 Social Functions 227

«ParameterBindingGroup»
username > user —
[L] PersonalActivityWall

«modal» ChooseTarget
«Details» CurrentUser

shareonwall | [«Form» ToSelf
)| «simplefield» comment ‘

«DataBinding» Context

«VisualizationAttributes»
username

«Details» Activity
«Databinding» Activity

|

|

|

|
|
|
|
\

«ConditionalExpression»

|
<XOR» Targets 5‘ «NestedList» Selected
|
[L] Groups [L] Friends | «DataBinding» Activity
|
| like

like

«NestedDataBinding»
comments

«NestedDataBinding» likes
«ActivationCondition» «onMouseOvers
likes->size()=1

«Form» ToGroup «Form» ToFriend

comment

friend
«DataBinding» User

«Autocompletion» group
«DataBinding» Group

T share

s

exists(username=user) exists(username=user) /’/ Jr———
/ hcivatencondion: contouseovers
Houpmame /
/ «CondmonalExpresslun»

«Simplefield» private

@

/
/
/
/

/

shareToFriend
‘«ParameterBindingGroup»
Activity > activity

shareToGroup

\

'
«ParameterBindingGroup» \
user > target .. —— .
group > target .. friend > target ..
JValdez AR\Viaihl
clected
Rigoberto Urén
M. la Soche
arcelo Socha Added a photo of you elected
5 Likes L) Commanto Share Morso Ferrari Togged you in a comment
Carlos Rubio Ham;nu Pajén Comment
eplied your comment Togged you in a photo
12 Lkes Lse1) Commert . sr0re g Dario Sanchez ‘ShareOnWall
e — Repled your comment
padespsio iy aa :asusmms
t
N oo Juanita rme« g N |
Fal youin o photo’ " 1
vyl ol éjsmﬁ Medie []

Selected
Tagged you in a comment
Comment

FIGURE 8.48
Example of the sharing pattern.

The “share” event in the ‘“PersonalActivityWall” causes the opening of the
“ChooseTarget” modal ViewContainer. This container preserves as parameters the
identity of the authenticated user and contains a summary of the content to be shared
in the “Activity” Details ViewComponent, as well as a Form for inserting a comment.
The user can choose among three modalities of sharing: the “shareOnWall” event
causes the activity to be shared as if it were a post by the user; the “shareToFriend”
and “shareToGroup” events cause the activity to be shared on the activity wall of a

selected friend or group, respectively.

228 CHAPTER 8 Modeling patterns

For supporting the selection of the target friend or group, the “ChooseTarget”
modal ViewContainer comprises two nested alternative subcontainers, which in
turn host two Forms. Each form enables the choice of a friend or group with an
auto-completion field. When the user selects a friend, he can also decide to share
the content as a private message (using the “private” SimpleField of the “ToFriend”
Form).

8.9.3 PATTERN SOC-FR: FRIENDSHIP MANAGEMENT

The dynamics of social networks revolve around the links between members, which
descend from asymmetric (follow) or symmetric (friendship) associations.

Figure 8.49 shows an example of a pattern for managing a symmetric association
between users by means of friendship requests. A friendship request can be modeled
as an object connecting a requestor to a target user, with such properties as the time-
stamp of the request creation and the number of friends common to both the requestor
and the target of the request. The actual friends in common between the requestor
and the target of the request can be computed with the OCL expression: request.
requestor.friends->intersection(request.target.friends). Accordingly, the
(derived) attribute ‘“numberOfCommonFriends” of class Request can be computed
with the OCL expression: request.requestor.friends->intersection(request.target.
friends)-> size().

The “Friends” ViewContainer displays the list of the friendship requests of the
logged-in user. For each request, the timestamp and number of friends in common
between the requestor and the target user are shown. A nested data binding also
allows the display of the username and a photo of the requestor. The user can accept
or decline the request. The “accept” event creates an instance of friendship connecting
the two involved users. The “decline” event deletes the request. The “onMouseOver”
event causes the display of a modal window that lists the names of the friends in com-
mon between the current user and the requestor.

8.10 GEO PATTERNS

We conclude this chapter with a last a design pattern, which exploits the geographical
position of the user embodied in the Context object.

8.10.1 PATTERN GEO-LAS: LOCATION-AWARE SEARCH

Figure 8.50 exemplifies a location-aware geo-search pattern. The “ProximitySe-
arch” ViewContainer contains a form for specifying the restaurant requirements
and a ViewComponent with the position of the user taken from the context. Sub-
mitting the form retrieves the restaurants in range and displays them on the map
as markers. A selection event allows the user to see a window with the restaurant’s
essential details.

[L] Friends

«ParameterBindingGroup»
selected > request

Create
Friendship

Delete
Request 7
/

«ParameterBindingGroup»
selected > request

«Details» CurrentUser
«DataBinding» Context

i
1 «VisualizationAttributes
! » username

«NestedList» FriendshipRequests
«DataBinding» Request

«NestedDataBinding» requestor

«VisualizationAttributes»
username, photo

«ConditionalExpression»
target.username = username

«VisualizationAttributes»
i numberOfC riend:

«onMouseOver»

«modal» CommonFriends

«NestedList» InCommon

«DataBinding» User

|
!
|
r
I
|
I
]J
r

«ConditionalExpression»

M | I request.requestor.friends->
intersection(request.target.friends) ->

exists(self)

«VisualizationAttributes» username

Vi
‘«ParameterBindingGroup»
selected > request

JValdez
— FriendshipRequests

4 mutual friends

Eliecer Gaitdn | Accept]| Deciine |

02/03/2014

st Eisepecre [Jaezmer] [asoe])

2z2Mz/2013

14 mutual friends

Gabriel Mdrque2| Accept | [Decline |

20/02/2013

FIGURE 8.49

InCommon
Marco Brambilla
James Rodriguez

Angela Socha

Example of the friendship management pattern.

Suisjed 0319 01'8

6¢¢

230 CHAPTER 8 Modeling patterns

[XOR] RestaurantLocator

[DI[L] ProximitySearch «MapView» NearByRestaurants

«Marker» «List» CloseByRestaurants

«Form» SearchNearBy

«SelectionField» Cuisine
«SelectionField» MaxPrice

«SimpleField»
MaxDistance

«DataBinding» Restaurant
Search

v

«C i

Cuisine=Cuisine AND

Price<= MaxPrice AND

distance(Location, Context.Position) < MaxDistance

v

Select

«modeless» Morelnfo

«Details» Info

«DataBinding» Restaurant

«VisualizationAttributes»
name, photo, address,
telephone, rating, ..

Proximity Search

Search Near By

Cuisne

Maximum Price

Maximum Distance |3 km PoliMi Restaurant

L8 3 8 4

&
)

% Via Vallegio, 3
+39-5557777

FIGURE 8.50
The location-aware search pattern.

8.11 SUMMARY OF THE CHAPTER

This chapter addressed typical problems of UI design by providing a reasoned cat-
egorization of classical user interaction patterns in modern interfaces. Each pattern
was described by the IFML model, an exemplary Ul rendering, and a textual expla-
nation of its behavior. Some of the patterns described here will be shown at work in
chapter 9, where realistic examples of applications are presented.

8.12 BIBLIOGRAPHIC NOTES

Pattern-based design is a typical way of addressing user experience problems and
software engineering problems at large. Patterns can be exploited in a generative way
(as in [VM10]), where portions of existing models are identified and reinstantiated

8.12 Bibliographic Notes 231

in new problem settings. Usability guidelines themselves can be considered design
patterns. A specific workshop on UI patterns has been held at CHI 2003 [FFG+03].
Many different sources of Ul design patterns exist today [BorchersO1, Erickson14,
Fincher14] and a Pattern Language Markup Language (PLML) has been specified
too [FFG+03]. Some efforts to bridge software engineering patterns and user inter-
action patterns are also ongoing [FVBO06]. Social network patterns have also been
investigated [Brambillall].

This page intentionally left blank

CHAPTER

IFML by examples

Chapter 8 illustrated a gallery of IFML design patterns that occur frequently in appli-
cations. In this chapter, we take the reverse approach, considering how a sample
of realistic applications—inspired by popular real-world ones—can be modeled in
IFML with the help of the language constructs and design patterns introduced so far.

9.1 MEDIA SHARING APP

The first example we consider is a mobile app for smartphones providing an online
photo- and video-sharing service. The service allows people to take pictures and
videos, to apply digital effects to them, and to share them on several social networks.

Figure 9.1 shows the initial screen of the app, which permits the user to register
or sign in.

9.1.1 DOMAIN MODEL

The main assets of the application are users, comments, media object (images and
videos), and tags, which can be represented with their associations as shown in the
domain model of Figure 9.2.

The “Media” entity includes attributes describing an image or a video: a textual
description, the upload timestamp, the location, and the media type, which can be
video or photo. Attribute “numLikes” is calculated as the sum of all “likes” cast by
users.

Users have a number of profile attributes and can be connected with other users,
with the association characterized by the “follower” and “followedBy” 0..* roles.
Users can be associated with “Media” and “Comment.” The association with roles
“posting”/”’postedBy” represents the ownership of a media asset by a user. The asso-
ciation with roles “like”/’likedBy” records the expression of preference for a media
asset by a user. The association “mention”/’taggedIn” denotes that a user has been
tagged in a media item.

Commentsareproducedbyusers(associated withroles“publisher”/’publishedBy”),
refer to a media asset (associated with roles “comment”/”attachedTo”’), and can men-
tion other users (associated with roles “mention”/’taggedIn”). Comments can be
associated with a tag, which denotes that the text actually contains the tag (associated
with roles “taggedBy”/”’comprisedIn”). A tag can also qualify a media object to help
retrieve objects of interest (associated with roles “annotation”/”’taggedBy”).

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00009-6
Copyright © 2015 Elsevier Inc. All rights reserved.

233

234 CHAPTER 9 IFML by examples

[0}

Media Sharing App

FIGURE 9.1
Initial screen of the media sharing app.

Some activities (e.g., posting and liking an object) are logged: entity “Activity”
records, with the time of occurrence, the operations performed by the user (associa-
tion with roles “performer”/’action”), which may optionally refer to a media asset
(association with roles “performedUpon”/”’action”).

Finally, the attribute “numLikes” of the media object is derived. Its value is the
sum of the preferences received from the users (i.e., the number of users connected
by the “likedBy” association role). Similarly, the “Comment” entity contains another
derived attribute, “userName,” which enriches the comment with the name of its
author.

9.1.2 IFML MODEL

We now proceed to modeling the interface of the media sharing app, following a
few usage scenarios that demonstrate the main functions. Figure 9.1 shows the start
ViewContainer of the application, displayed when the application is accessed by the
user or when a session is closed. The interface offers two options: a new user can
sign up, while an already registered user can sign in. The IFML model of the start
ViewContainer and of the events it supports is shown in Figure 9.3.

The IFML model for registering a new user exploits a common object creation
pattern (such as the PATTERN AG-OCR discussed in chapter 6), and thus is not
further elaborated. The “Sign In” ViewContainer follows the PATTERN IA-LOGIN,
shown in chapter 8. When a registered user logs in successfully, the “Media Sharing
Top” ViewContainer is displayed. Yhis is the principal interface container, which
comprises five landmark subcontainers embodying the main functionalities shown in
alternative but always reachable by the user. This general organization of the inter-
face is represented by the IFML model of Figure 9.4.

The Landmark stereotype on the “Home,” “Explore,” “Take Picture,” “News”
and “Profile” subcontainers models the main menu (shown in Figure 9.5), which is
visible in all the pages of the application. The “Home” ViewContainer is also marked

9.1 Media Sharing App 235

followedBy B

User
Follow

oid : Integer
0.* | follower
userName : String

name : String

email : Email

phoneNumber : String

Media
profilePhoto : Blob 1 postedBy posting . * i
Post oid : Integer
website : String 1 likedgy like . .
Like location : Location

gender : String
postTime: Time

mention taggedin
bio : String. TagU:
file: Blob
password : Password
type: MediaType
/numPosts : Integer
publishedy | 1
/numFollowers:Integer Description: String
/numFollowing: Integer /numdikes: Integer
0.1 1.* 1.*
* o performedUpon annotation attachedTo
mention performer
Activity Performon
1.# Media
peform — oid : Integer
PublishComment action action
name: String
actionTime: Time
TagUserinComment TagMedia
Tag
oid : Integer *
tagName : String taggedby
taggedin *
/numPost : Integer
Comment
0.*
oid : Integer taggedBy
publisher | * + comprisedin
— text : String f—————————— TagComment
* comment

postTime: Time —_—

JuserName: String

FIGURE 9.2

Domain model of the media sharing app.

[H] Start Page

Register \‘jSign In

Register Sign In

FIGURE 9.3
IFML model of the start page.

236 CHAPTER 9 IFML by examples

[XOR] Media Sharing Top

[L] Explore
[D][L] Home

[L] Profile
[L] Take Picture

[L] News

O .
Refresh
Update \ |
«modeless» NoConn Content
normalTermination
<«

exceptionalTermination

FIGURE 9.4
General organization of the interface of media sharing app.

FIGURE 9.5
Menu for Landmark navigation.

as Default to specify that is the one displayed when entering the “Media SharingTop”
ViewContainer.

The model of Figure 9.4 also contains the “Refresh” event, which triggers an
action for updating the content of the application. In the interface, the event is fired
by touching the icon in the top-right corner of the screen (shown in Figure 9.8). The
event is associated with the top-level container because it is always visible to the
user. When the user tries to reload the page without having the connection, the Action
“UpdatePage” triggers a modeless window that signals the failure of the action, as
shown in Figure 9.6.

Introducing the “Media Sharing Top” View Container makes the model more
concise and avoids repeating common elements, such as the “Refresh” event, in mul-
tiple ViewContainers. For the sake of illustration, Figure 9.7 contrasts the model with
and without the “Media SharingTop” ViewContainer.

The “Home” ViewContainer, displayed when the user enters the application,
contains a vertically scrollable list of the recent photos and videos posted by users,

9.1 Media Sharing App 237

FIGURE 9.6
Modeless window showing the message for connection failure.

ordered by time of publication. For each media object, the interface displays the
name and photo of the author, the content, upload timestamp, location, users who
“like” the object, and the associated comments, as shown in Figure 9.8.

9.1.2.1 MediaViewer module

The presentation of media objects in the “Home” ViewContainer appears identically
in several other places of the interface. It is therefore convenient to represent it as
a module definition (“MediaViewer,” shown in Figure 9.9). The module definition
can be referenced in the interface model whenever the same presentation is reused.
The input port of the “MediaViewer” module definition is associated with a data-
flow carrying a ParameterBindingGroup denoting the collection of identifiers of the
media objects to display (“MediaOIDs”). When the input collection contains mul-
tiple objects, the data of each instance are presented sequentially in a vertical scrol-
lable layout. When the input consists of only one object, one photo or video is shown
with its associated data.

Since the content displayed in the module belongs to multiple entities connected
hierarchically, a «NestedList» ViewComponent is used. Each photo or a video acts
as a top-level item in the list, and several nested levels specify the data of the objects
depending on it, such as the user who posted it, referenced users, comments, and tags
with the users mentioned in them.

The three-level “MediaViewer” «NestedList» comprises at the top level a
DataBinding that refers to the “Media” entity and displays the “postTime,” “loca-
tion,” and “file” attributes. A conditional expression filters the data binding instances
to display only the object(s) whose identifiers are passed in input to the module:
MediaOIDs->includes (oid). Instances are ordered by time of posting according to
the clause «0OrderBy» postTime DESC.

A nested data binding, built on the association role “postedBy,” visualizes the
“profilePhoto” and the “userName” of the user who posted the video or photo.

The “numLikes” visualization attribute of the media objects is modeled sepa-
rately, because the number of “likes” is visible only when greater than ten, as

FIGURE 9.7

[XOR] Media Sharing Top
[L] Explore
[D][L] Home
[L] Profile
[L] Take Picture
[L] News
Refresh
«modeless» NoConn eres Update
Content

normalTermination

exceptionalTermination

[L][D] Home

Refresh

«modeless» NoConn

Update
Content

normalTermination

[L] Explore

Refresh

«modeless» NoConn

Update

Content

normalTermination

[L] Profile

Refresh

«modeless» NoConn

Update
Content

normalTermination

[L] Take Picture

«modeless» NoConn

Refresh

Update
Content

normalTermination

pionalT

[L] News

«modeless» NoConn

Refresh

Update
Content

normalTermination

Termination

(a) ViewContainers nested within a XOR top-level ViewContainer. (b) Model with independent ViewContainers.

sojdwexa Aq TNl 6 ¥ALdVHD 8€C

9.1 Media Sharing App 239

m_ ' RefreSh ' event

Media.postedBy: User (profilePhoto, userName) st ® anmarce427 (©7h &= Media(postTime)
Media (location) st @ Como Lake
Media (file) D Media

- file
[> postedBy (User)
- profilePhoto
- userName

Media.likedBy : User (userName) 1 morcotromsi [> likedBy (User)

Media.comment : Comment (teXt) st somorced27 Como Loke > comment (Comment)
marcobrambi Great to do Sressarch and steaching D> taggedBy (Tag)
in a place like this. Looking forward to an #office 1> mention (User)

with #lake view
"Like" event

[19 Q ! b Media object menu

"Comment" event

FIGURE 9.8
Content shown on the home page.

ParameterBindi oup»

OIDs > MediaOIDs «ModuleDefinition» MediaViewer

v

/ «NestedList» MediaViewer \
«DataBinding» Media }.

«ConditionalExpression»
MediaOIDs-> includes (oid)

seelikers

«VisualizationAttributes» postTime, location, file

«ActivationExpression» | | ,,«H «VisualizationAttributes» numLikes Q,
numLikes > 10
«OrderBy» postTime ‘

«NestedDataBinding» postedBy

«VisualizationAttributes» userName, photo ‘

«NestedDataBinding» likedBy

«VisualizationAttributes» userName ‘

seeAllComments

«ActivationExpression»
size() > 6

«NestedDataBinding» comment

«VisualizationAttributes» userName, text ‘

«NestedDataBinding» tag
[ibutes » tagName

/A

«NestedDataBinding» mention
[«VisualizationAttributes » userName |

«BlockSize» 6 ‘

& /

FIGURE 9.9
Initial model of the “MediaViewer” module.

expressed by the «ActivationExpression» numLikes > 10. In this case, the user can
trigger the “SeeLikers” event by clicking on the number of “likes,” which displays
a separate ViewContainer showing the list of all the users who “like” the photo or
video. Conversely, the NestedDataBinding built on the association role “likedBy,”

|
240 CHAPTER 9 IFML by examples

< ofe 0

anmarce427 ®7h anmarce427 ®7h
. Como Lake . Como Lake

P —

' marcobrambi, piero, anmarce427 ' 2077 likes
anmarce427 Como Loke onmarce427 Como Loke
marcobrambi Greot to do #research and #teaching marcobrambi Great to do #research and #teaching
in a ploce like this. Looking forword to an #office in a ploce like this. Looking forward to an #office
with #lake view with #lake view

O 3 Q% E

FIGURE 9.10

Visualization of the likers and of the number of likers. Interface when likers are fewer than
11 (left) and greater than 10 (right).

which displays the usernames of the people that like the media asset, is shown only
when number of “likes” is fewer than eleven, as expressed by the «ActivationExpres-
sion» 1ikedBy->size() < 11.These different forms of visualization and interaction
are contrasted in Figure 9.10.

The “MediaViewer” NestedList also displays the received comments (as shown in
Figure 9.10) modeled as NestedDataBinding built on the association role “contains.”
This displays a maximum number of objects (siX, in this case) as denoted by the «block»
ViewComponentPart associated with the NestedDataBinding. If the object has more
comments than the maximum number displayable, an event is activated that lets the
user access all the comments in a separate ViewContainer. This is expressed by the “see-
AllComments” event and by the size()>6 «ActivationExpression» associated with it.!

The NestedDataBinding that displays the comments has another nested level,
built on the association role “comprises,” which displays the names of the tags found
in a comment. Note than this nested level is rendered in a specific way, because the
tags are actually embedded within the text comment (see Figure 9.11). Similarly,
another NestedDataBinding, built on the association role “mentions,” displays the
names of the users mentioned in a comment.

Each object in the “MediaViewer” nested list supports a rich set of interaction
events, summarized in the refined model of Figure 9.12.

9.1 Media Sharing App 241

anmarce427 ®7h
. Como Lake

' marcobrambi

[> comment (Comment)
‘ [> taggedBy (Tag)
anmarce427 Como Loke

marcobrambi Greot to do #research ond #teaching
in a ploce like this. Looking forword to an #office » SeeSameTag event

with #lake view

FIGURE 9.11
Visualization of the tags as clickable anchors within the text of the comment.

Most events cause the display of a distinct interface. For convenience, we encap-
sulate each interface into a separate reusable module, as shown by the «Module»
elements in Figure 9.12.

From the “MediaViewer” NestedList, one can access the profile of the user who
uploaded, liked, commented on, or was mentioned in one of the comments. All these
interactions are represented by multiple “SeeUser” events, triggered by clicking on
the username or photo of the owner of the media element currently under view or
on the username of the author of a comment, the person who cast a like, or a person
mentioned in a comment. All these options are visible in Figure 9.8 and modeled by
the “SeeUser” events in Figure 9.12.

The “See Location” event corresponds to selecting the location of a media object
(visible in Figure 9.8) and permits one to access a separate module with a map show-
ing the place where the photo or video was shot, together with the positions of other
photos or videos nearby.

As shown in Figure 9.11, tags in a comment are rendered as navigation anchors.
By clicking on one of them, users can see other videos or photos with the same tag.
The “SeeSameTag” event of the “MediaViewer” NestedList shown in Figure 9.12
models this interaction.

Two icons (highlighted in Figure 9.13) let the user post a comment and tog-
gle appreciation (liking and unliking an object). A double touch on the media
object is equivalent to casting a like. These interactions are represented by the
“TogglePreference,” «DoubleTouch» “Like,” and “Comment” events in the model
of Figure 9.12.

When the media object is a video, a single touch toggles the play/pause status.
When it is a photo, the single touch shows the list of tagged uses, if any. The corre-
sponding events appear in Figure 9.12.

f «NestedList» MediaViewer

«ActivationExpression»
numLikes > 10
«ActivationExpression»
Username <> Context.username

«Modal» User Media Menu

«Module» Map «DataBinding» Media

«ConditionalExpression» ‘

See Location MediaOIDs->includes (oid)

«Module» Likers

| «VisualizationAttributes» postTime, location, file |

See]Liki
Q«VisuaIizaﬁonAttributes» numLikes t
Report CopyURL
«Module» User See User «NestedDataBinding» postedBy
< I N «ActivationExpression»
ibute userName, photo
userName = Context.username
«NestedDataBinding» likedBy «Modal» LoggedUser MediaMenu
seb Uber [«isualizationatiributes userome |

Share Delete TagPeople CopyURL

«NestedDataBinding» comment] A .
«ActivationExpression»

likedBy->size() <11

r) | «VisualizationAttributes» userName, text |

See|User «NestedDataBinding» tag

» tagName] See$ameTag
«ActivationExpression» Seel User «NestedDataBinding» mention N YA P——
= EEE [i userName]
. Play/Stop

I «BlockSize» 6

) Toggle
&eAHCamments\) Preference

Play / Stop
«Touch»

./ See Tagged G Lukfe/
Users Like Unlike
«Touch» «DoubleTouch» Update

«ActivationExpression»
media.type=“Photo”

‘ «Module» TaggedUsers <

«ActivationExpression»
size() > 6

Like Notification

\ AP

«Module» Comments

FIGURE 9.12

cve

so|dwiexs Aq N4l 6 ¥ALdVHI

Refined model of the content and interactions of the “MediaViewer” module.

9.1 Media Sharing App 243

v 2077 likes

onmarce427 Como Loke

marcobrambi Great to do #research and #teaching
in a place like this. Looking forward to an #office

with #lake view

r@ Q Comment" event

"Like" event

FIGURE 9.13

Command for toggling the “like” status and commenting. A double touch on the object
casts a like on it.

Finally, each media object has a menu of further actions that apply to it. The menu
differs if the photo or video belongs to the logged-in user or to another user. This
behavior is represented in Figure 9.12 with two distinct events (“SeeMediaMenu”
and “SeeMedialLoggedMenu”). Such events are activated alternatively thanks to two
mutually exclusive ActivationExpressions that test if the owner of the media object is
the logged-in user, using a pattern similar to the object-based permission (PATTERN
IA-OBP) discussed in chapter 8.> The condition exploits the fact that the identity
of the logged-in user is preserved in the Context object (userName = Context.
username).

9.1.2.2 Comments module

The “Comments” module, accessed from the “SeeAllComments” and “Comment”
events of the “MediaViewer” ViewComponent of Figure 9.12, specifies the interface
elements for managing the comments of a media object. The interface contains a
simple list of comments, shown in Figure 9.14.

The model of the “Comments” module is shown in Figure 9.15. The input to the
module is the identifier of the media object to which the comments belong, as speci-
fied by the ParameterBindingGroup. The content of the module is a «NestedList»
ViewComponent (“Comments”), bound to the instances of the Comment entity asso-
ciated with the media object passed in input, as represented by the ConditionalEx-
pression belongsTo = media.

As in the “MediaViewer” module, the “SeeUser” events can be triggered to dis-
play the profile of users who posted or are mentioned in a comment. Also, clicking
a tag name triggers the “SeeSameTag” event, which allows one to see other media
objects qualified by that Tag.

The “Comments” module also contains a Form ViewComponent with a Simple-
Field (“text”) and an event “CreateComment “ for adding a comment to the media
object. The action triggered by the event saves the comment, creates the association
instance with the media object, and possibly extracts the tags and mentioned users
and links them to the comment.

|
244

CHAPTER 9 IFML by examples

&~ | COMMENTS

@ anmarce427 Como Lake

marcobrambi Great to do #research ond #teaching
in a ploce like this. Looking forward to an #office
with #lake view

cq

@ anmarce427 #IFML @marcobrambi

jay

Add a comment n

FIGURE 9.14

Interface for accessing and manipulating comments of a media object.

Selecting an entry in the “Comments” NestedList displays a menu, based on the
owner of the comment and of the media object, as illustrated in Figure 9.16.

If the comment belongs to the logged user (independently of the owner
of the media object to which the comment refers), the menu comprises the
“DeleteComment,” “ViewProfile,” and “CopyText” events. If the media object
belongs to the logged user and the comment belongs to a different user, the menu
comprises the “DeleteComment,” “Delete&Report,” “ViewProfile,” and “Copy-
Text” events. Finally, if both the media object and the comment belong to another
user, the menu comprises the “Report,” “ViewProfile,” and “CopyText” events.
These different menu configurations are modeled in Figure 9.15 by means of Activa-
tionExpressions that condition the activation of the event to the relationship between
the comment, the media, and the user objects.

As visible in the screenshot of Figure 9.17, the Action that copies the text of the
comment ends with a notification event, displayed in a pop-up window. This is mod-
eled by the “CopyNotification” ViewContainer of Figure 9.15.

9.1.2.3 User module
The “SeeUser” and “ViewProfile” events, available in such modules as the “Media-
Viewer” and “Comments,” trigger the display of an interface with the essential data of
auser. Such an interface is used in various situations: to show the profile of the logged
user, of the author of a post, or of the person mentioned in a comment. Figure 9.18
shows how the user profile appears for a logged-in user and for a generic one.

The interface comprises an upper section showing the essential user’s data, with
a menu in the upper right corner enabling various actions on the user’s profile, and a
lower section dedicated to the posts. Four icons below the user’s profile data supports
commands for displaying media objects with a tiled layout, displaying media objects

«ModuleDefinition» Comments

«ViewContainer» Comments

«ActivationExpression»

«ParameterBindingGroup»
OID > media

f «NestedList» Comments

~

«DataBinding» Comment

«conditionalExpression» attachedTo = media |

«Module» User

/) «VisualizationAttributes»
userName, text, postTime

SeeUser|

«Module» Tag

«NestedDataBinding» mention

[«visualizationAttributes» userName |

/l\ «NestedDataBinding» tag

SeeSameTlag

«ParameterBindingGroup»
OID > media

media.postedBy.userName <>
Context.username

«ActivationExpression»

userName = Context.username AND
media.postedBy.userName =
Context.username

«Modal» CommentMenu

\ Delete&
—p | Report ViewProfile
Comment Report
Menu
CopyText
Delete
Comment

«ActivationExpression»

userName = Context.username AND
media.postedBy.userName <>
Context.username

| «VisualizationAttributes» tagName |

P
«Form» New Comment

«SimpleField» text: String |

\C\CreateComment

CopyNotification CopyNotification

O

Create
Comment

v

«Modeless» CopyNotification

FIGURE 9.15

Model of the interface for accessing and manipulating comments of a media object.

ddy Suueys eipaiN 1°6

1) 74

|
246

CHAPTER 9 IFML by examples

&« \ COMMENTS & \ COMMENTS & | COMMENTS

Delete Comment Delete Comment
View Profile

Copy Text

Report Comment
View Profile
Copy Text

Delete Comment and Report Abuse
View Profile

FIGURE 9.16
Menu when the comment belongs to the logged user (left) or to another user (middle,
right).
&~ | COMMENTS
@ anmarce427 Como Lake
6 days aogo
marcobrambi Great to do #research ond #teaching
in a place like this. Looking forward to an #office
wi!h #lake view
days ago
onmorce4obromb|
3 days
Add a comment u
FIGURE 9.17

Pop-up window triggered by the system event for the notification of the “CopyText” Action.

with a vertical layout, displaying media objects on a map, and showing images where
the user has been tagged. The latter two commands open separate ViewContainers
that take the entire space of the screen, as visible in Figure 9.19.

Figure 9.20 illustrates the model. The “User” module definition has an input
parameter (the identifier of the user) and organizes the interface with a top-level
XOR ViewContainer, which alternatively displays the “ProfileData,” “MediaMap,”
or “PhotosOfUser” sub-ViewContainers. The “ProfileData” ViewContainer is pre-
sented by default and comprises a Details ViewComponent (“UserInfo”) publishing
the essential user’s data (photo, name, bio, web site, and social and activity statistics)
and a sub-ViewContainer (“UserPosts”), which displays the media objects, either
tiled or scrollable vertically. The two alternative visualizations are supported by the
“MediaViewer” and “MediaTiled” modules. The former has been already described
in Figure 9.12. The latter has a simpler and more compact structure consisting of a
List ViewComponent publishing only the “file” attribute of the media objects with

9.1 Media Sharing App 247

MARCOBRAMBI O PYSRIININ &~ ANMARCE427

750 800 120 750 800 120

posts followers following posts followers following

EDIT YOUR PROFILE Upper section

Marco Brambilla

I'm with Politecnico di Milano and WebRatio,
on model driven development of: web
engineering (WebML, IFML), search
engines, crowdsourcing, BPM and WS

== Commands

}_ower section

ProfileData ProfileData

FIGURE 9.18
Interface of the user profile: logged-in (left) and not logged-in (right).

& PHOTOS OF YOU
TR

.] .]

MediaMap PhotosOfUser

FIGURE 9.19
Full-screen display of the posts on the map (left) and of the media objects where the user
has been tagged (right).

a “Select” event for accessing a separate full-screen instance of the “MediaViewer”
module (see Figure 9.21). Note that the “PostOIDs” List ViewComponents in the
“UserPosts” ViewContainer has no VisualizationAttributes. It simply extracts the
identifiers of the relevant media and supplies them as parameters to the “MediaTiled”
and “MediaViewer” reusable modules. In this way, the modules do not depend on
the objects extraction criterion and can be employed wherever the interface displays
a set of photos or videos.

The bottom part of Figure 9.20 represents the reuse of the module “User” and its
integration within the rest of the application model.

Clicking on the number of followers and following users triggers the “SeeFollowers”
and “SeeFollowing” events, which cause the display of separate ViewContainers.
Clicking on the number of posts hides the “UserInfo” ViewComponent and allocates

248 CHAPTER 9 IFML by examples

«ParameterBindingGroup»
username-> userName

« ModuleDefinition» User

«XOR» ProfileViewer

«ViewContainer» ProfileData

userName<> > EditPhoto
ontext.username «Details» Userlnfo
Context Toggle EditPhoto
P «DataBinding»User i Search
Followed /" C = user ‘ » Search
N =
«isualizationAttributes» oot weername
SeeFollowing profilePhoto, userName, name, bio,numPosts,
I
L] «iewContainer» PhotosOfUser numFollowing.numFollowers » Editprofile
— EditYourProfile
alisty
Posts. "
«DataBinding»Media v Options «ActivationExpression»
«C [XOR] «ViewContainer» UserPosts «Parvam?teervdmgGmup» userName =
MediaOids=> Oids Context.username
taggedin.userName = user

«isualizationAttributes» file «Listy PostOIDs
———————— ~——-Z——_l| «DataBinding»Media CurrentUser
|
L] «MapView» MediaMap «ConditionalExpression apostecBy = user | «ActivationExpressions
— | userName <>
Context.username

«DataBinding»Media

«ConditionalExpression»
postedBy.userName = user
«isualizationAttributes»

file

[DI[Ll«Module» MediaTiled

|

|

! Ontit
«Marker»List» Locations | OV i ntions

|

| 1] eModule» MediaViewer

|

OtherUser

«ViewContainer» PhotoMenu
«Module» User

EditPhoto

[

Take Pick ImportFacebook ImportTwitter

«iewContainer» Search

«iewContainer» ProfileEditor

EditProfile

OtherUser CurrentUser

«ViewContainer» OptionsMenu «iewContainer»
LoggedOptionsMenu

Cancel Block Report Copy URL

FIGURE 9.20

Specification of the “User” ModuleDefinition and its reuse as “User” Module.

all the screen space to the default ViewContainer of “UserPosts” (the tiled collection
of posts).?

When the interface shows the logged-in user, it permits the editing of the profile
data. The events “EditPhoto” (activated touching the user’s picture) and “Edit Your
Profile” (triggered with the button visible in the screen on the left of Figure 9.22)
open two ViewContainers for setting the image options and for editing the profile
data, respectively. When the interface shows a generic user, the profile editing events
are not active. Instead, an event “Toggle” allows one to toggle the status of the
“follow” relationship with the user on display.

A global menu, reachable by clicking on the vertical dots icon in the upper-right
corner of the interface (see Figure 9.22Figure 9.18), gives access to several profile
management options. The available events and actions differ when the interface dis-
plays the logged-in user or a generic user. This dual behavior is represented by the
“Options” events and their ActivationExpressions in the model of Figure 9.20.

«ModuleDefinition» MediaTiled

«ParameterBindingGroup») «ViewContainer» MediaAsTiles
OIDs - MediaOIDs

«List» MediaTiles

«DataBinding» Media The Interaction Flow

Modeling Language

«ConditionalExpression»
MediaOlDs->includes (oid)

«VisualizationAttributes» file ‘

()

Select

«Module» MediaViewer ‘
FIGURE 9.21

«ParameterBindingGroup»
Selected > MediaOIDs /.

Model of the “MediaTiled” module showing a compact representation of a set of media objects.

ddy Suueys eipaiN 1°6

61¢

250 CHAPTER 9 IFML by

MARCOBRAMBI

examples

&~ ANMARCEA427

"Edit Photo" R ——»
750 800 120 "Options" event
event (touch) posts followers following P Zos;(l)s 40.8\325 lo?\gwomg
[——Fouow "Toggle" event
Marco Brambilla "Edit Your Angie
Profile" event)
Logged-in user Generic user
FIGURE 9.22

Alternative commands when the interface displays the logged-in or a generic user.

(a) (b) (c) (d)

USERS

@ pierofrapolimi
@ envelopsla

@ pierofra
@ pieropolimi

= @Dvbevaldermma
QUeREuu0aaE
AR
AEHCCERRE
Y[croce ST

CHEEORL]
0EEGEEEaEE
BEHEMEHE)!
23 © || o |

FIGURE 9.23

Interface for people and tag searchs: empty search for users (a); suggested users
matching the input (b); suggested tags matching the same characters (c); and the result
of the search for users (d).

9.1.2.4 Search users and tags

The magnifying lens icon in the upper-right corner of the interface, visible in Figure
9.22 when the profile belongs to the logged-in user, allows one to open a “Search”
interface, shown in Figure 9.23 and modeled in Figure 9.24.

The search function consists of an input form with the usual submit button, but
the target of the search can be either a user or a tag. This is implemented by means
of the tabbed interface visible in Figure 9.23. Selecting the “User” tab matches the
input keyword to user names. Opening the “Tag” tab matches it to the tags. When a
user types in the string to be searched, the application presents a list of suggestions
matching the inserted characters. Switching from the “User” tab to the “Tag” tab
preserves the input but modifies the suggestions displayed, as well as the target of
the search.

The search interface is modeled as shown in Figure 9.24. The “Search”
XOR View Container comprises two sub-ViewContainers: ‘“UserSearch” and
“TagSearch.” The former is the default, shown when the user opens the search

«ParameterBindingGroup»

«ParameterBindingGroup» /
SearchKey - key

«ParameterBindingGroup»
SearchKey > key

«ParameterBindingGroup»

Selected.userName > key /' ™

«List» UserList

«List» TagList

«DataBinding» User

«DataBinding» Tag

«VisualizationAttributes»
profilePhoto, userName

«VisualizationAttributes» tagName ‘

«ConditionalExpression»

key.size()) -> exists(i |

key)

if (key.size() <= userName.size())
then Sequence(1.. userName.size() —

userName.substring (i, i + key.size()) =

else false)

«ConditionalExpression»
if (key.size() <= tagName.size())
then Sequence(1.. tagName.size()

— key.size()) -> exists(i |
tagName.substring(i, i + key.size()) = key)

\/ SeeUser

@ See Tag

«ParameterBindingGroup»
SearchKey = key

«ParameterBindingGroup»
SearchKey - key

key = key
«ViewContainer» [XOR] Search T
[D] «ViewContainer» UserSearch | «ViewContainer» TagSearch
Search «Form» SearchUsers) Users /] «Form» SearchTags Search
q) «Simplefield» SearchKey: String ‘ / «Simplefield» SearchKey: String P
/ Tags —
cOnChanghs P Parameterskey peseeee- e T donchanger
H
H
H
«List» RecommendedUsers H «List» RecommendedTags
H
H
«DataBinding» User i «DataBinding» Tag
H
«VisualizationAttributes» ‘.J «VisualizationAttributes » tagName ‘
select] profilePhoto, userName o
«ConditionalExpression» .. Select
«ConditionalExpression» ..

«ParameterBindingGroup»
Selected.TagName—> key

FIGURE 9.24

«Maodule» User —

Il
«Module» Tag -

Model of the search interface for users and tags.

ddy Suueys eipaiN 1°6

16¢

252

CHAPTER 9 IFML by examples

interface. Both ViewContainers repeat the same pattern: an input form permits
the user to insert the keyword to match. The «onChange» event reacts to the
insertion of each character, saves the current input into the “key” Parameter, and
displays a list of suggestions (users or tags) that match the current input. The
value of the “key” parameter is made available to the “RecommendedUsers” and
“RecommendedTags” List ViewComponents by means of a DataFlow. For brev-
ity, we omit the formula of the ConditionalExpression needed for retrieving the
recommendations. The data extraction query filters the users and tags that have
been accessed recently and match the value of the “key” Parameter. The “Select”
events in the “RecommendedUsers” and “RecommendedTags” List ViewCompo-
nents allow the user to pick a search keyword from the recommended ones and
perform the search with that.

The user can bypass the recommendations and perform the search directly by
submitting a keyword using the “Search” event. In this case, the entered keyword is
used to extract the full list of matching users (or tags) displayed in a List ViewCom-
ponent (“UserList” or “TagList”). From the “UserList” and “TagList” ViewCom-
ponents, the user can select an item and access its details in the “User” and “Tag”
modules, depending on the type of object selected.

Note that the value of the “key” parameter is remembered when one switches
from the “User” tab to the “Tag” tab and vice versa. This behavior is supported
by two NavigationFlows between the XOR sub-ViewContainers associated with a
ParameterBindingGroup that represents the explicit transfer of the parameter value.
This design replaces the use of landmarks, which cannot express the fact that the
value of the “key” Parameter is passed from one ViewContainer to the other at every
switch of the search target.

9.1.2.5 Tag module
The Tag module displays the media objects annotated by a given tag. It can be acti-
vated from various places in the interface, such as the “Home,” “Comments,” and
“Search” ViewContainers. Figure 9.25 shows the interface presented after selecting a
tag and Figure 9.26 the corresponding IFML model.

The “Tag” ModuleDefinition takes as input parameter the tag name. It comprises
a XOR ViewContainer (“TaggedMedia”) and a Details ViewComponent (“TagInfo)
displaying the name of the tag and the number of posts associated with it. The “Medi-
aOIDs” List ViewComponent extracts the identifiers of the media objects to display.
These are passed in as input by a DataFlow to the “MediaTiled” and “MediaViewer”
modules, which are displayed in alternative.

9.2 ONLINE AUCTIONS

As a second example, we illustrate the interface of an online auction site inspired by
some popular web applications where people and businesses buy and sell a broad
variety of goods and services from all around the world. Auctions are also held where

9.2 Online Auctions 253

S)

'T\
3

.Q EQ meosls @anmorce427 ©8h)
MediaTiled \L \L\L Q MediaViewer
= =< TS
M |
j >

QP onmarces27

anmarce427 #IFML #Logo

QG :

@ anmarce427 ®10h
FIGURE 9.25

Interface for the media objects qualified by a tag: tiled (left) and vertically scrolled display
(right).

buyers can get bargains on a wide variety of items or even find rare items. This
example complements the media sharing app case with the modeling of an interfact
with a different organization.

9.2.1 DOMAIN MODEL

The domain model is illustrated in the class diagram of Figure 9.27. The application
deals with three principal assets: listings, users, and bids. Listings are the central
objects. As such they are correlated by a number of attributes: an identifier (“id”), a
title ('title”), the description of the condition of the item on sale (“itemCondition”),
a descriptive text (’description”), the validity period of (“startDate” and “endDate”),
the number of articles available (“availability”), the acceptance of returns (“return-
sAccepted”), the location of the item (“location”), delivery options (“shipping”),
sales currency (“currency”), and the guarantee terms (“guarantee”). A listing may
be sold directly at a value set by the seller (entity “DirectSale” and association roles
“selling” and “soldIn”). Alternatively, it may be associated with an auction (entity
“Auction” and association roles “selling” and “soldIn”), characterized by an initial
price (“startPrice”) and the minimum price accepted by the seller (“reservePrice”).
The listing belongs to a user (association roles “sales” and “seller”), can be bought or
watched by another user (association roles “purchases” and “buyer,” “watches” and
“watchedBy”), and can be illustrated with one or more photos or videos (association
roles “illustrations” and “listings”).

«ParameterBindingGroup»
tagName > tag

«ParameterBindingGroup»

Oids = MediaOids

FIGURE 9.26

[

«ModuleDefinition» Tag

«ViewContainer» TaglnfoAndMedia

[«Parameter» tag |

«Details» TaglInfo

«DataBinding» Tag

«ConditionalExpression» tagName = tag ‘ -

«VisualizationAttributes» tagName, numPosts ‘

[XOR]

«ViewContainer» TaggedMedia

«List» PostOIDs

«ParameterBindingGroup»

«DataBinding» Media

Oids = MediaOids

«ConditionalExpression» ...

[D][L] «Module» MediaTiled

[L] «Module» MediaViewer

Model of the interface for accessing the media objects qualified by a tag.

sojdwexe Aq TN 6 ¥ALdVHD PSZ

FIGURE 9.27

0..* bids

bidder 1

Bid
= 0.* sales seller 1 feedback 0..* feedback
I bl s Name: St
:D userName: Strin
value s Double 0.* purchases buyer 1 4 classification: Integer
id : Integer luatedBy 0..*
time.; Datetime, 0.* watches watchedgy 0.* | Photo:image e
title: String, 1 subject
0.* 0.1 score: integer
bids current8id | jtemCondition: Condition Me author 1 1 0.*
type : UserType
d recipient
iption: id : String
description: String e collections descriptiont: text cart
Y . R —
startDate: Date file : Blob 0 Collection :
bidListing 1 0. [0..* illustrations name: String Cart
GLREEAED illustrations collections 0.* .
0..* listi
availability: Integer e payoff: String Jtotal: double
— Boolean 0..* content collections 0..* | description: String Cartitem /numitems: integer
isting
shipping: Shipping mainimage: blog 1| cant
DirectSale 1 listing item 1 | quantity: integer
location: Location
1 0.1 0.*| content
price : Decimal Category
soldin selling | brand: String 0.* content category 1
website : URL super 1| name:String
. image: blob
Auction guarantee : text
0..* content sub 0.% | icon: blob 1.* categories
startPrice : Decimal 1 0.1 | deliveryOption: DeliveryOptions
soldinsell i
reservePrice : Decimal seling | /numBids: Integer L
1 0.* groups
/numSold: Integer dlassification
name : String
/numWatchers : Integer
*%7 image: blob
Electronic
storageCapacity : String .
Brand SpecialEvent
operatingSystem : String
model : String
Tablet: C: &Ph:

onsoles |

Domain model of the online auctions application.

suoidNY aullud 2°6

114

256 CHAPTER 9 IFML by examples

Users create bids (association roles “bids” and “bidder”). Each bid has a value
(“value”), is published at a given point in time (“time”), and refers to a listing (asso-
ciation roles “currentBid” and “listing”’). Users have some profile variables (e.g.,
“userName” and “photo”), can publish feedback about other users— characterized
by a graded mark (“classification”) and a commentary (‘“comment”)—and receive
notifications (entity “Notification” with association roles “notification,” and “recipi-
ent”). They are assigned a feedback score (“score”), which represent their trust as
buyers or sellers.

A “Cart” entity represents the shopping trolley of a user (association roles “cart”
and “owner”) with its content (associations roles “content” and “cart”). Listings are
classified by category (association roles “category” and “content”) and have specific
attributes depending on the category to which they belong. Categories are organized
into a hierarchy of subcategories. They are also organized by other taxonomies, such
as by brands and by special sale events. Finally, listings can be grouped into col-
lections (association roles “content” and “category’), characterized by a name and
a description, created by users (association roles “collections” and “author”), and
illustrated with one or more photos or videos (association roles “illustrations” and
“collections”).

9.2.2 IFML MODEL

We model the online auctions web interface with the help of the IFML web exten-
sions introduced in Chapter 7. For space reasons, we limit the example to a few
significant elements of the SiteView: the home page, the search functionality, and
the most important listing pages. For the search and product pages, we focus on the
electronic and fashion categories and only model the most relevant interactions.

The general organization of the front end is captured by a SiteView, which com-
prises several pages clustered within areas. Figure 9.28 shows the “Home” page,
which acts as the entry point to the application. The content-independent navigation
among the pages of the front end is supported by the menus present in the header and
footer of pages, partially visible in Figure 9.28 and highlighted in Figure 9.29. Such
menus allow the navigation to the landmark areas and pages shown in Figure 9.30.*

Each link in the menu bar leads either to an individual page (e.g., “Home,”
“DailyDeals”) or to the default page of a group of correlated pages (e.g., “Customer-
Support”). Correspondingly, in the IFML model of Figure 9.30, landmarks are either
individual pages or areas (i.e., groups of correlated pages). Navigating to a landmark
area leads to the default page of that area. As an example, Figure 9.30 expands the
content of the “Sell” area and shows the three wizard-like pages contained in it, of
which the default one is the “Tell us what you’re selling” page. The “Home” page of
the SiteView is marked with the [H] qualifier to express that it is displayed by default
when the application is accessed using its top-level address.

The SiteView also contains the “Listing Categories & Collections” area, which
clusters the most important pages of the application for searching and navigating
the database of listings. This area is not defined as a landmark because its pages are

Hi,Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications .ﬁ

Online Auctions Shop by category ¥ [search.. | [A Categories [v] [T Advanced

MyFeed Collections I Motors Fashion Electronics Collectibles & Art Home & Garden Sporting Goods Toys & Hobbies Deals & Gifts

Shop Now P> Free Shipping
Best tech

Tablet Camera

Video Game Console

o000 >

\
Work it Out

Accessories for active living

Fight through fatigue and achieve
your personal best. Then relax and
enjoy your athletic accomplishments.
We'll help you keep moving toward
your fitness goals with this collection
of active accessories.

VA

Created by OnlineAuctionsEditor

<]

FIGURE 9.28

Home page of the online auctions web application, with landmark links and repeated view elements.

suonoNy auluD 2°6

LS¢

258 CHAPTER 9 IFML by examples

Hi,Piero! v l Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications E
Online Auctions Shop by categoryw [search.] [AT Categories | v) [EXTRl Advanced

Community | Announcements | MoneyBack | SecurityCenter | ResolutionCenter | NewFeatures

SellerCenter | Policies | SiteMap | OfficialTime | Survey

FIGURE 9.29

Landmark menus in the header (top) and footer (bottom) of the online auctions web
application pages.

«SiteView» OnlineAuctionsWeblnterface

[H][L] «Page» Home [L] «Page» DailyDeals [L] «Area» CustomerSupport [L] «Area» Sell

[D] «Page» Tell us

[L] «Area» MyOnlineAuctions [L] «modeless» Notifications
| oo e TP ||| «Page» Create

«Area» Listings Categories & Collections m

[L] «Page» NewFeatures
[L] <Area Community [L] «Area» Announcements| | [L] «Area» MoneyBack [L] «Area» SecurityCenter] | [L] «Area» ResolutionCenter
[L] «Area» SellerCenter | | [L] «Area» Policies [L] «Page» SiteMap [L] «Page> OfficialTime [L] «Page> Survey

SiteView of the online auctions web interface, with top level landmark areas and pages.

accessed only with content-dependent navigation, either by searching or by browsing
the hierarchy of goods and the available collections.

Note that the header shown in Figure 9.29 contains more elements: the personal-
ized welcome message, the sign-in and register links, and the summary of the shop-
ping cart content. Such view elements are not plain navigation flows but have a more
elaborate behavior. They are modeled as explained in the next section.

9.2.2.1 Repeated content element
Figure 9.28 shows the “Home” page, which comprises both specific content and
some view elements that appear identically in multiple pages of the SiteView.
These are visible in Figure 9.29: the search bar, the sign-in and register links, the
personalized welcome message, and the shopping cart item count. Such recurring
elements add up to the landmark links in the navigation bar in the footer of the
pages.

To avoid duplicating the model of the common view elements in all the pages
where they appear, we exploit the concept of a Master Page, discussed in Chap-
ter 8. The Master Page models the view elements common to a set of other pages

X

Sign out

MyCollections
Account Settings

Hi, Piero! vII Daily Deals | Sell |

Piero Fraternali
fratena62 (6)

FIGURE 9.31

Displayed when

no user is logged in

=

Displayed when

the user is logged in

=

9.2 Online Auctions

Hil Sign in or register | Daily Deals | Sell |

Online Auctions shop by categoryw

Personalized message, with an event opening a window of commands (left), versus sign-in

and register links (right).

Hi, Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications H
Online Auctions [Shop by categoryvl [search] [A1 Categories]v] m Advanced
MyFeed Collections I Collectibles & art > Fashion> Sporting goods > s Toys & Hobbies Deals & Gifts
[¢ Women Outdoor sports
Coins & paper money Men Team sports
Shop Now P Antiques Jewelry & watches Exercise & fitness
Fre€ sports memorabilia Shoes Golf
Best te
Electronics> Home & garden> Toys & hobbies>
Computers & tablets Yard, garden & outdoor Collector & hobbyist toys
Cameras & photo Crafts Kids toys
TV, audio & surveillance Home improvement Action figures
Cell phones & accessories Pet supplies Dolls & bears
Entertainment > Motors> Other categories >
Video games & consoles Parts & accessories Books
Music Cars & trucks Health & beauty
DVDs & movies Motorcycles Musical instruments & gear
Tickets Passenger vehicles Business & industrial
Explore Trending collections > See All Categories >
FIGURE 9.32

Modeless window opened with the “Shop by category” link.

(by default, the pages of the same Area or SiteView where the Master Page belongs).
Such elements are implicitly assumed to be included in the model of each page asso-
ciated with the Master Page. The recurring view elements are included in the Master
Page model of Figure 9.35.

The register and sign-in links are displayed in alternative to the user’s personal-
ized welcome message. The two options are contrasted in Figure 9.31.

The personalized welcome message displays the name of the user and provides a
link that opens a window with the user’s name, feedback score, and photo, and links
to sign out, edit account settings, and access the personal collections. The sign-in and
register links, displayed when no user is logged in, lead to separate ViewContain-
ers where the user can provide login credentials or register for the online auctions
web application. The cart summary shows the number of items currently present in
the trolley of a logged-in user or a fixed message if the cart is empty or the user is
unknown. The header also contains a “Shop by category” link to facilitate access to
the listings. It opens a window with the first two levels of the category hierarchy,
visible in Figure 9.32.

259

|
260

CHAPTER 9 IFML by examples

Hi,Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications H

All Categories | v] [Advanced

All Cotegories.

MyFeed Collections I Motors Fashion Electronics Collectibles & Art Home & Garden Sporting Gd:;““q“"

Online Auctions Shop by category ¥ [search]

P)

y

Book:
Business & Industrial
ShepNow> | Free Shipping Cameras & Photo
Cell Phones & Accessories
Best tech Clothing, Shoes & Accessories
Coins & Paper Money
Collectibles

Toblet Camera Computers/ Tablets & Networking

Consumer Electronics.

Crafts

Dolls & Bears

DVDs & Movies

eBay Motors
Clock

Entertainment Memorabilia
Gift Cards & Coupons

Video Game Console

{e00 >

FIGURE 9.33

The category selection functionality of the search bar.

Hi,Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications H

Online Auctions Shop by category ¥ [tripod All Categories | v] [EXTIT0) Advanced
tripod

MyFeed Collections | Motors Fashion Eled wipod in Tripods & Supports boods Toys & Hobbies Deals & Gifts

tripod head
tripod ball head

Shop Now P : f tripod camera
P Free Shippin ripod bag
Best tech tripod dolly
tripod lamp
tripod floor lamp
tripod case
Hide
Video Game Console Clock

The auto-completion functionality of the search bar.

Listings can also be accessed by searching. The header presents a search bar
enriched with an auto-completion function, which can be switched on and off explic-
itly, and a drop down list of categories to restrict the search to the chosen category
(respectively PATTERN CS-SRCS: Search suggestions and PATTERN CS-RSRC:
Restricted search, both discussed in chapter 8). These two usability widgets are
shown in Figure 9.33 and in Figure 9.34.

The model of the Master Page, with all the described common features present in
the header of multiple web application pages, is represented in Figure 9.35.

The personalized welcome message is modeled as a Details ViewComponent
(“UserName”), which exploits the Context object recording the identity of the
logged-in user (as exemplified in the PATTERN IA-LOGIN discussed in Chapter
8). The ViewComponent is visible only when the user is logged in, as expressed
by the ActivationExpression associated with it. An “onMouseOver” event opens a
ViewContainer with the “Sign out,” “Settings,” and “MyCollection” events. The
“Sign out” event supports the user’s logout, modeled according to PATTERN IA-
LOGOUT explained in Chapter 8.

9.2 Online Auctions

«MasterPage» Master Page

«ActivationExpression» S
Context.userName <> null «ParameterBindingGroup»
— userName—> user
«onMouseOver» . c
.

«modeless»
Loggedin User Menu

«Details» Shopping Cart

«DataBinding» Cart

e «ConditionalExpression»
owner.userName=user

«Details» UserName

Nl

—
3 «DataBinding» Context
Sign Account MyCollections - — :\:;L‘Jtaelz‘asuonAllrlbutesn
out Settings - userName, firstName,
|Sign in h
s lastName, score
«ActivationExpression»]~ _
Context.userName = null |\ “A Xpression»
N i =
\C «Form» Search Gl EEn = e i

Register %

«SimpleField» SearchKey:string ’

L=
«modeless» Category Tree i Hi ;
e ion:
completion=true «Autocompletion» Search lide Suggestions
Tty ShoRByCatenon 9 «ParameterBindingGroup»,
e ~| | «Datainding» Querysuggest = @aedian
<otaBinaing: Category
Show Suggestions
«VisualizationAttributes»
Name Advanced _/«ParameterBindingGroup»
L. ShopByCategory — «SelectionField» category true > completion
«RecursiveNestedDataBinding» ({J
sub
«VisualizationAttributes»
Nanie «ParameterBindingGroup»
SearchKey = Keyword
SelectedCategory > Categoryld
Select[)
A
AdvancedSearch Search Results
AllCategories TrendingCollections

FIGURE 9.35

The model of the Master Page, representing the content that appears on multiple pages.

A DataFlow binds the identity of the user to the “Shopping Cart” Details View-
Component, which displays the number of items in the user’s trolley. The Conditio-
nalExpression of the ViewComponent exploits the “owner” association role between
entity User and Cart (see the domain model of Figure 9.27).

9.2.2.2 Home page

Besides the common content elements modeled in the Master Page, the Home page—
shown in Figure 9.28—also contains specific view elements. These are a list of the
most important categories (shown in Figure 9.36), the links to collections and feeds
(also visible in Figure 9.36), the advertisement of special features (shown in
Figure 9.37), a top collection (visible in Figure 9.38), a list of promoted collections,
and a second list of “trending” collections (shown in Figure 9.39).

The features published on the home page are special objects. They may adver-
tise a set of listings of a certain product or brand (e.g., Apple iPads), a limited-
time sale (e.g., today’s deals), or even content explaining some important aspect
of the business (e.g., a money back guarantee). As visible in Figure 9.37, a feature
may group several subfeatures (e.g., several groups of correlated listings). In the
domain model, features can be represented as composite objects, as shown in
Figure 9.40.

The domain model specifies that a feature is a composite object with one or more
subfeatures (the minimum cardinality of the association role “components” is one).

261

262

CHAPTER 9 IFML by examples

Hi, Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications E

I All Categories |w| m Advanced

Online Auctions Shop by categoryw [searcn

\ Feeds & collections} \

Most important categories }

|

FIGURE 9.36

The list of most important categories in the home page and the links to feeds and
collections.

Free Shipping
Best tech
Tablet Camera
— — —
Video Game Console Clock
<e0e(d)
FIGURE 9.37

Special features, shown in a scrollable list.

Description

Main image
Title Pavoff Associated images/ 8

Work it Out

Accessories for active living

Fight through fatigue and achieve
your personal best. Then relax and
enjoy your athletic accomplishments.
We'll help you keep moving toward
your fitness goals with this collection
of active accessories.

VA

Creoled by OnwucllonsEdllor

XX

Creator name and photo

FIGURE 9.38

Top collection of the day, shown individually.

Each feature (and subfeature) has an image, a title, a description, and a link storing
the address of the web page where the content of the feature is published.

Figure 9.41 shows the IFML model of the home page. This is a typical example
of the use of the access subschema of the domain model for indexing the content of

9.2 Online Auctions 263

Creator name and photo

/ Title
7

Vv
>< Fun Art You Belong on My ... >< Today I need colorsl! >< Him Running Pool Party
Created by Artista Created by Artista Created by OnlineAuctionsEditor Created by OnlineAuctionsEditor

<D< =<

74

|
Associated images
See trending collections

FIGURE 9.39
Home page collections, shown as a list, and a link to access all the trending collections
(bottom).
Feature
id : Integer
components 1..*
title: String
description: String
composite 1
image: blog
link: URL
FIGURE 9.40

Domain model extended to represent features.

a large application (discussed in chapter 3). The home page essentially contains view
elements that publish the content of categorizing classes and specialized subclasses.
The “MainCategories” List ViewComponent models the menu of the most important
categories (visible in Figure 9.36). This is the starting point of a hierarchical naviga-
tion toward the listings of interest, which are described next. The home page also
contains three sub-ViewContainers (“Top collection,” “Promoted Collections,” and
“Trending Collections”), each containing an instance of the “Collections” reusable
module (modeled in Figure 9.42).

The “Collections” module publishes the essential information about one or more
collections. It is instantiated in the home page with three distinct parameter bindings
that identify different groups of collections. The “type” attribute of the “Collection”
entity defines a subclass consisting of all the objects with a given value of the attri-
bute. The module is also reused with another parameter binding in the “AllTrending”

«Page» [D] Home

«Page» TopCategory
show
«List» MainCategories «NestedList» Features

o «DataBinding» Feature «ParameterBindingGroup»
szdEIesos» «DataBinding» Category g link = address
ategoryOverview ‘7 -
gory ‘ «VisualizationAttributes» title ‘ «BlockSize» 1 /
«onMouseQver»’ . .
«ConditionalExpression» «NestedDataBinding» components /

highlighted = true & «Page» ShowFeature

«VisualizationAttributes»

«modeless»
Collection Overview ‘7 <> image, link

collections

«ActivationExpression»

sojdwexe Aq TN 6 ¥ALdVHD 92

Context.userName =
null

«Page» SignRegister

«ActivationExpression»
link.oclIsTypeOf(url)

Top collection Promoted Collections Trending Collections
«Page» PersonalFeeds «ActivationExpression»
Context.userName <> null «Module» «Module» «Module»
: Collections Collections Collections
AllTrending allTrending
Collections N
«module» — =
Collections «ParameterBindingGroup» «ParameterBindingGroup» «ParameterBindingGroup»
"top" > type "promoted" > type "homeTrending" > type

«ParameterBindingGroup»
"allTrending" 2> type

FIGURE 9.41

IFML model of the home page.

9.2 Online Auctions 265

«ModuleDefinition» Collections

«NestedList» Collections
«ParameterBindingGroup» ;
false > visible /.« OnFocusLost»

«DataBinding» Collection

«ConditionalExpression»

«ActivationExpression»
type = top OR (type <>
top AND visible = true)

type = CollectionType

T~
«ActivationExpression»
type <> top [

«VisualizationAttributes » ‘
name, payoff, mainimage "

1 See Collection

4’.

«ParameterBindingGroup»
true > visible

«VisualizationAttributes» description

‘>|

«OnFocus»

«NestedDataBinding» illustrations

«VisualizationAttributes » blob ‘

«ParameterBindingGroup»
Type > CollectionType ~ / «NestedDataBinding» author

o See Seller
"false" > visible

N VisualizationAttributes» |
[J——» g

userName, photo

X D

See trending collections

FIGURE 9.42
The “Collections” reusable module.

ViewContainer, which is accessed by means of the “allTrendingCollection” event,
implemented as the link visible at the bottom of Figure 9.39.

The model of the “Collections” module is illustrated in Figure 9.42. It comprises
a NestedList ViewComponent bound to the entity “Collection.” The actual objects
displayed depend on the input parameter “type,” which is used in the ActivationEx-
pression of the NestedList to select one or more collections of the given type. For
each matching collection, the name, payoff, and main image are shown. Two nested
data bindings also publish the name and photo of the creator and the other images
associated with the collection (see the rendition of one collection in Figure 9.38 and
of multiple collections in Figure 9.39). When the type is “top,” which identifies only
one collection, the description is also displayed. Otherwise, two events («onFocus»
and «OnFocusLost») toggle the visibility of the description.

9.2.2.3 Category pages
On the home page, the menu of the most important categories (shown in Figure 9.36)
allows two different hierarchical navigation paths toward the listings of interest.
When the user hovers on a category name in the home page menu of Figure 9.36,
a modeless window (“CategoryOverview”) appears (see Figure 9.43), which offers
an overview of that category.
The “CategoryOverview” ViewContainer displays an illustrative image and two
lists of significant subcategories of the selected category (labeled “Top categories”
and “Shop for” in Figure 9.43). Selecting one subcategory leads to the page of that

266 CHAPTER 9 IFML by examples

MyFeed Collections I Motors Fashion Electromcsl Collectibles & Art Home & Garden Sporting Goods Toys & Hobbies Deals & Gifts
——— B e R e R = e R A et R

/
Top categories Shop for
EXPLORE ELECTRONICS
Cell Phones & Car Audio, Video & GPS
Accessories
. Shop Now
{gg) Comeras &
Photo iPaa
@ Computers & TV, Audio & Survelllance
Tablets
Best Buy Free In-Store
téj Video Games &
Consoles

The top category overview page.

«ParameterBindingGroup»

selected > category «Page» CategoryOverview «ParameterBindingGroup»
selected > category

«List» SubCategories «List» OtherSubCategories

«Page» Categon
= «DataBinding» Category «DataBinding» Category ~
«Page» Category

«VisualizationAttributes » ‘ «VisualizationAttributes » ‘

name name
«ConditionalExpression» «ConditionalExpression»
super = topCategory super = topCategory

A — A

«Details» Category

- «DataBinding» Category
«ParameterBindingGroup»
selected > topCategory . «VisualizationAttributes» H y /«Paramelevaind'\ngﬁmup»
‘ ‘ image / selected > topCategory
«Page» Home
name = topCategory.name

Model of the top category overview page.

category. Figure 9.44 shows the model of the “CategoryOverview” page, accessed
from the “MainCategories” List ViewComponent in the home page.

The second navigation path is activated by clicking on the category name in the
home page menu. This event causes the display of the page of the selected category,
as exemplified in Figure 9.45.

The model of the “Category” page is shown in Figure 9.46.

The model comprises a Details ViewComponent for displaying the category name,
accompanied by a number of List ViewComponents that publish content depending
on the current category. Selecting an item from one of the lists permits the user to
proceed with the navigation within the category by focusing on its events, brands,
special features, subcategories, and listing groups. By contrast, the “PeerCategories”
ViewComponent allows the exploitation of other “sibling” categories (i.e., children
of the same super-category of the one displayed). Finally, the “Category” page also
contains an instance of the PATTERN CN-BREAD discussed in chapter 8: a bread-
crumb ViewComponent “Categories” is defined over the (recursive) association
between categories and subcategories, which is rendered as the trail of breadcrumb
links visible in Figure 9.45.

Breadcrumb

links \

Hi,Piero! v | Daily Deals | Sell | Customer Support

MyOnlineAuctions | Notifications il

Online Auctions Shop by category ¥ [Search

| Az 0] seorch |

") Online Auctions D Electronics Computers & Tablets

Category name —_—

Events of the category ——_|

Subcategories

of the category \

Brands of the

[~>Computers & Tablets
Special Events

Pod & Tablets

category

Subcategories of

the super-category

Computers & Tablets

/

UP TO 40% OFF
On select top power_supplies

-

Features of
the category

ListingGroups of

Free shipping
SHOP NOW D
TOUCHSCREEN Cooler Master
LAPTOPS HAF XM Tower |
Used Tablet Computer Tablet

FIGURE 9.45

the category

Category page for computers and tablets.

suoidNY aullud 2°6

£9¢

«ActivationExpression»
link.ocllsTypeOf(url)

«Page» Group «ParameterBindingGroup»
selected - group

«ParameterBindingGroup»
link > address S
«Page» ShowFeature

«Page» Category
()
«Details» Category «List» Features «List» ListingGroups «Breadcrumb» Categories
«Page» Home
y «DataBinding» Category «DataBinding» Feature «DataBinding» ListingGroup «DataBinding» sub
S/ «VisualizationAttributes» name «VisualizationAttributes » «VisualizationAttributes »
y, name, image, link name, image
/ «ConditionalExpression»
Vi name = category.name «ConditionalExpression» «ConditionalExpression»
«ParameterBindingGroup» super = currentCat categories->includes o
selected > category T (currentCat)
1
1
«ParameterBindingGroup» /. e e e e e e e e e = g ______ g |
Category = currentCat : 1 | :
«ParameterBindingGroup» g . : : q 5
selected > eventg > «List» Events «List» Brands \ «List» PeerCategories «List» SubCategories
N «DataBinding» Event «DataBinding» Brand «DataBinding» Category «DataBinding» Category
«VisualizationAttributes «VisualizationAttributes » «VisualizationAttributes » «VisualizationAttributes
«Page» Event [» name name name » name

«ConditionalExpression» «ConditionalExpression» «ConditionalExpression» «ConditionalExpression»

categories->includes categories->includes super = currentCat.super super = currentCat

(currentCat) (currentCat)

)

sojdwiexs Aq N4l 6 ¥ALdVHI 892

e «ParameterBindingGroup»
«ParameterBindingGroup»\ " selected = category \
selected - brand

«Page» Brand «Page» Category «Page» Category

FIGURE 9.46

Model of the “Category” page.

9.2 Online Auctions

9.2.2.4 Search results

As an alternative to the hierarchical navigation along the category taxonomy, the user
can locate a listing by performing a keyword search using the input box at the top of
the home page. After submitting the keyword(s), the listings with a matching name
or description are presented, as shown in Figure 9.47.

The search result page contains the listings returned in response to the query. The
list of results is dynamically sortable according to multiple criteria (relevance, price,
distance, and expiry).

The page contains an instance of the faceted search pattern (PATTERN CS-FSR:
faceted search), discussed in chapter 8. The left column and the three links at the top
of the result list present a set of facets that the user can select to restrict the result
list. The facets include the hierarchy of the categories where the matched listings
belong, the price range, the sale formats (displayed in the left column and in the links
above the list), the locations, the delivery options, and other refinements. The count
of the relevant results is displayed, both for the entire result set and for the number of
objects that possess a given value of each facet. The search suggestions pattern (PAT-
TERN CS-SRCS: search suggestions) is also exploited, using a variant in which the
suggested keywords are listed as links below the search box rather than used to build

Result count Dynamic sort
Related listings

Format facet \ 1, Plero! v | Day Deals | Seil | Customer Support /
[~osline Auctions swes by ctegery v [y
oo T T ——
i
Category facet —Pcomputers & Tablets > EEEE e T st vew B3]
. PodlTale/sBook (669) 681 results for ipad battery charger [E]Follow this search
with value count e
Opteka 4000mAh Solar hiet $20s | Popular on
PomerBollery Moble SnddM shae Online Auctions
Fons Coorger
Condition facet From Chna
\Condilion
O New (622)
Price facet \ 0 Used 7)
APvin:e
Format facet [JesC_ 22 I 125 | 58PmuSs A e
SW Duel USB Solor Panel $ Bottery Doto Sync
Sonery Crarga For Pt A e
Format see ol § Somsung Galaxy Tab 4 3
* AiListnge (68) Framong Kang
) hcton (40) v}
; 5 Buylthow (670)
Location facet a
Item Location see o
N » vs o
North America
Delivery facet) Werigwide Newzsoommpwese mmn 5967
Ertermo Battery Chsger S A
Delivery Options see o PD:«V :m :a. le:n:] o
O Free shipping Pad Mini
From Colonbis Coorger power Baniier”
i Showonly e pet
Option facet \ O Returns occepted i)
L\ © carpmusiengs ser
© Sodteings Frea Shpping

FIGURE 9.47

Search result page for the keywords “iPad battery recharger.”

269

270 CHAPTER 9 IFML by examples

an input auto-completion pattern. The page also contains a number of recommended
listings related to the user’s query.

For brevity, we do not model some of the other features of the search result page,
including the switch between the list view of Figure 9.47 and a tiled view, and the
customization of the result display options (number of objects per page, shown
attributes).

Figure 9.48 shows the model of the “Search Results” page. The design is based
on the faceted search pattern, which relies on the retrieval and caching of the search
results and of collateral information about them, such as the result count, the values
of the facets (in this case, the attribute values of the found listings and the associated
object count), and the queries correlated to the current search keywords. The results
of the query are represented by a set of additional entities in the domain model.
The entity “ListingResult” identifies the instances of the “Listing” entity that satisfy
the query. It has a “count” static attribute that represents the number of matching
result. Entities “CategoryResult,” “Format,” “Condition,” “Location,” Delivery,”
and “Options” represents the values of attributes or the associated category objects
that are found in the relevant listings, which can be used as facets. Each value of a
facet is accompanied by the attribute count of the objects that possess that value.
Entity “RelatedQuery” displays queries (i.e., set of keywords) that are similar to the
submitted query.

The facets are published on the page thought suitable ViewComponents that let
the user select or input values and thus restrict the visualized results to those that
match the specified constraints.

The faceted search pattern is at the core of the model in Figure 9.48. The “List-
ing” ViewComponent displays the result set. It is a dynamically sorted, scrollable
list (these extensions are illustrated in chapter 7) that shows the listings that match
the user’s query and satisfy the current restrictions. The block size is variable, with
a default of fifty, which can be overridden by the user activating the “View options”
event and its associated window (not shown).

The restrictions are specified by selecting the facet values from the List View-
Components “Format” (values: “AllListings,” “Auction,” “BuyltNow”), “Condi-
tion” (values: “New,” “Used”), “Location” (values: “onlineauctions.com” and
geographical areas), “Delivery” (value: “free shipping”), and “Options” (values:
“Returns accepted,” “Completed,” “Sold”). The price facet is represented by a
Form ViewComponent because the user can input any value rather than selecting
from a list of precomputed values. For brevity, we show the DataBinding and the
VisualizationAttributes for only the “Format” component. The other List View-
Components are similar, and the “Form” view component comprises two Simple-
Field elements.

The categories to which the results belong along with their nesting are repre-
sented by the “Categories” Tree ViewComponent (described in chapter 7), which has
a DataBinding with the “CategoryResult” entity and the “sub” association describing
the recursive nesting between a category and its subcategories.

SearchResults

— Advanced
«ParameterBindingGroup» search
«List» Format selected > category

«DataBinding» Format «List» Related

«Tree» Categories

Save
«VisualizationAttributes » i .
- «DataBinding» RelatedQueries
value, count / «DataBinding» CategoryResult g Q reSUétS
/ . M N ani
: «RecursiveNestedDataBinding» «VisualizationAttributes» text | collaterals
«ParameterBindingGroup» sub

selected > format

«List»
Condition

«Details» Count
«ScrollableList» «DynamicallySortedList» «DataBinding»

Listings ListingResult

«DataBinding» ListingResult «VisualizationAttributes »

«ParameterBi gGroup»

selected > condition

«ConditionalExpression» ... ‘ count

«Form» Price «VisualizationAttributes » title, price,

; mainlmage, numPhotos, numBids <
(«
«ParameterBindingGroup» SortBy» relevance |
min - minPrice - o
max > maxPrice «BlockSize» 50 ~N See Listing «Pagen Listing

«SortAttributes»

krelevance, price, distance, expiry, ...
«ParameterBindingGroup»
selected - location
«List» Popular

«List» Location

«ParameterBi

«List» Delivery

~._/ «ParameterBindingGroup» «DataBinding» RelatedListings
selected > delivery

«VisualizationAttributes »
name, mainlmage, price,

S~ «ParameterBindingGroup», format
selected > option

«List» Options

FIGURE 9.48

Model of the “Search Result” page.

suoidNY aullud 2°6

| VA4

272

CHAPTER 9 IFML by examples

The DataBinding of the “Listing” ViewComponent specifies that the component
publishes content from the entity that represents the original query results (‘“Listin-
gResult”). The ConditionalExpression exploits the facet values provided by the user
and restricts the instances shown in the “Listing” ViewComponent accordingly. The
condition is:

(category.ocllsUndefined() OR self.category=category) AND

(format="AllListings” OR self.PurchaseFormat=format) AND

(itemCond.oclIsUndefined() OR self.itemCondition=itemCond) AND

(maxPrice.oclIsUndefined() OR self.price<=maxPrice) AND

(minPrice.ocllsUndefined() OR self.price>=minPrice) AND

(location.oclIsUndefined() OR self.location=location) AND

(delivery.ocllsUndefined() OR self.delivery=delivery) AND

(option.oclIsUndefined() OR self->options->includes(option))

The ConditionalExpression tests for the nullity of each parameter or for the facet
value to be equal to or included in the corresponding attribute value of the result
listing. Nullity means that the user has not selected a value for the facet. The sale
format is handled differently. The explicit “All Listings” value expresses the “no
choice” of the user instead of the null value implied when the user does not pro-
vide a constraint. The parameters mentioned in the ConditionalExpression are con-
veyed by the DataBinding associated with the navigation from the ViewComponents
“Format,” “Condition,” “Price,” “Location,” “Delivery,” and “Options,” as visible in
Figure 9.48.

The “Search Results” page also comprises the “Popular” and “Related” List
ViewComponents, respectively displaying popular listings and previous queries cor-
related with the user’s search. It also includes the “Count” Detail ViewComponent,
publishing the number of retrieved results. The selection of a listing from the result
set or from the popular listings yields to the “Listing” page.

9.2.2.5 Listings

When the user selects a listing, the page shown in Figure 9.49 is displayed. The page
content is centered on the information about the listing, which comprises the values
of the attributes mentioned in the domain model of Figure 9.27. The article is illus-
trated by an interactive gallery of images. Hovering with the mouse on one image
thumbnail changes the currently highlighted image. Hovering on the current image
zooms in, and clicking on it opens a modal window with the entire gallery enlarged
to the full screen, as visible in Figure 9.50.

Besides the list, there is information about the seller, including links to view the
full details of the vendor, see the reputation score, access the history of user feedback
that produced the reputation score, view other articles from the same vendor, and
follow the vendor’s posts.

If the sale format is an auction, the current bid is put in evidence and a form with
a single input field allows the user to enter an offer (as in the case of the article in
Figure 9.49).

9.2 Online Auctions 273

Breadcrumbs Current bid Bid input

Hi,Plero! v | DallyBagls | Sell | Customer Support / MyOningAlctions | Notifications “Yi

Back link Online Auctions Shop by caregory v [Feorcr 1 i Categores) [Advanced
_‘ 1

50000mAh Solar Double USB Battefy Charger iPad iPhone MP3 «_|
Item condition New

96 (| st to o Listing details
H—s Tmelott 34790/aue 2020 940970T) [Seller Information

seller123 (10569)
93,9% Positive feedback

Image in _|
evidence

Current bid: Us $25 (8bids) , X
) ot i sete” Vendor's details
Enter US $275 or more. See other Jlems

Image \t\ © Add to watchlist Vist store @ seller 23
. WX Add to collection
scrollable lis N
Mouse over image to zoom New
Condition
< > Shipping May not ship to Italy - Read item descripton or
A A A contact seller for shpping options. | See etods

Ttem locaton Urited Stotes
Have one to sell? Sell it yourself Ships 1o United States

Delivery: Vories

Payments: PoyPol | See detois

Returns: 30 days money back, buyer pays return shigping |
Guarantee: Online Auctions Money Back Guarantee |

et the item you ordered or get your money bock
Covers your purchase price and orignal shpping

[Bescription [shipping and payments

Print | Report Item

FIGURE 9.49
The “Listing” page.

FIGURE 9.50
Enlarged image gallery.

If the sale format is “BuyltNow,” the page publishes the direct sale price instead
of the current bid and a form with an input field with two buttons: one for adding
the item to the shopping cart and one for proceeding immediately to the purchase.
Instances when both formats are associated with the same listing are also possible.
In such cases, both types of forms are displayed. Figure 9.51 contrasts the interfaces
for the three cases.

The model of the “Listing” page is shown in Figure 9.52.

The central element of the page is the “Listing” Details ViewComponent, which
receives the identity of the listing to display as an input parameter (‘“currentListing”)
associated with the NavigationFlow used to access the page (e.g., the one coming
from the result set of the search, modeled in Figure 9.48).

274 CHAPTER 9 IFML by examples

Auction format Direct sale format
Item condition: New Item condition: New
Time left: 3d 18h (Aug 30, 2014 18:40:37 PDT) Quantity: More than 10 available / 22 sold
Starting bid: US $2.5 [Obids) Price: US $78.5 Buy It Now
Place bid Add to cart
Enter US $2.5 or more
© Add to watch list © Add to watch list
27 watchers

W Add to collection WX Add to collection

Mixed format

Item condition: New

Time left. 3d 18h (Aug 30, 2014 18:40:37 PDT)

Starting bid: us $25 [O bids]

Place bid
Enter US $2.5 or more

e veses | Buy I¢Now |
Add to cart

€ Add to watch list
WX Add to collection

FIGURE 9.51
The three different sale formats: auction, direct sale (“BuyltNow”), and mixed.

The “Listing” Details ViewComponent has a set of VisualizationAttributes that
includes the most relevant properties of the listing, which are identified in the domain
model of Figure 9.27. In addition to the generic attributes available for each type of
listing, the page also publishes time-specific information that depends on the cat-
egory of listing. For brevity, we omit this feature, which can be represented with a set
of Details ViewComponents (one for each category that requires specific attributes)
and suitable ActivationExpressions that condition the display of the Details View-
Components to the actual category of the listing.

The “Vendor” Details ViewComponent displays the information about the seller
of the listing, identified with the ParameterBinding id—currentlisting and the
ConditionalExpression built on the “sales” association role between the “User” and
the “Listing” entities: Self.sales->includes(currentListing). Suitable events
permit the user to access further information on the seller on separate pages or to
subscribe to the vendor’s posts.

The purchase of the item is supported by the “Buy” Form, the “LastBid” and
“SalePrice” ViewComponents ,and their associated fields, visualization attributes,
and events. Two ActivationExpressions are used to discriminate the sale format and
enable only the fields, attributes, and events relevant for the sale type.

The images of the article on sale are published in a scrollable list of thumbnails,
five by five. The PATTERN CN-DEF: default selection, introduced in chapter 5,
is exploited. It anticipates the interaction of the user (i.e., moving the mouse over
one of the thumbnails) and displays one default image (see Figure 9.49). An event

Listing

«Back» C

«modal» Images

«Breadcrumb» Categories

«DataBinding» sub

«ParameterBindingGroup»
X,Y = position

«onMouseMove»

[XOR]
Listing&Vendor
«Form» Buy BuyltNow «ActivationExpression»
type = "BuyltNow"
«ActivationExpression» | «SimpleField» Quantity ’ == ey
type = "Auction" /
= | «SimpleField» BidValue | AddToCart

«modal»
Zoom

A A 4

«onMouseOver»

- «Details» Mainlmage
«DataBinding» Media
«ConditionalExpression»
fullScreen id = selected

«VisualizationAttributes»
blob

P B up»
id > selected

4

«onMouseOver» -

«ScrollableList» Images

«DataBinding» Media

«ConditionalExpression»
listings->includes(currentListing)

«VisualizationAttributes» blob

«BlockSize» 5

«Details» LastBid

«DataBinding» Bid

«ConditionalExpression»
bidListing = currentListing

‘ «VisualizationAttributes» value |

————————

p

«Details» Listing

«DataBinding» Listing '

v

/ «Details» SalePrice

«DataBinding» DirectSale

«ConditionalExpression»
selling = currentListing

«VisualizationAttributes »
price

«ParameterBindingGroup»
- id - currentListing

«Details» Vendor

«DataBinding» User

«ConditionalExpression»
id = currentListing

«VisualizationAttributes»

«ConditionalExpression»
sales->includes(currentListing)

name, format, description,

condition, numBids,
numSold, numWatchers,
shipping, location,

«VisualizationAttributes »
userName, photo, score

deliveryOptions, guarantee,
payment

A

VisitStore|
morelternr
follow

addToWatchList

addToCollection

«ParameterBindingGroup»
Selected > currentListing

FIGURE 9.52

Model of the “listing” page.

suoidNY aullud 2°6

G/¢c

|
276

CHAPTER 9 IFML by examples

Hi, Piero! v | Daily Deals | Sell | Customer Support MyOnlineAuctions | Notifications R
Online Auctions Shop by category¥ [Search | (A Categories [v] L] Advanced
Back to search results | Listed in category: Cell Phones & A ies » Cell Phone A ies)y Bateries

U]

Mouse over image to zoom

A

Have one to sell? Sell it yourself

Descrigtion Shipping and payments l Print | Report Item

FIGURE 9.53
Overlay of the image zoom onto the page area that displays the listing and vendor details.

(“fullScreen”), activated with a click from the “Mainlmage” ViewComponent, opens
the full-screen image gallery shown in Figure 9.50. The “onMouseOver” event in the
main image opens a zoom and pan window, which is superimposed on the same region
of the interface where the listing and vendor details are shown, as visible in Figure 9.53.

This behavior is modeled by the XOR ViewContainer, which includes sub-
ViewContainers visualized in alternative. “Listing& Vendor” displays the details of
the listing and of the seller, as well as the form for submitting an offer. The “Zoom”
ViewContainer comprises a single ViewComponent (not shown for space reasons)
bound to the “Media” entity, which displays the enlargement of the image. The
“onMouseMove” event in the “Mainlmage” ViewComponent communicates the cur-
rent position of the mouse and allows the panning of the zoom area.

Finally, the “Listing” page also contains an instance of the PATTERN CN-UP: up
navigation and of PATTERN CN-BREAD: breadcrumbs (introduced in chapter 7).

9.3 SUMMARY OF THE CHAPTER

In this chapter we provided two samples of realistic applications, inspired from real-
world popular applications, and describes how they can be modeled in using IFML.
More precisely, the chapter covered two large modeling examples: a mobile app

End Notes 277

tailored to smartphones, providing an online photo and video-sharing service that
allows people to take pictures and videos, apply digital effects to them, and share
them on several social networks; the second one illustrates an online auction site,
inspired by some very popular web applications, where people and businesses buy
and sell a broad variety of goods and even services from all around the world. Both
cases are thoroughly modeled with IFML. Design patterns are applied.

END NOTES

1. More precisely, if more than six comments exist, the first and last five comments are
shown. This can be modeled with two NestedDataBindings with appropriate block factors
and sorting criteria.

2. The ActivationExpression in Figure 9.12 uses the “Context” variable name as a shortcut
notation for accessing the properties of the Context object. PATTERN IA-OBP uses a
Detail ViewComponent bound to the Context object.

3. The effect of the “Posts” event to hide the user’s details can be represented as follows: a
Boolean parameter (“UserInfoVisible”), defaulting to true, is associated with the “User-
Info” ViewComponent with the ActivationExpression (UserInfoVisible=true); the Naviga-
tionFlow of the “Posts” event sets the parameter to false, thus invalidating the condition
and hiding the component.

4. Some links in the footer refer to separate applications and are not modeled as part of the
SiteView (e.g., “About us,” which leads to the corporation’s site).

This page intentionally left blank

CHAPTER

Implementation of
applications specified
with I[FML

The usefulness of modeling an application at a high level is directly proportional to
the ease of implementing the specifications. In this chapter, we discuss a few exem-
plary roadmaps for implementing an application specified in IFML on top of several
technical platforms. The aim is to show that having a high-level model of the front
end helps in the manual coding phase too, because it allows the developer to reason
about the implementation strategy in a systematic way based on the abstract interface
computation semantics illustrated in chapter 6.

Given the platform-independence of IFML, implementation could be illustrated
for any software architecture that supports user interactivity. For space reasons, this
chapter restricts the illustration to four main categories of platforms that represent a
good sample of the current status of the practice: pure HTML with a template-based
approach, pure HTML with a presentation framework, rich Internet applications, and
mobile applications. To be concrete, the illustration is based on four specific platforms
listed in Table 1.

* PHP and MySQL represent the most widespread web site development plat-
form, hosted on so-called LAMP (Linux, Apache, MySQL, PHP) environments;
we use them to illustrate the template based approach to pure HTML front-end
implementation.

* Spring is one of the most popular web presentation frameworks, which allows
us to illustrate a different organization of the pure HTML front end, based on
the Model-View-Controller pattern.

» JavaScript is instrumental to the illustration of rich Internet applications, which
evolve pure HTML front ends towards the handling of more advanced user’s
interactions. Specifically, we discuss the use of Asynchronous JavaScript and
XML (AJAX) for managing partial interface updates and system events and
JQuery for simplifying several recurrent interface programming tasks.

* Android is chosen as a representative of mobile application development with
a native approach. Other approaches are also possible, including browser-based
approaches (similar to the one for rich Internet applications) and cross-platform
approaches (supported by such mobile development frameworks as Phonegap
and Appcelerator Titanium).

Although the illustration is necessarily limited and focused on specific technolo-
gies, the general line of reasoning for mapping IFML constructs to code artifacts
can be regarded as quite general. The techniques presented in this chapter could

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00010-2 279
Copyright © 2015 Elsevier Inc. All rights reserved.

Table 1 Summary of the Model to Implementation Mapping for Four Exemplary Platforms.

Platform Type

Exemplary platform
Application

ViewContainer

Nested View Container

Nested XOR
ViewContainer

Landmark

List, Details,
DataBinding,
VisualizationAttributes

Form

Template Based Pure
HTML
PHP, MySQL

Set of PHP templates and
scripts

PHP template

PHP template, with HTML
iframes

PHP template with condi-
tional content production

HTML (static) anchors in
PHP template

Select SQL query plus
printout of the markup

HTML form

Web Presentation
Framework

Spring

Controller classes, model
objects, business services,
view templates

Controller class, request
mapping, model objects,
business service, view
template

View template with HTML
iframes and separate
controllers

ViewContainer service and
View with conditional con-
tent extraction/visualization
HTML (static) anchors in
view template
ViewComponent service,
model objects, JSP/JSTL
bean content extraction
tags

HTML form with Spring
custom tags

Rich Internet
Application

AJAX; jQuery

HTML5 document,
JavaScript functions,
server-side business logic
components

HTML document

Nested <div> elements
refreshed independently

Nested <div> elements
made visible on demand

HTML anchors or
JavaScript menu
JavaScript function for
content rendering and
server-side component for
data extraction

HTML form

Native Mobile

Android

Java classes, XML
configuration files,
resources

XML layout description,
activity class

Nested layout, with View
and ViewGroup elements

Visibility setting of view
elements

Activity with intent filter for
dispatching

Java component
extracting content

and creating view
elements

Layout with nested view
elements

TN41 Uim paijioads suoneoljdde jo uoijeiuswaidw| 0T Y3LdVHO 082

Select Event

Submit event

System event
NavigationFlow

DataFlow

ParameterBinding

Action

Context

HTTP GET request

HTTP POST request

Not available
HTML anchor or button

Request parameter propa-
gation to query or other
template

Request parameter propa-
gation to query or other
template

PHP script

Session variables

HTTP GET request

HTTP POST request

Not available
HTML anchor or button

Request parameter propa-
gation in ViewContainer or
Action service class
Request parameter binding
to parameters of controller
methods

Controller, business service

Session-scoped model
objects

HTML DOM event,
processed at the client or
dispatched to the server
HTML DOM event and
asynchronous server
request

WebSocket or WebRTC
callback

JavaScript function
execution after event
Parameter passing to
JavaScript function

Parameter passing to
event handling JavaScript
function

JavaScript function calling
asynchronously server-
side action component

JavaScript global variables
at the client side

Event and event listener

Event and event listener

Broadcast intent
Intent, event listener

Parameter passing from
event to listener or within
an intent

Data stored inside an
intent object

Java class called by an
activity

Activity state variables on
the client

TIN| UM paijioads suonedldde Jo uonejuawa|duw|

18¢

282

CHAPTER 10 Implementation of applications specified with IFML

be reformulated for other platforms of the same type. Table | summarizes how the
essential IFML modeling concepts are mapped into the artifacts of the four platforms
selected for illustration.

10.1 IMPLEMENTATION OF THE FRONT END FOR URE-HTML
PAGE TEMPLATES

Dynamic web sites are a popular type of interactive application in which the front
end allows users to browse content dynamically extracted from a database and per-
form such actions as uploading content and sending e-mails. In the simplest case,
the interface browsed by the user consists of a pure HTML document, dynamically
generated by a server-side program.

As an exemplary platform for illustrating pure HTML web development, we adopt
the PHP server-side scripting language, which is natively coupled to the MySQL
relational database. The PHP code is interpreted by a processor integrated in the web
server. Most frequently, the Apache open source system is used as the HTTP engine.

The basic artifact in PHP is the page template, which is a document, typically
encoded in HTML, with embedded instructions for extracting content dynamically
from a data source and publishing it in the interface.

10.1.1 OVERVIEW OF THE VIEWCONTAINER COMPUTATION STEPS

The typical structure of a PHP web site consists of multiple page templates and
corresponds in IFML to a set of independent, interlinked ViewContainers compris-
ing ViewComponents for dynamic data publication and data entry. The computa-
tion of a ViewContainer is triggered by the user, who sends an HTTP request to the
server hosting the application. Responding to the user’s request entails processing a
dynamic page template according to the execution steps illustrated in Figure 10.1.

In the first step, the HTTP request is analyzed to extract possible parameters, typi-
cally the values to be used in the content extraction queries. In the second step, the
page template establishes a direct connection to the database and assembles and sub-
mits the queries for retrieving the content needed to populate the interface. The exe-
cution of a query may compute some parameter values needed to instantiate another
query. Therefore, query processing is iterated until all the queries needed to retrieve
the content are executed. Finally, when all the necessary pieces of content have been
retrieved, the output is produced and returned as the HTTP response. Specifically, the
dynamic content of the page typically consists of texts, images, and other elements,
and hypertext links expressed as HTML anchor tags.

The translation of IFML ViewContainers and ViewComponents into PHP pro-
duces dynamic page templates with the general structure shown in Figure 10.2.

e The first step extracts from the HTTP request the parameters for computing the
ViewComponents. Such parameters represent either the “fresh” values produced
by the user’s interaction or “history” values used to preserve past choices made
by the user in previous navigations.

10.1 Implementation of the Front End for URE-HTML Page Templates 283

HTTP request

l

1. Decode request parameters

Request parameters

A 4
2.
Execute content extraction
queries

Query results

A 4
3. Print page content

l

HTTP
response

FIGURE 10.1
Computation of a dynamic page template from database content.

page.php

Part 1: Extract parameters from the HTTP request

Part 2: Connect to the database

Part 3: Prepare and execute queries:
1. Construct next query statement
2. Execute query
3. If there are dependent queries, bind output of query to
input parameter of dependent queries, and repeat steps
1-3

Part 4: Produce the dynamic page content
1. Build the HTML markup for rendering the next component,
from the result of the query associated to it
2. Build the outgoing contextual links of the component by
a. Building the fixed part of the URL
b. Building the parameters transported by the link

Part 5: Dispose temporary resources

FIGURE 10.2
General schema of the PHP template implementing a page.

284 CHAPTER 10 Implementation of applications specified with IFML

The second step addresses the connection to the database, preliminary to the
execution of the data binding queries necessary to fetch the content of ViewCom-
ponents. PHP has a native interface to the MySQL database and an ODBC-medi-
ated interface to any other data store compliant to such interconnection standard.
The third step embodies the ViewContainer execution semantics illustrated in
chapter 12. It processes all the computable ViewComponents, based on the way the
ViewContainer has been accessed, which corresponds to a specific parameter con-
figuration in the HTTP request. First, the initially computable ViewComponents are
determined by means of a suitable conditional statement checking the values of the
request parameters, and ViewComponents data binding queries are evaluated. The
output of such queries the is used as input for executing the query of other depen-
dent ViewComponents. This part of the template must also resolve conflicts caused
by ViewComponents with multiple alternative input parameter values. This requires
further conditional statements for discriminating the most specific values based on
the chosen conflict resolution strategy. At the end of this part of the template, all

the data binding queries of the computable ViewComponents have been performed,
and their results are stored in appropriate data structures from which they can be
extracted to produce the dynamic portion of the HTML markup.

The fourth step builds the HTML content of each ViewComponent, mixing the
dynamically generated content with the static HTML markup to achieve the
desired page layout. The construction of the ViewComponents’ markup addresses
two aspects: the rendition of the content and the construction of the anchors and
buttons for triggering events. The latter issue requires the definition of the URL
associated with the HTML hypertext reference, which typically consists of a fixed
part, depending on the target ViewContainer, and a variable part with the neces-
sary output parameters. The relevant parameters passed on the link are determined
according to the navigation history preservation criteria discussed in chapter 12.
Finally, the last step simply disposes the temporary objects used in the previous
phases.

We now show progressive examples of PHP dynamic templates built according

to this general scheme.

To show concretely the computation steps of Figure 10.2, we use the master detail

pattern based on the domain model classes shown in Figure 10.3. For convenience,
the figure also shows the mapping of the “NewsCategory” and “Newsltem” classes
into persistent relational tables.

10.1.2 STANDALONE VIEWCONTAINER

Figure 10.4 shows the simplest case of a ViewContainer with dynamic content,
which contains a single nonparametric ViewComponent, the “NewsCategories” List,
which publishes all the news categories. In the example, we assume that each news
category is denoted simply by the category name and the List is ordered by ascending
category name.

10.1 Implementation of the Front End for URE-HTML Page Templates 285

NewsCategory Newsltem
Name L1 0. Heading
Date
Body
Image
Highlighted
NEWSCATEGORY NEWSITEM
oD ‘NAME‘ DESCRIPTION oID ‘ HEADING ‘ DATE ‘ BODY ‘IMAGE‘ HIGHLIGHTED “ CATID

FIGURE 10.3
News and news categories domain model and equivalent relational tables.

Categories

«List» NewsCategories

«DataBinding» NewsCategory

«VisualizationAttribtues»
name

«OrderBy» name ASC

FIGURE 10.4
ViewContainer with a single List ViewComponent.

Figure 10.5 shows the PHP page template implementing the ViewContainer of
Figure 10.4.!

With respect to the general schema of Figure 10.2, the extraction of the param-
eters from the HTTP request is not needed because the “NewsCategories” List
ViewComponent has no incoming NavigationFlow. Only the data binding content
extraction and the production of the ViewComponent interface markup are relevant.

The page template starts by creating the connection with the MySQL database
(lines 3-7). This code will remain the same in all the subsequent examples. The
reference to the database connection is assigned to the PHP variable $con, which is
then used for submitting the ViewComponents data binding queries. In the present
example, this task is particularly simple because there is a single ViewComponent
and the code of its associated query is fixed and without input parameters. Obviously,
parameter propagation does not occur inside the ViewContainer, because there is only
one ViewComponent. At line 9, the mysq1i_query function is invoked to submit the
query to the database. The function takes as argument the database connection and
the SQL code of the query, and returns the query result in the form of a record set.
In this example, the query is a simple SELECT statement, and the result is assigned to
the PHP variable named $result. Note that no ConditionalExpression is specified in

286 CHAPTER 10 Implementation of applications specified with IFML

<?php

// DATABASE CONNECTION

Scon=mysqli connect ("example.com","user","pwd", "my db");

if (mysgli connect errno())

{

echo "Failed to connect to MySQL: " . mysqli connect error();
}

// QUERY EXECUTION

9 Sresult = mysqli_query($con,"SELECT NAME FROM NEWSCATEGORY ORDER BY NAME") ;
10 // CONTENT PRODUCTION

11 echo "<html>";

12 echo "<head>";

13 echo "<title>News Categories</title>";

14 echo "</head>";

15 echo "<body>";

16 // ViewComponent markup production

17 echo "<table>";

18 while ($Srow = mysqli_fetch_array($result))

W J oUW N

19 {

20 echo "<tr><td>" . Srow['NAME'];
21 echo "</td></tr>";

22}

23 echo "</table>";

24 echo "</body>";

25 echo "</html>";

26 // connection disposal
27 mysgli close ($con);

28 2> -

FIGURE 10.5

PHP implementation of NewsCategories page.

the List ViewComponent, and thus the SELECT statement does not include the WHERE
condition and extracts from the NEWSCATEGORY table all the existing rows. The SELECT
statement has an attribute list containing the NAME column, which corresponds to the
VisualizationAttributes clause of the List ViewComponent, and an ORDER BY clause,
which mirrors the sorting criterion (ascending by NAME) of the ViewComponent.

The production of the HTML markup starts at line 11. After some static HTML
(lines 11-17), the page template contains the section for computing the dynamic con-
tent of the List ViewComponent (lines 18-22). This portion builds an HTML table
with one row and one cell for each record in the result set. To construct the table, a
while loop is used (lines 18-22), which halts when the mysq1i_fetch_array () func-
tion returns false, meaning that there are no more rows to process. Inside the loop, an
HTML row and cell are created containing the value of the NAME attribute of the cur-
rent row, extracted from the PHP variable $row with the expression $row[‘Name’].
Therefore, executing the loop produces as many HTML rows as the number of rows
in the NEWSCATEGORY table. Finally, the last part of the PHP template simply prints the
remaining static markup (lines 23-25) and closes the connection with the database
(line 27).

The example can be generalized to ViewComponents with ConditionalExpres-
sions. If the ViewComponent has a ConditionalExpressions, the SQL statement of
the data binding query includes an appropriate WHERE clause. For example, the List
ViewComponent shown in Figure 10.6 has an attribute-based ConditionalExpression,

10.1 Implementation of the Front End for URE-HTML Page Templates 287

Categories

«List» NewsCategorieﬁ

«DataBinding» NewsCategory

«ConditionalExpression»
approvalStatus = 1

«VisualizationAttribtues»
name

«OrderBy» name ASC

FIGURE 10.6
List with attribute-based selector.

which retrieves only the news categories with attribute “approvalStatus” equal to 1,
and corresponds to the following SQL query:

SELECT NAME FROM NEWSCATEGORY WHERE APPROVALSTATUS = 1 ORDER BY
NAME

10.1.3 NAVIGATION ACROSS VIEWCONTAINERS

The next example shows the implementation of Events and NavigationFlows, which
raises two issues:

e The production of the HTML rendition of the Event triggering the Navigation-
Flow in the source ViewContainer.

* The retrieval of the parameters associated with the NavigationFlow and the
assignment of their values as the input of ViewComponents in the destination
ViewContainer.

Figure 10.7 shows an IFML model extending the example of Figure 10.4 to a
master detail pattern. The List ViewComponent is now connected to a Details View-
Component defined on class “NewsCategory,” placed in a distinct ViewContainer so
that the selection of one element in the List opens the “CategoryDetails” ViewCon-
tainer on the selected object.

The implementation is extended in two ways. A PHP template for the “Catego-
ryDetails” ViewContainer is introduced. This template is called by means of an HTTP
request holding the identifier of the news category object to show. The template uses
this parameter in the SQL query associated with the “Category” ViewComponent.
The PHP template for the “Categories” ViewContainer is extended by adding one
HTML anchor for each row of the dynamically built list of categories. The href
attribute of each anchor tag contains a different URL, concatenating the name of the

288 CHAPTER 10 Implementation of applications specified with IFML

Categories CategoryDetails
«List» NewsCategories «Details» Category
«DataBinding» NewsCategory ‘ «DataBinding»
\/ _: NewsCategory
Select «ConditionalExpression»
Category = catID

«ParameterBindingGroup»
Selected > catID

FIGURE 10.7
Two ViewContainers connected by a NavigationFlow.

<?php

// Database connection

Scon=mysqli connect ("example.com", "user", "pwd", "my db");

if (mysgli_connect_errno())

{

echo "Failed to connect to MySQL: " . mysqli connect error();
}

// QUERY EXECUTION

9 S$result = mysqliiquery(SCOn,"SELECT NAME, OID FROM NEWSCATEGORY ORDER BY NAME") ;
10 // CONTENT PRODUCTION

11 echo "<html>";

12 echo "<head>";

13 echo "<title>News Categories</title>";

14 echo "</head>";

15 echo "<body>";

16 // ViewComponent markup production

17 echo "<table>";

18 while (Srow = mysqli_ fetch array($result))

@ oUW N

19 |

20 echo "<tr><td>";
21 echo $row['NAME']."</td></tr>";

22}

23 echo "</table>";

24 echo "</body>";

25 echo "</html>";

26 // connection disposal
27 mysqgli_close($con);

28 ?>

FIGURE 10.8
PHP implementation of the “Categories” ViewContainer.

template implementing the “CategoryDetails” ViewContainer and a request param-
eter transporting the primary key of the object in the current row of the list.

Figure 10.8 shows the PHP template of the “Categories” ViewContainer. As a
first extension, the SQL query at line 9 has been augmented to retrieve also the 01D
column of table NEWSCATEGORY. The OID is used at lines 20 to construct the URL
associated with each row by wrapping the name of each category inside an HTML
anchor (<a>...) tag. For each row, the HTML anchor tag includes an href

10.1 Implementation of the Front End for URE-HTML Page Templates 289

<?php

// REQUEST PARAMETER EXTRACTION

Scategory = $ GET['category'];

// DATABASE CONNECTION

Scon=mysqli_connect ("example.com", "user","pwd", "my_db") ;
if (mysgli connect errno())

{

echo "Failed to connect to MySQL: " . mysgli_ connect_error();
9 1}

10 // QUERY PREPARATION AND EXECUTION

11 $stmt = $con->prepare ('SELECT NAME, DESCRIPTION FROM NEWSCATEGORY WHERE OID=?');
12 $stmt->bind param("i", $category);

13 $stmt->execute() ;

14 $result = $stmt->get result();

15 // CONTENT PRODUCTION

16 echo "<html>";

17 echo "<head>";

18 echo "<title>News Category Details</title>";

19 echo "</head>";

20 echo "<body>";

21 // DETAILS VIEWCOMPONENT MARKUP PRODUCTION

22 echo "<table>";

23 if ($row = mysqli fetch array($result)

24 |

25 echo "<tr><td>".S$row|['NAME']"</td></tr>";

26 echo "<tr><td>".S$row['DESCRIPTION']"</td></tr>";
27 '}

28 echo "</table>";

29 echo "</body>";

30 echo "</html>";

31 // CONNECTION DISPOSAL

32 mysqgli close($con);

33 2> -

W J oy U WN

FIGURE 10.9
PHP implementation of the “CategoryDetails” ViewContainer.

attribute consisting of a fixed part (categoryDetails.php?category=) and a vari-
able part ($row[“0ID’]). The fixed part is the file name of the template associated
with the destination page (categoryDetails.php) followed by the constant part of
the query string, which contains the name of the parameter (category). The variable
part of the URL is built from the value of the 01D column of the current row of the
NEWSCATEGORY table, retrieved from the query result. Executing the template pro-
duces a table of news categories, but this time each category name is also the anchor
of an HTML link.

Figure 10.9 shows the JSP code for page CategoryDetails, stored in the file named
categoryDetails.php. The template demonstrates the extraction of parameters from
the HTTP request and the construction of a parametric data binding query. At line 3,
the value of the parameter named category is extracted from the global PHP variable
named $_GET, which represents the content of a GET HTTP request, and stored in
the $category PHP variable. The value fetched from the request is exactly the one
appended to the URL constructed in the “Categories” ViewContainer, as shown by
line 20 of Figure 10.8.

The value of the $category variable is used to prepare the data retrieval query for
the “Category” Details ViewComponent. The source code of the SQL query is not

290 CHAPTER 10 Implementation of applications specified with IFML

fixed, as in the previous examples, because the value of the OID to use in the WHERE
clause may vary depending on the selection of the user, which determines the value
stored in the HTTP request. Therefore, a different technique is necessary to build
the query, as shown in lines 11-14. At line 11, the connection object is used to cre-
ate a so-called “prepared statement,” which is a partially instantiated SQL query. In
particular, the SQL query “SELECT NAME, DESCRIPTION FROM NEWSCATEGORY WHERE
0ID = ?~ is prepared, which extracts the name and description of the news category
identified by the OID passed as a parameter to the query. The value of the OID is
represented by the question mark in the source code of the query. The prepared state-
ment is incomplete and must be bound to an actual parameter value before execution.
This is done at line 12, where the instruction $stmt->bind_param(“i”,$category)
supplies the prepared statement object $stmt with the value of the $category vari-
able, as a parameter of type integer (“i”). After this instruction, the prepared state-
ment is ready to execute. This is done at line 13, and its result is bound to variable
$result at line 14.

The rest of the code is devoted to content production. The result of the query is
the single news category having the specified OID, which is used at lines 22-28 to
insert the category name and description into an HTML table. Note that a real exam-
ple would include error-checking code, such as code to cope with HTTP requests
that do not provide a value for the OID parameter or with the failure of the SQL
query. For brevity, we will skip error-checking and exception-handling code in the
examples discussed in this chapter.

10.1.4 NAVIGATION WITHIN THE SAME VIEWCONTAINER

The next example shows the implementation of a ViewContainer containing multiple
ViewComponents connected by NavigationFlows.

Figure 10.10 shows a master detail pattern in a single ViewContainer, which
comprises a List ViewComponent connected to a Details ViewComponent by a

[L] Categories

«List» NewsCategories\ g «List» CategoryDetails
«DataBinding» | | » «DataBinding»
NewsCategory NewsCategory

Select «ConditionalExpression»
QCategory = catID
«ParameterBindingGroup»
Selected > catID
FIGURE 10.10

Master detail pattern contained within a single ViewContainer.

10.1 Implementation of the Front End for URE-HTML Page Templates 291

NavigationFlow and by a DataFlow that expresses the CN-DEF default selection
pattern. The presence of intra-ViewContainer NavigationFlows impacts the imple-
mentation in three ways:

¢ The ViewContainer can be accessed in more than one way: by a noncontextual
navigation 2and by using an intra-ViewContainer contextual NavigationFlow.
This implies that the ViewContainer can be called with different HTTP requests
that include different parameters. The template must extract the parameters from
the request and check their values to understand which ViewComponents are
initially computable. Computation propagation then proceeds (as explained in
chapter 12) from the initially computable ViewComponents to their dependent
ones.

¢ The destination ViewComponent of the NavigationFlow may be computed
with alternative input values, either from a fresh value transported in the HTTP
request by the navigation of the intra-ViewContainer NavigationFlow, or from
the default value supplied by the ViewComponent linked to it. The template
must contain a suitable conditional statement for deciding which input to use.

¢ To cope with the fact that the HTTP request refreshes the entire content of
the page, the HTML construction part must build the anchor tag for an intra-
ViewContainer NavigationFlow by appending to it all the parameters required
to recompute the ViewContainer, which may comprise both the fresh values
determined by the user’s selection and the “history” values necessary to restore
the content of some ViewComponent to the value preceding the navigation.

The PHP template of Figure 10.11 starts from the decoding of the HTTP request
parameter, which is the OID of the category required by the Category Details View-
Component. At line 6, the category parameter is extracted from the request and
assigned to the variable named $category. In contrast to the previous example, this
variable may contain either a null value or a valid object identifier, depending on the
way the page is accessed. If the page is accessed noncontextually, the parameter is
null. If the page is accessed by navigating the intra-ViewContainer flow, the param-
eter stores the identifier of the selected news category to be displayed in the Details
ViewComponent.

In this example, the interaction with the database is implemented using the PHP
Data Object (PDO) interface, an alternative higher-level interface designed to sup-
port better portability across different relational systems.

The List ViewComponent is nonparametric, and its query can be executed irre-
spective of any input, whereas the Details ViewComponent depends on the user’s
selection or on the default value of the list. Therefore, the query for the List View-
Component is executed first, and the query of the Details ViewComponent follows.

At lines 17-20, the template contains the preparation and execution of the query
for extracting the data binding instances of the List ViewComponent. In contrast to
the previous examples, all rows are fetched at once into an array (line 20). This is
required because the first row of the result set of the List ViewComponent may be
accessed twice: once for getting the OID to be used as default input for the Details

292 CHAPTER 10 Implementation of applications specified with IFML

@ J oUW N

<?php
// REQUEST PARAMETER EXTRACTION
$category = null;
if (isset($ GET['category'l))
{
Scategory = $_GET['category'];
}
// Database connection
try {
Scon=new PDO('mysgl:host=localhost;dbname=my db', 'root', 'root');
}
catch (PDOException $e)
{
echo "Failed to connect to MySQL: " . $e->getMessage();
}
// CONTENT EXTRACTION: LIST VIEW COMPONENT
$gl = 'SELECT OID, NAME FROM NEWSCATEGORY ORDER BY NAME';
Sstmt = $con->prepare ($ql, array(PDO::ATTR CURSOR => PDO::CURSOR SCROLL)) ;
$stmt->execute () ;
Scats = $stmt->fetchAll();
// CONTEXT PROPAGATION TO DATA UNIT QUERY
if ($category == null) { // NO USER’S CHOICE, NONCONTEXTUAL ACCESS
Scategory = $cats[0]['OID']; // FETCH ALL ROWS INTO AN ARRAY
}
// CONTENT EXTRACTION: DETAILS VIEW COMPONENT
$g2 = 'SELECT NAME, DESCRIPTION FROM NEWSCATEGORY WHERE OID = ?';
S$stmt2 = $Scon->prepare ($92);
$stmt2->bindParam(1l, Scategory, PDO: : PARAM INT) ;
$stmt2->execute () ;
// CONTENT PRODUCTION
echo "<html>";
echo "<head>";
echo "<title>News Categories</title>";
echo "</head>";
echo "<body>";
// LIST VIEWCOMPONENT MARKUP PRODUCTION
echo "<table>";
foreach ($cats as S$cat)
{
echo "<tr><td>".$cat['NAME']."</td></tr>";
}
echo "</table>";
// DETAILS VIEWCOMPONENT MARKUP PRODUCTION
echo "<table>";
Srow2 = S$Sstmt2->fetch();
echo "<tr><td>".Srow2['NAME']."</td></tr>";
echo "<tr><td>".$row2['DESCRIPTION']."</td></tr>";
echo "</table>";
echo "</body>";
echo "</html>";
// connection disposal
$con=null;
?>

FIGURE 10.11

PHP implementation of page “Categories” and “NewsDetails” ViewComponents in a single
ViewContainer.

10.1 Implementation of the Front End for URE-HTML Page Templates 293

ViewComponent (line 23) and once for printing the HTML rendition of the List
ViewComponent (lines 37-42).

After the List ViewComponent query is executed, it is the turn of the Details View-
Component. Before preparing the query, the test at line 22 is performed to ensure that
the most specific value is used to build the component. If the ViewContainer has been
accessed noncontextually, the value of $category variable is null and default parameter
propagation from the List to the Details must take place: the first row of the result of the
List is extracted from the array to get a default input, and the value of the OID column is
assigned to the $category variable (line 23). If the ViewContainer has been accessed by
navigating the intra-ViewContainer flow, the value of the $category variable is not null,
and the default context propagation is skipped. In this case, the OID value that comes
from the HTTP request is used. After this test, the Details query is executed, using as
parameter the most specific value stored in the $category variable (line 26-29).

The HTML code is then built using the results of the two queries. For simplic-
ity, we construct just two tables: one for the List and one for the Details. In a real
example, extra HTML formatting would be needed to obtain a more aesthetic result.

The code of Figure 10.11 can also be adapted to cope with an intra-ViewContainer
NavigationFlow without a default object selection policy. In this case, default param-
eter propagation does not apply. As a consequence, when the ViewContainer is
accessed noncontextually, the Details query is not executed nor its content is shown.
To skip the construction of the Details ViewComponent, it is sufficient to condition
the execution of the query at lines 26-29 and the production of the HTML code at
lines 44-48 with the following test: if ($category != null), which ensures that
the intra-ViewContainer flow has been navigated.

10.1.5 FORMS

The search pattern shown in Figure 10.12 help illustrate the implementation of Form
ViewComponents and demonstrates a second way of building NavigationFlows
based on HTML forms and on the HTTP POST method.

SearchNews

«Form» NewsSearch

Search

/ «LList» NewsList

«DataBinding» NewsItems

«Simplefield» From: date

«Simplefield» To: date «ConditionalExpression»
(from.isNull() or date > from) and
(to.isNull() or date < to) and
(key.isNull() or (if (key.size() <= title.size()) then
Sequence(1..title.size() - key.size()) ->
exists(i | title.substring(i, i + key.size()) = key)

«Simplefield» Keyword: string

«ParameterBindingGroup» else
From - start false))
To-> end

Keyword > key

FIGURE 10.12

Search pattern.

294 CHAPTER 10 Implementation of applications specified with I[FML

Forms are different from List and Details ViewComponent for two reasons:

¢ They do not have an associated content retrieval query but are directly translated
into an HTML form in the body of the template?.

¢ Their outgoing NavigationFlow, which transports as parameters the values
entered by users, is implemented using the action attribute and submit but-
ton of an HTML form instead of an anchor tag. The parameters transported
by the NavigationFlow are typically submitted using the HTTP POST method
instead of the default GET method. The predefined HTTP $post variable can be
exploited to extract input parameters from the POST request.

The code implementing the search pattern of Figure 10.12 is shown in Figure 10.13.
Atlines 2—-6, the PHP $_PO0ST variable is exploited to extract the values entered by
the user, which are communicated from the front end as a POST request submitted

<?php
$keyword = null;
if (isset($_POST['keyword']))
// REQUEST PARAMETER EXTRACTION
{
Skeyword = $_POST['keyword'];
}
Scon = mysqli_connect ("example.com", "user", "pwd", "my_db") ;
9 // DATABASE CONNECTION
10 if (mysqli_connect_errno())

© LU W

11 |

12 echo "Failed to connect to MySQL: " . mysgli_connect_error();
13}

14 if (($keyword != null) && S$keyword!=""){

15 // PARAMETER PROPAGATION AND QUERY EXECUTION

16 $stmt = Scon->prepare (

17 'SELECT HEADING, BODY FROM NEWSITEM WHERE BODY LIKE ?');
18 Skeyword like = "%".S$keyword."%";

19 Sstmt7>bind_param("s",$keyword_like);

20 $stmt->execute () ;

21 Sresult = $stmt->get_result();

22}

23 echo "<html>";

24 echo "<head>";

25 echo "<title>News Search</title>";

26 echo "</head>";

27 echo "<body>";

28 echo "Enter a search keyword: </br>";

29 // CONTENT PRODUCTION: FORM

30 echo "<form method=\"POST\" action=\"searchNews.php\">";
31 echo "Keyword: <input type=\"text\" name=\"keyword\">";
32 echo "</br>";

33 echo "<input type=\"submit\" name=\"submit\">";

34 echo "</form>";

35 // CONTENT PRODUCTION: LIST

36 if ((Skeyword != null) && $keyword != "") {

37 echo "<table>";

38 while ((Srow = mysqli_fetch_ array(Sresult)) {

39 echo "<tr>";

40 echo "<td>".S$row['HEADING']."</td>";
41 echo "<td>".S$row['BODY']."</td>";

42 echo "</tr>";

43 }

44 echo "</table>";

45 }

46 echo "</body>";

47 echo "</html>";

48 // CONNECTION DISPOSAL
49 mysqli close($con);

50 2> B

FIGURE 10.13

PHP implementation of the basic search pattern.

10.1 Implementation of the Front End for URE-HTML Page Templates 295

with an HTML form. The subsequent part of the template contains the query prepara-
tion and execution code. The only ViewComponent requiring a data binding query is
the List, which has a ConditionalExpression with one input parameter. The code at
lines 12-19 wraps the data binding query with a test for checking if the ViewCompo-
nent is computable: the test verifies that there is a keyword submitted by the user and
is not the empty string. If the test succeeds, the List data binding query is instantiated
and executed. If the ViewContainer has been accessed noncontextually or the user
has left the input field blank, the test fails and the query is skipped.

The content production part follows. First, the Form is rendered as an HTML
form (lines 27-31), which contains an <input> tag of type text, named keyword. The
SubmitEvent and the outgoing NavigationFlow of the Form are implemented as the
form’s action attribute (line 27), which specifies the destination of the Navigation-
Flow, and as an <input> tag of type submit (line 30), which is rendered as a confir-
mation button and implements the SubmitEvent. When the user presses the button,
the input of the keyword field is packaged as a request parameter named keyword,
and the ViewContainer is reinvoked. After the HTML form is the code for construct-
ing the markup of the List ViewComponent from the results of the corresponding
SQL query. Note that the loop for constructing the HTML table is not entered if the
page has been accessed noncontextually or with a null keyword, because in such case
no query was executed and there are no results to display. In a real example, a further
test would be needed in the HTML production part to distinguish the case in which
the query is executed but no results are found. An appropriate message would then
be shown to the user.

The extension to more complex search forms and ConditionalExpressions is
straightforward. The HTML form is extended with as many fields as required, and
the WHERE clause of the SQL query of the List ViewComponent is expanded with suit-
able subclauses using the values of the input fields in comparison predicates.

10.1.6 LANDMARKS AND NESTED VIEWCONTAINERS

Landmarks do not impact implementation in a substantial way because they are
merely devices for noncontextual navigation. In practice, the references to landmarks
are implemented simply by inserting the appropriate noncontextual links in each
template of the front end, using HTML anchor tags.

Conjunctive sub-ViewContainers show various pieces of content in different
regions of the interface and can be realized with HTML inline frames. The PHP
page template is divided into as many independent files as the number of conjunctive
subpages. Then a master template is built, to put the frames together.

Disjunctive sub-ViewContainers show alternative pieces of content in the same
region of the interface, which requires the PHP template code to enable alternative
portions of content selectively. As an example, consider the page of Figure 10.14, in
which the “Category” Details ViewComponent displays a news category, from which
it is possible to visualize either the list of all news of the category or a list of only the
most recent news but with the full details of each piece of news. The “RecentNews”

296 CHAPTER 10 Implementation of applications specified with I[FML

[L] News

Category

f «Details» NewsCategory

«DataBinding» NewsCategory

«ParameterBindingGroup» —
CategoryID > catID A e S
7

[XOR] RecentOrAll

AllNews

[D] RecentNews ./
»

«List» RecentNews «List» AllNews

«ConditionalExpression»
Category = catID and
Date > 1/1/2014

«ConditionalExpression»

«DataBinding» NewsItems «DataBinding» NewsItems
Category = catID

FIGURE 10.14
Example of disjunctive ViewContainers.

sub-ViewContainer is the default one, shown when the “News” ViewContainer is
accessed for the first time. Implementing this pattern requires a conditional state-
ment in the template code to establish which sub-ViewContainer must be processed.
The ViewContainer to display is the default one if the enclosing ViewContainer is
accessed from another part of the interface. Otherwise, the one targeted by the flow
explicitly navigated by the user is shown. To ease the implementation of such con-
ditional statements, every NavigationFlow pointing to an alternative ViewContainer
may comprise one extra URL parameter (e.g., target) that explicitly carries the
name of the alternative ViewContainer to display.

The code in Figure 10.15 shows this implementation technique at work.

Atlines 3—4, the HTTP request is analyzed to extract the two possible parameters:
the OID of the category to display and the name of the ViewContainer that has been
accessed. Then, after connecting to the database and performing the SQL query for
the Details ViewComponent (line 5-16), a test determines which alternative View-
Container is required (line 18). If the nondefault alternative page (“AllNews”) is
requested, a SQL query is composed to retrieve the content of the “AllNews” List,
that is (i.e., the headings of all the news items of the input category [lines 19-20]).
Otherwise, a SQL query is composed to retrieve the content of the “RecentNews”
List (i.e., the heading and body of the news items issued after 1/1/2014 [lines 21-22]).
The query is executed at lines 23-24.

In the HTML production part of the template, first the Details markup is built from the
result of the SQL query (lines 28-38). After the name and the description of the category,
one HTML anchor is inserted for each of the alternative ViewContainers, distinguished
by the value of the target parameter, which can be a11 or recent (lines 33-36).

1
2
3
4
5
6
7
8

9
10
11

10.1 Implementation of the Front End for URE-HTML Page Templates

<?php

// REQUEST PARAMETER EXTRACTION

Scategory = $_GET['category'];

Starget = $ GET['target'];
// DATABASE CONNECTION

Scon=mysqgli_ connect ("example.com", "user", "pwd", "my db");

if (mysgli_connect_errno())

{

echo "Failed to connect to MySQL: " . mysgli connect error();
}
// QUERY PREPARATION AND EXECUTION: DETAILS

S$stmt = con->prepare (

'SELECT NAME, DESCRIPTION, OID FROM NEWSCATEGORY WHERE OID = ?');

$Stmt—>bind_param("i",$category);

Sstmt->execute () ;

$result = $stmt->get result();
// CONDITIONAL QUERY PREPARATION AND EXECUTION
if (Starget = "all")
Sstmt2 = con->prepare (
'SELECT HEADING FROM NEWSITEM WHERE CATEGORYOID = 2 ');
else $stmt2 = con->prepare ('SELECT HEADING, BODY FROM

NEWSITEM WHERE NEWSDATE > '1/1/2014' AND CATEGORYOID = ? ');
$stmt2->bind param("i", $category);
Sresult2 = $stmt2->get_result();
echo "<html>"; // CONTENT PRODUCTION
echo "<head> <title>News </title> </head>";

echo "<body>";

if ($row = mysqgli fetch_ array($result)) { //CONTENT PRODUCTION: DETAILS

echo "<table>";

echo "<tr><td> Name </td><td>".Srow['Name']."</td></tr>";

echo "<tr><td> Description </td> <td>".$row['Description']."</td></tr>";

echo "<tr><td colspan="2"><a href=\"
newsPage.php?target=recent&category=".$row['OID']."\">";

echo "Recent News</td></tr>";

echo "<tr><td colspan="2"><a href=\"
newsPage.php?target=all&category=".%row['OID"']."\">"

echo "All News</td></tr>";

echo "</table>"; }
if (Starget="all") {
echo "<table>"; // CONTENT PRODUCTION: ALL NEWS
while ($row2 = mysqli fetch array($result2)) ({
echo "<tr><td>".Srow2 ["HEADING"]."</td></tr>";
}
echo "</table>";
}
else {
echo "<table>"; //CONTENT PRODUCTION: RECENT NEWS
while (Srow2 = mysqli_ fetch array($result2)) {
echo "<tr><td>".S$row2 ["HEADING"]."</td></tr>";
echo "<tr><td>".$row2["BODY"]."</td></tr>";
}
echo "</table>";
}

echo "</body></html>";
// connection disposal
mysqli_close ($con);

2>

FIGURE 10.15

297

PHP implementation of disjunctive ViewContainers.

298 CHAPTER 10 Implementation of applications specified with IFML

Prior to creating the markup of the list of news, the target request parameter is
tested to determine which ViewContainer must be rendered (lines 39 and 46). If the
parameter’s value is equal to al11, the content of the “AllNews” ViewComponent is
produced (lines 40-45). Otherwise the content of the of the “RecentNews” View-
Component is built (lines 47-53).

10.1.7 ACTIONS

IFML does not model the internal organization of Actions but only their interplay
with the user interface. In a PHP pure-HTML architecture, Actions are implemented
by server-side scripts, which may access external systems through suitable APIs,
such as the mysq11 interface used in the examples of ViewContainer computation.

An Action is inserted in an IFML diagram by establishing an Event and a Navi-
gationFlow between a ViewElement and the Action, with the meaning that the event
triggers the Action targeted by the NavigationFlow. This basic configuration can be
extended by drawing additional DataFlows from the ViewContainer whereby the
Action is activated, transporting further parameters to the Action. Therefore, the
implementation of an Action deals with how to realize the business logic (not treated
in this book) and how to implement the Event and NavigationFlow that activate it.
In PHP, Actions are implemented by means of a server-side script with the general
structure shown in Figure 10.16.

Action.php

Part 1: Extract parameters from the HTTP request

Part 2: Prepare and execute queries:

Start transaction

Instantiate parameters of query for business operation 1

Execute query for business operation 1

Store output of query

If (error)

{ rollback current transaction;
forward control to destination of abnormal termination
NavigationFlow

Instantiate parameters of query for business operation 2

Execute query for business operation 2

Part 3: Display result page
Commit current transaction;
Forward control to destination of NavigationFlow of the action,
depending on termination event raised

FIGURE 10.16

General schema of an Action server-side script.

10.1 Implementation of the Front End for URE-HTML Page Templates 299

The first part of the script deals with request parameters fetching, as in the case of
a ViewContainer template. The parameters transported by the NavigationFlow must
be extracted from the request to be used in the execution of the business operations.

The second part of the script deals with execution of the business logic. If the
Action consists of a single operation, the script simply initializes the component with
the input parameters, executes it, and checks the result to determine if the normal or
exceptional termination event must be raised and which NavigationFlow must be fol-
lowed. If the Action consists of a workflow of operations, the script must address the
execution of the operations in the proper order, the passage of parameters between
operations, and—if needed—the atomicity of execution.

The implementation of the Action also affects the coding of the template whereby
the Action is activated. In particular, the HTML implementation of the Navigation-
Flows outgoing from the ViewContainer and pointing to Actions must obey the fol-
lowing rules:

* Besides the parameters explicitly associated with it, the activating Navigation-
Flow must also carry all the parameters transported by DataFlows reaching the
Action. This can be done in two ways:

« If the NavigationFlow is implemented as an anchor tag, appropriate param-
eters can be added to the query string of its URL.

« If the NavigationFlow is implemented as the submit button of an HTML
form, input fields of type hidden can be added to the HTML FORM element.

e The activating NavigationFlow must also transport the extra parameters needed
to “remember” the history of user choices—as explained in chapter 12—if any
of the outgoing flows of the Action points back to the ViewContainer whereby
the Action is activated.

10.1.8 CONTEXT

Context information requires maintaining information across multiple user inter-
actions. In a pure HTML architecture, this feature is normally implemented at the
server side by means of a transient session data structure. Retention of information
at the client side is also possible with cookies. Cookies, however, support only a
limited storage capacity. Next, we exemplify the most basic usage of the Context: the
storage of the identity and the authentication status of a user. Other Context informa-
tion can be implemented following the same approach. We do so by discussing the
implementation of the Login pattern presented in chapter 6. The login Action verifies
the credentials of the user, forwards the user to the proper ViewContainer if the cre-
dentials are verified or to an error page if verification fails. The Actions also sets the
Context information about the authenticated identity of the user. In RBAC systems,
the default role the user is preserved as part of the context.

Context information, such as the identity of the currently logged-in user and
his default role, can be implemented exploiting the PHP session variables. The
PHP session is created either automatically upon the first request of the user or by
means of an explicit script instruction executed at a specific point of the interaction.

300 CHAPTER 10 Implementation of applications specified with IFML

The session is maintained for specified amount of time and is associated with a
unique ID used to identify subsequent HTTP requests pertaining to it. It terminates
either when the application invalidates it explicitly or when a time out defined in
the server’s configuration occurs. Upon termination, all the information stored in
the session is lost. If session information must persist beyond the life of the session
object or survive a server failure, it must be transferred into persistent storage at the
server side.

The script of Figure 10.17 implements the login Action invoked by an HTML
form containing two input fields, one for the username and one for the password.
For the sake of simplicity, the script assumes the user’s credentials are unique
and stored in the database. The user’s session is created automatically upon the
user’s first access to the ViewContainer with the login Form (line 2). The script
retrieves the value of the username and password from the POST HTTP request
(lines 3—4). It then connects to the database and uses these values to instantiate
the prepared statement shown at lines 11-15. The SQL statement verifies that
the given username and password do exist in the USER table and retrieves the
OID of the user associated to the credentials and the OID of his default group.
The outcome of credential verification is examined at line 17. If the SQL query
did not find any object matching the username and password, the connection is
closed and control is transferred (using the PHP header instruction) to the page
template ToginError.php, which may request the username and password again.

<?php

session start();

Suname= $_POST["username"];

Spwd= $_POST["password"];

Scon=mysqli connect ("example.com","user", "pwd", "my db");
if (mysgli_connect_errno())

{

echo "Failed to connect to MySQL: " . mysqgli connect error();
9 die();

10 }

11 $stmt = $con->prepare (

12 "SELECT OID, GROUPOID

13 FROM USER WHERE USERNAME = ? AND PASSWORD = ?");

14 $stmt->bind param("ss", Suname, S$pwd);

15 $stmt->execute();

16 $result = Sstmt->get result();

O Joy U W

17 if (!($row = mysqgli fetch array($result))) { // NO VALID USER DATA FOUND
18 mysqgli close($con);

19 header ("location: loginError.php"); // REDIRECT TO ERROR VIEWCONTAINER
20 } else { // VALID USER DATA FOUND

21 $ SESSION["uname"]=$row['OID']; // REGISTER CONTEXT INFO

22 $ SESSION["urole"]=$row['GROUPOID']; // IN THE SESSION

23 mysqli close($con);

24 header ("location: home.php"); // REDIRECT TO APPROPRIATE VIEWCONTAINER
25 }

26 ?>

FIGURE 10.17

PHP implementation of the login Action, which sets Context information.

10.2 Implementation of the Front End for Presentation Frameworks 301

If verification succeeds, the OID of the user and group are stored in two session
variables, uname and urole, (lines 21-22), and control is forwarded to the proper
ViewContainer.

Note that the simple script of Figure 10.17 can be made more realistic and
secure by adding code for checking that the session exists, for regenerating it
at each login to avoid session fixation attacks, and for managing clients such as
robots that do not respect the redirect HTTP directive. In addition, transmission
of the user’s password via a secure protocol such as HTTPS would ensure better
protection at no extra programming effort because the Secure HTTP protocol is
transparent to the programmer.

The Context information can be cleared by the logout Action, which amounts to
invalidating the session and forwarding control a proper ViewContainer.

10.2 IMPLEMENTATION OF THE FRONT END FOR
PRESENTATION FRAMEWORKS

In the last decade, web programming has been supported by several software
frameworks, which are partially instantiated architectures used for accelerating the
development of enterprise class applications. These systems exploit an internal orga-
nization of the components that promotes modularization of the code through separa-
tion of concerns, so that each module addresses only one specific aspect, such as data
access, business logic, interaction handling, or presentation.

10.2.1 MODEL-VIEW-CONTROLLER AND ITS ADAPTATION TO THE
WEB

One of the most widespread software architectures for interface development is the
so-called Model-View-Controller pattern (MVC for short). The MVC is conceived
to separate the three essential parts of an interactive application: the domain objects
and business logic of the application (the model), the rendition of the interface for the
user (the view), and the decision about what to do in response to the user’s interac-
tions (the controller).

In the MVC architecture, the typical flow of control is the one represented in
Figure 10.18.

The computation is activated by a user’s request for some content or service,
addressed through a controller. The controller dispatches a request for action to the
suitable component of the model. The model incorporates the business logic for per-
forming the action and executes such logic, which updates the state of the applica-
tion and produces a result to be communicated to the user. The change in the model
is observed by the interface view components. The affected view components thus
update their presentation status and display the outcome to the user, who can then

302 CHAPTER 10 Implementation of applications specified with [FML

requests updates

User's agent |———————————p» Controller —_— Model

presents notifies

View

FIGURE 10.18
Model View Controller (MVC) architecture.

prosecute the interaction. The MVC assigns distinct responsibilities to the three types
of components:

* The model encapsulates the business actions required for answering a user’s
request and keeps the state of the application. It ignores the format in which
requests are issued and responses are presented to the user.

¢ The view embodies the presentation of the user interface. An application may
have a single view or multiple views, and a view may be composed of subviews,
relevant to different types of results. The view ignores how its content has been
prepared.

e The controller interprets the user’s request, produces the appropriate request
for action, examines the result of each action, and decides what to do next. An
application may have a single controller or multiple controllers, one for each
request type or view. A controller is unaware of the business logic of the actions
and of the presentation of the view.

In recent times, the MVC architecture has been exploited for organizing the
architecture of web applications. Examples of web frameworks that take inspiration
from the MVC pattern are the Struts project of the Apache Software Foundation (http
:/[jakarta.apache.org/struts/) and the Spring MVC Framework (http://spring.io/), part
of a larger tool suite for the development of enterprise applications. Both projects
feature an implementation of the MVC pattern realized on top of the Java platform.

In the web context, the original MVC scheme is adapted to take into account the
specificity of HTTP as a client—server protocol, especially the lack of mechanisms
for maintaining the state of the interaction at the client side and for the server to
notify the client of events. Figure 10.19 shows the adaptation of the classical MVC

http://jakarta.apache.org/struts/
http://jakarta.apache.org/struts/
http://spring.io/

10.2 Implementation of the Front End for Presentation Frameworks 303

HTTP
request
a Delegates
qé HTTP request
Client g requess Dispatcher ——p»
(Browser) i Servlet Controller
= HTTP / Front
|:|_: response | Controller ———
HTTP ¢ Delegates
response rendering
of response
Calls for Creates
response
rendering Returns Model
control
View Reads
FIGURE 10.19

The MVC architecture applied to web applications.

architecture to the web context, using Java as a reference platform. The illustrated
scheme is sometimes called MVC Model 2 (MVC2, for short), to contrast it with
the Model 1 approach, which merges the view and the controller roles in the page
template, similar to the approach in the PHP examples discussed in the section 10.1.

The emitter of requests in the MVC2 architecture is the web browser. The HTTP
requests of the client are mapped to a single entry point—in Java implemented as a
servlet—acting as the front controller (also called dispatcher). The front controller
delegates the user’s request to a specific controller in charge of deciding the actual
course of action necessary to service the user’s request. The specific controller cre-
ates the model objects necessary to perform the business actions implied by the user’s
request. Examples of actions could be the execution of a database query, the sending
of e-mail, or the authentication of the user. Model objects also record the state of the
application until the request is serviced or even between consecutive requests. For
example, they may store the trolley items of the user or the result of a data binding
query. After completion, the specific controller returns the control and the updated
model objects to the front controller. In the typical flow of a web MVC application,
after an action completes the front controller invokes a view—in Java implemented
as a JSP page template—responsible for presenting the updated state of the applica-
tion to the user. For doing so, the view template accesses the model objects, where
the current state of the application is stored, and builds the HTML page sent back to
the front controller and then to the browser. Examples of views could be the display
of the result of a database query, the notification that an e-mail has been sent, and the
home page of the web site after the successful login of the user.

In a concrete implementation of the MVC2, such as the Spring MVC framework,
further technical components and mechanisms contribute to the architecture. These
components are illustrated in Figure 10.20.

304 CHAPTER 10 Implementation of applications specified with IFML

Configuration |

roperties
POk WebApplicationContext
WebApplicationContext

* Calls Controllers
(Model)
Di h > Controller e =
Servlet handleRequest()
HTTP pem—" Data tier services
equestMapping
request < | Business logic
_—Y B] services
9 returns
Client g - @SessionAttributes |
lew
(Browser) Q name View))
4 / enriches
& Calls Siodel WebApplicationContext
i £ (orware| || viewResolvers odels
response rediect] ModelMap

Views e State beans

. R
View components Request emote
parameters APIs
- hiernal views o e h
(JSP, JSTL, utiity Fomninpat
libraries| ”
objects

FIGURE 10.20
Spring MVC Framework components.

The entry point of the Spring Architecture is the dispatcher servlet, which is the
orchestrator of the workflow for serving the incoming requests. It maps the client
requests to the controllers that handle them. The controllers are Java classes with
methods for handling the flow of actions implied by a specific request, such as creat-
ing the model objects to display in a view, accepting input, and updating the status of
the application. The request-to-controller mapping logic can be expressed in several
ways: by means of annotations (@RequestMapping) on the classes and methods of the
controller, through encoding in an XML configuration file made available to the dis-
patcher servlet, or even by inference from naming rules with a “convention over con-
figuration approach.” The invocation of the controller by the dispatcher servlet has
also the side effect of initializing the model. Spring implements a default model as a
Java map indexed by symbolic attributes that can be used to store the Java objects that
embody the model content. The dispatcher servlet and its helper classes initialize the
default model map with the user’s input and the request parameters, which are thus
available to the controller. Also, the annotation @1odelAttribute can be attached to
controllers’ methods or to individual parameters in their signature, which causes the
tagged method to be invoked before the actual handling of the request and causes
their return value or parameter values to be added to the default model. These meth-
ods normally prepare additional model objects (e.g., by extracting content from the
data tier). Some of the model objects can be made persistent across multiple requests
by storing them in the session. This requirement can be expressed declaratively by
annotating the signature of a controller’s methods (with @SessionAttribute).

The controller can interact with back-end services deployed in one or more pack-
ages (called WebContexts) connected with the main WebContext that contains the
MVC components. These services can support data access, such as through object
relational mappings of the domain model onto relational data sources and integration
with remote services (e.g., access to REST APIs on the web).

10.2 Implementation of the Front End for Presentation Frameworks 305

Configuration

properties

WebApplicationContext
WebApplicationContext

Calls Controllers -
‘ (Model) Back-end services

Dispatcher s ViewContainer
Lag Controller " N
Servlet . | ViewContainer \
~ HTTP > services o
request ActionController ‘ e —
_—— e | [|viewComponent
returns services
View (ModelAnd -
name View)
y + enriches Action services
Calls

(forward| || ViewResolvers Models

HTTP 8
FeEpGiEa redizecy ModelMap

reads

—

Data tier services

Client
(Browser)

ebApplicationContext

HTTP server

Views State beans

Request
A
< / parameters
ViewContainer |, « Form input
Templates « Domain Model
= J objects

FIGURE 10.21
Mapping IFML concepts to the MVC architecture.

The methods of the controller invoked to handle an incoming request may return to
the dispatcher servlet the indication of the model object (if different from the default one)
and of the view to display next. Spring supports a variety of mechanisms and defaults for
specifying the view to call. In the base mechanism, the controller simply returns a string
denoting the symbolic name of the pertinent view, which is translated by a ViewResolver
utility object into the physical address of the component implementing the view.

The view components can be realized in a variety of ways, including the delega-
tion to external programs or the display of static resources. The typical implemen-
tation employs Java Server Pages (JSP) or JSP Standard Template Library (JSTL)
components. Spring offers utility libraries that can be used in the view to facilitate
the access to the model objects, including the retrieval of form input data associated
with the request and of the errors produced by the server-side validation of such data.

10.2.2 MAPPING IFML TO THE SPRING MVC FRAMEWORK

The mapping of an IFML application onto the Spring architecture is illustrated in Figure
10.21, which fills the generic “boxes” of Figure 10.20 with IFML-specific elements.

In the rest of this section, we discuss how the implementation of the fundamental
IFML primitives (ViewContainers, ViewComponents, InteractionFlows, and Actions)
exploits the components appearing in Figure 10.21. As an example, we show the
implementation of the IFML model illustrated in Figure 10.22, which includes one
ViewContainer with a master detail pattern consisting of two List ViewComponents
and two ViewContainers for a basic search pattern with data entry validation.

10.2.3 MAPPING VIEWCONTAINERS TO SPRING MVC

Each ViewContainer is mapped onto four elements: (1) a ViewContainer controller,
(2) a ViewContainer service in the business tier, (3) a ViewContainer template in

306 CHAPTER 10 Implementation of applications specified with [FML

[L] NewsByCategory

«List» NewsCategories «List» NewsItems
«DataBinding» «DataBinding» NewsItem
NewsCategory o

i «ConditionalExpression»
Select Category=catID
«Parameterl';indingGroup»
Selected > catlD

«ParameterBindingGroup»
From -> start
To-> end

[L] SearchNews Kevmordoliey NewsFound
«Form» NewsSearch start > start «List» NewsList

) key > key
«Simplefield» From: date «DataBinding» NewsItem

Search

«ConditionalExpression»
. (from.isNull() or date > from) and
Validate (to.isNull() or date < to) and

«Simplefield» To: date

«Simplefield» Keyword: string ‘ e ! 5 g L
Validinput (key.isNull() or (if (key.size() <= title.size()) then
7/ Sequence(1..title.size() - key.size()) ->
hY exists(i | title.substring(i, i + key.size()) = key)
Error Notification l N else

false))

<
«InParameter» Msg I~ e, [ValidationE
) . alidationError

«Annotation»

not from.isNull() and
Not to.isNull() and not
key.isNull

«ParameterBindingGroup»
ErrorMessage > Msg

FIGURE 10.22
Example of an IFML model implemented using Spring MVC.

the View, and (4) a @RequestMapping annotation on the responder methods of the
ViewContainer controller—or alternatively a handler mapping specification in the
dispatcher servlet configuration file.

The ViewContainer controller is a Java class. It exposes a “handleRequest”
method that extracts the input from the HTTP request and calls the ViewContainer
service in the business tier, passing to it a reference to the model. When the service
terminates, the ViewContainer controller analyses the outcome and returns the speci-
fication of the View to display to the dispatcher servlet.

The ViewContainer service is a business function that orchestrates the parameter
propagation and ViewComponent execution process illustrated in chapter 12. The
ViewContainer service invokes in the proper order the ViewComponent services,
which embody the business logic of the ViewComponents embedded in the View-
Container. Typically, a ViewComponent service implements the data binding logic
of the component, which extracts the content from the data source and stores it in the
model. At the end of the ViewContainer service execution, all the model objects hold-
ing the result of the content binding queries of the ViewComponents are available to
the view, together with the request parameters and form input stored in the model by
the dispatcher servlet. Finally, the ViewContainer template in the view computes the
HTML page to be sent to the user based on the content of the model. It contains the

10.2 Implementation of the Front End for Presentation Frameworks 307

@Controller
public class NewsByCategoryController {

1
2
3
4 QAutowired

5 private ApplicationContext appContext;
6

7

8

@RequestMapping (value = "NewsByCategory")
public final Object handleRequest (@RequestParam(required = false)
9 String catId, Model model) throws Exception ({
10 model.addAttribute ("catId", catId);
11 NewsByCategoryViewContainerService s =
12 appContext.getBean (NewsByCategoryViewContainerService.class);
13 s.computeViewContainer (model) ;
14 return "NewsByCategory";
15 }
16 }
FIGURE 10.23

Spring controller for the “Categories” ViewContainer.

static HTML needed to define the layout where the ViewComponents are positioned
and custom tags or scripts implementing the dynamic rendition of ViewComponents.

We now illustrate these artifacts in detail, using the “NewsByCategory” ViewCon-
tainer of Figure 10.22. Figure 10.23 shows the code of the ViewContainer Control-
ler that implements the response to requests for the NewsCategories ViewContainer.
We assume that the implementation of the ViewContainers uses the same names as
the IFML model (“NewsByCategory,” “SearchNews,” and “NewsFound”) and that
parameters are passed in the query string®. Therefore, the requests for the “NewsBy-
Category” ViewContainer are formulated with the following URI template:>

http://www.myserver.com/newsByCategory.do&catID=X

If the “catID” parameter is missing, the URI denotes the request for the content
of the “NewsCategories” ViewComponent only. Otherwise, it represents the request
for the news associated with the selected category (“X” in the example). The IFML
model and the Spring implementation can be easily modified to handle the display of
the news of the default category in the “NewsCategories” ViewComponent when the
“catID” parameter is not present.

The controller is implemented by a Java class (“NewsByCategoryController”)
annotated with the @ontroller tag (lines 1-2). The controller class declares a pri-
vate member “appContext,” annotated with @Autowired (lines 4-5). As a result, an
object of type “ApplicationContext” is automatically created by Spring and injected
into the controller. Such an object provides access to configuration information and
to the bean factory used for creating or retrieving the application services. The con-
troller “handleRequest” method (lines 7-9) is marked with @RequestMapping(value
="newsByCategory™) to associate it with the incoming requests matching the speci-
fied URI template. The signature of the method comprises the optional parameter
catID and the default model object. If the request actually contains the ID of a cat-
egory, the value is exploited to initialize the method parameter, as specified by the @
RequestParam annotation.

http://www.myserver.com/newsByCategory.do%26catID=X

|
308

CHAPTER 10 Implementation of applications specified with IFML

1 public class NewsByCategoryViewContainerService {

2

3 @Autowired

4 private ApplicationContext appContext;

5

6 // Compute the ViewContainer

7 public void computeViewContainer (Model model) throws Exception {
8 // execute services of ViewComponents

9 NewsCategoriesService viewComponentServicel =

10 appContext.getBean (NewsCategoriesService.class) ;

11 viewComponentServicel.execute (model) ;

12 // computes the category details in case a newsCategory has been selected
13 if (model.asMap () .get("catID") != null)) {

14 NewsItemsService viewComponentService2 =

15 appContext.getBean (NewsItemsService.class);

16 viewComponentService2.execute (model) ;

17 }

18 }

19}

FIGURE 10.24

ViewContainer service for the “NewsCategories” ViewContainer.

The method first stores the (optional) request parameter in the model under the
name “catld” (line 10). It then looks up the application context to retrieve a Java
bean that implements the service for the “NewsByCategory” ViewContainer (lines
11-12). Next, it executes such the service by calling its “computeViewContainer”
method (line 13). The method takes as input the model map, which at the end of the
computation will contain the data binding instances of all the ViewComponents of
the ViewContainer. The “handleRequest” method concludes by returning a string
with the symbolic name of the view to the dispatcher servlet (line 14).°

The ViewContainer service invoked by Controller is illustrated in Figure 10.24. It
addresses the execution of ViewComponents and the propagation of parameters. The
service is a Java class (“NewsByCategoryViewContainerService”) that implements
the method “computeViewContainer” called by the Controller (line 7). That method
takes as input the model map object and creates an instance of the ViewComponent
services according to the order of computation and parameter passing rules explained
in section 6. First, it creates an instance of the service for the “NewsCategories” List
(line 9-10), and calls its “execute” method (line 11), which computes the content
of the list. In such invocation, the model object is passed to the method to store the
result of the data binding query. Then, the method checks the presence of the “catID”
parameter in the model (line 13) and, if a value is present, instantiates and calls the
service for the “Newsltems” List (lines 14—16)".

The symbolic name returned by the Controller (in our case, “NewsByCategory”)
is translated by a ViewResolver component of the Spring MVC framework into the
physical name of a View template (e.g., NewsByCategory.jsp).

The implementation of the “NewsByCategory” View template is exemplified in
Figure 10.25. The template starts with the inclusion of the JSTL tag library and
the declaration of the content type and character encoding of the HTTP response
(line 1-3). The template then contains regular HTML markup for the static part of
the page, including the hypertext links that implement the implicit navigation to the

10.2 Implementation of the Front End for Presentation Frameworks 309

1 <!DOCTYPE html>

2 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
3 <%Q@ page contentType="text/html; charset=UTF-8"%>

4 <html>

5 <head>

6 <title>News by Categories</title>

7 <link rel="stylesheet" type="text/css" href="style.css">

8

</head>
9 <body>
10 <div>
11 <h2>News By Category |
12 Search News</h2>
13 </div>
14 <div style="float: left;">
15 <h3>News Categories</h3>
16 <c:forEach var="nc" items="${newsCategories}">
17
18 <c:out value="${nc.name}"/></1i>
19 </c:forEach>
20 </div>
21 <c:if test="${not empty(newsItems)}">
22 <div style="float: left;">
23 <h3>News Items</h3>
24 <c:forEach var="ni" items="${newsItems}">
25 <div><c:out value="${ni.heading}"/></div>
26 <div><small>Date: <c:out value="${ni.date}"/></small></div>
27 <div><c:out value="${ni.body}"/></div>
28

29 </c:forEach>
30 </div>
31 </c:if>
32
33 </body>
34</html>
FIGURE 10.25

View template of page NewsCategories, using a custom tag library.

landmark ViewContainers (lines 4-13). Next the content of the “NewsCategories”
List ViewComponent is rendered using the JSTL foreach iterator tag (lines 16-19).
The iteration is performed over the list of news category objects created by the List
ViewComponent service—described next—and stored in the model, bound to the
JSTL variable items. At every iteration, the name of the category is printed, sur-
rounded by an HTML anchor tag pointing back to the same ViewContainer. The URI
of the anchor tag contains as a parameter the identity of the current category. The
ViewContainer template continues with the (optional) rendition of the second View-
Component. If the content of the “Newsltems” ViewComponent is found (checked
with the test at line 21 for the bean variable newsItems), the template prints the
List ViewComponent (lines 22-30). If the content is not found—meaning that no
category has been selected—the rendition of the “Newsltems” ViewComponent is
omitted.

In the simple example of Figure 10.25, the production of the markup code of the
List ViewComponent is directly embedded within the template of the ViewContainer.

310 CHAPTER 10 Implementation of applications specified with [FML

In a more elaborate example of a ViewContainer comprising multiple ViewCom-
ponents of different types, a more modular approach would be that of separately
coding the view template of each ViewComponent and then assembling the various
fragments into the template of the ViewContainer (e.g., using the dynamic inclusion
mechanism provided by JSP).

10.2.4 MAPPING VIEWCOMPONENTS TO SPRING MVC

ViewComponents are associated with a ViewComponent service, which implements
the business logic and populates the model with state information. Details and List
ViewComponents contribute a data bean and a list of data beans, respectively. [IFML
Forms are associated in the model with a command object (also called a form bean)
constructed by the framework to maintain the values entered by the user. Data beans
and command objects both help the construction of the view but differ in the origin of
their content. Data come from the data layer in the case of data beans and from user
input in the case of command objects.

List and details View components and their extensions map onto Java service
classes for extracting the data binding content and creating one or more JavaBeans,
filled with such content.

Figure 10.26 shows the service for the “NewsCategories” List ViewComponent,
which retrieves the list of all the category objects.

The service class shown in Figure 10.26 encapsulates the business logic for com-
puting the content of the List. It has a private member (“appContext”) storing a ref-
erence to the bean factory, injected by the Spring MVC framework. The “execute”
method exploits the application context to create a data access object (DAO)—an
instance of class “NewsCategoryRepository”’—and then invokes the “findAll” finder
method of the DAO to retrieve all the categories. The collection returned by the
finder method is stored in the model under an attribute named “NewsCategories,”
where it is retrieved by the view template shown in Figure 10.25.

The DAO can be implemented in Spring using various technologies, such as Java
DataBase Connectivity (JDBC), Java Persistence API (JPA), and Hibernate. Figure
10.27 and Figure 10.28 show the JPA entity declaration implementing the object

public class NewsCategoriesService {

QAutowired
private ApplicationContext appContext;

public void execute (Model model) throws Exception {
model.addAttribute ("newsCategories",
appContext.getBean (NewsCategoryRepository.class) .findAll());

2O o0Jdo U WwN

o
—

FIGURE 10.26

Business service for a List ViewComponent.

45
461}

10.2 Implementation of the Front End for Presentation Frameworks

@
@

@

@Entity
public class NewsCategory {

Id

GeneratedValue (strategy = GenerationType.AUTO)

private Long id;
private String name;

OneToMany (targetEntity = NewsItem.class,

private Set<NewsItem> newsItems =

}

protected NewsCategory () {
}

public NewsCategory (String name)
this.name = name;

}

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;

}

public String getName () {

return name;

}

public void setName (String name)
this.name = name;

public Set<NewsItem> getNewsItems () {

}

return newsItems;

mappedBy =

public void setNewsItems (Set<NewsItem> newsItems) {

}

@

this.newsItems = newsItems;

Override

public String toString() {

}

return String.format ("NewsCategory[id=%d, name='%$s

FIGURE 10.27

"category")
new LinkedHashSet<NewsItem> () ;

e

’

id,

name) ;

311

Entity declaration for news category.

1 public interface NewsCategoryRepository extends CrudRepository<NewsCategory, Long>

2
3

List<NewsCategory> findAll();
}

FIGURE 10.28

Data access interface for news categories.

312

CHAPTER 10 Implementation of applications specified with IFML

relational mapping for class ‘“NewsCategory” of the domain model and the DAO
interface for retrieving the news categories from the persistent store.

Class “NewsCategory” is a JPA entity bean, which defines the object-oriented
counterpart of the relational tables storing the “NewsCategory” instances and of the
relationship between “NewsCategory” and ‘“Newsltem.” The entity declares data
members corresponding to the columns of the relational attributes. The relationship
between “NewsCategory” and “Newsltem” is mapped to the “newsltems” member
of class “NewsCategory” and to the inverse “category” member of class “News-
Item,” using the @OneToMany JPA annotation (lines 8-9).

Figure 10.28 shows the DAO interface for retrieving news categories.

The interface extends the “CrudRepository” Spring Data JPA system interface,
which permits the framework to automatically generate an implementation of the
data access methods. Inside the repository interface the “find All” method retrieves
all the instances of the entity. These data retrieval methods, called “dynamic finder
methods,” are implemented and resolved automatically by the framework using nam-
ing conventions.

10.2.5 MAPPING FORMS TO SPRING MVC

Form ViewComponents are implemented differently from other components because
they do not require a data retrieval service but accept user input. This function is
normally supported by HTML forms, with a number of limitations. For example, an
HTML form neither buffers the user’s input nor supports validation and error mes-
sages. An implementation with Spring may exploit the automatic binding of input
data to command objects and custom tags, easing the retrieval of user input and of
possible validation errors in the view. As an example, we consider the search pattern
illustrated in Figure 10.22 with the constraints that the search keyword, start date,
and end date must be all supplied by the user.

The JSP template of Figure 10.19, named SearchNews . jsp, implements the View
for the “SearchNews” ViewContainer, using the Spring form tag library.

The template initially declares a custom tag library named “form” (line 2). All tags
of the included library have the form: prefix, which distinguishes them from the regular
HTML tags. Following the markup for landmark navigation, the HTML body of the
template includes a form for submitting the search criteria (lines 16-27). Custom tags
replace the HTML <form> and <input> tags (lines 16, 18, 21, and 24). The form action
attribute specifies that the form input is submitted to the component responding at the
“SearchNews” URI template, and the “commandName” attribute specifies the name of
the model attribute under which the form object is exposed, which is “SearchInput” in the
example (line 16). The form object is created by the framework and stored in the model
for both validation and retrieval by the view template.

The “path” attribute of the input element (lines 18, 21, and 24) identifies the
property of the command object used for data binding. If specified, the content of the
input field is stored with the attribute of the command object and can be fetched by
the view to redisplay the data previously entered by the user.

10.2 Implementation of the Front End for Presentation Frameworks 313

The <form:errors> tags placed after the keyword and date input elements (lines
19, 22, and 25) implement the display of notifications present in the model of Figure
10.22. Each tag retrieves and prints the error message produced by the submission of
avoid field. The URI template invoked by the form (“SearchNews”) is mapped to the
controller illustrated in Figure 10.30.

The Controller class exposes the “handleGet” method (lines 3-8), which is
mapped to the HTTP GET request that implements the landmark navigation to the
“SearchNews” ViewContainer. This request does not need a business service for
extracting content from the data source, and thus the “handleGet” method just returns
the symbolic name of the view to show, which is resolved by the framework to the
template of Figure 10.29. The @ModelAttribute annotation on the method causes
the framework to create and insert into the model an empty form bean under the
model attribute named “SearchInput.” This object is filled with the user’s input when
the form in the template of Figure 10.29 is submitted.

The controller class also exposes the “handlePost” method (line 10-21), mapped
to POST requests addressed to the “SearchNews” URI template. Such requests are
emitted upon the submission of the form illustrated in Figure 10.29. The signature
of the method comprises the default model object (“model”), the command object
storing the form input (“formBean”), the framework object holding the result of the
validation of the input data (“result”), and a special argument (“redirectAttributes”)

1 <!DOCTYPE html>

2 <%Q@ taglib prefix="form" uri="http://www.springframework.org/tags/form" %>
3 <%@ page contentType="text/html; charset=UTF-8"%>

4 <html>

5 <head>

6 <title>Search News</title>

7 <link rel="stylesheet" type="text/css" href="style.css">

8 </head>

9 <body>

10 <div>

11 <h2>News By Category |

12 Search News</h2>

13 </div>

14 <div>

15 <h3>Input Search Criteria</h3>

16 <form:form action="SearchNews.do" commandName="SearchInput">
17 <div>Keyword</div>

18 <div><form:input id="keyword" path="keyword" size="100"/></div>
19 <div><form:errors path="keyword" /></div>

20 <div>From</div>

21 <div><form:input id="from" type="date" path="from" /></div>
22 <div><form:errors path="from" /></div>

23 <div>To</div>

24 <div><form:input id="to" type="date" path="to" /></div>

25 <div><form:errors path="to" /></div>

26 <div><input id="submit" title="Search" type="submit" value="Search"></div>
27 </form: form>

28</div>

29</body>

30</html>

FIGURE 10.29

View template for the “SearchNews” ViewContainer.

|
314

CHAPTER 10 Implementation of applications specified with IFML

1 @Controller

2 public class SearchNewsViewContainerController {

3 @RequestMapping (value = "SearchNews", method = RequestMethod.GET)
4 public final Object handleGet (€ModelAttribute ("SearchInput")

5 SearchFormBean formBean, BindingResult result, Model model)

6 throws Exception {

7 return "SearchNews";

8

10 @RequestMapping (value = "SearchNews", method = RequestMethod.POST)
11 public final Object handlePost (€Valid @ModelAttribute ("SearchInput")
12 SearchFormBean formBean, BindingResult result,
13 Model model, RedirectAttributes redirectAttributes) throws Exception ({
14 if (result.hasErrors()) {
15 // input errors! Back to search form
16 return "SearchNews";
17 }
18 // redirect to news items view preserving search parameters
19 redirectAttributes.addAllAttributes (formBean.asMap());
20 return "redirect:NewsFound.do";
21 }
22}
FIGURE 10.30

Controller for the “SearchNews” ViewContainer.

used to exercise fine grain control over the information to be communicated in the
redirection of the request.

The annotation @ModelAttribute(“SearchInput”) specifies that the command
object containing the user’s input is stored in the model under the same attribute
(“Searchlnput”) used in the <form:form> element of the view template of Figure
10.29 and in the “handleGet” method.

The controller first tests for the presence of validation errors in the submitted
input (line 14). If such errors are found, the controller returns the symbolic name
of the view to display, which in this case is the same JSP template from which the
request was emitted (““SearchNews”). If no errors are found, the controller stores the
command object in the redirect attributes (line 19), to ensure that the user’s input is
preserved, and returns the symbolic name of the view corresponding to the “News-
Found” ViewContainer. The return statement prefixes the view name with redirect:
so that the framework transfers the control through a redirect mechanism rather than
a forward. This ensures that the browser emits a new request for the specified view
template, so that if the user refreshes the page with the list of news, the browser does
not resend the POST data.

Figure 10.31 show the controller that responds to the request addressed to the
“NewsFound” URI template.

The “handleRequest” method extracts from the request the values of the “key-
word,” “from,” and “to” model attributes (lines 8-10), instantiates the ViewCon-
tainer service needed to extract the content from the data source (line 14), calls its
“computeViewContainer” method—passing to it the model object filled with the
parameter values extracted from the request—and returns the name of the view to
display.

The Controller of Figure 10.30 exemplifies also the support offered by Spring
for validating the input of the form. The @Vva1id annotation before the “searchBean”

10.2 Implementation of the Front End for Presentation Frameworks 315

1 @Controller

2 public class NewsFoundViewContainerController {

3

4 @Autowired

5 private ApplicationContext appContext;

6

7 @RequestMapping (value = "NewsFound")

8 public final Object handleRequest (@RequestParam(required = false) String
keyword,

9 @RequestParam(required = false) (@DateTimeFormat (pattern = "yyyy-MM-dd") Date
from,

10 @RequestParam(required = false) @DateTimeFormat (pattern = "yyyy-MM-dd") Date
to, 11 Model model) throws Exception {

12 model.addAttribute ("keyword", keyword) .

13 addAttribute ("from", from).addAttribute ("to", to);

14 NewsFoundViewContainerService containerService =

15 appContext.getBean (NewsFoundViewContainerService.class) ;

16 containerService.computeViewContainer (model) ;

17 return "NewsFound";

18 }

19 }
FIGURE 10.31

Controller for the “Newsltems” ViewContainer.

1 public class SearchBean ({
2

3 @NotNull

4 private String keyword;
5 @NotNull

6 private Date from;

7 @NotNull

8 private Date to;

9

10 // setters and getters

11

12 }

FIGURE 10.32
Definition of the SearchBean command object class.

parameter specifies that the command object is subjected to declarative field vali-
dation using the Bean Validation standard (also known as JSR-303). For this type
of declarative validation to occur, the definition of the command object must be
enriched with JSR-303 compliant annotations, as shown in Figure 10.32.

The @NotNu11 annotation at lines 3, 5, and 7 causes the command object to be
checked after creation and an error message to be inserted in the “BindingResult”
object associated with the form bean if a field is null.

10.2.6 MAPPING OPERATIONS TO THE MVC ARCHITECTURE

IFML actions are mapped to Spring MVC similarly to ViewContainers. Each action
requires an action controller and a service. The action controller is analogous to
the ViewContainer controller. It exposes methods that are mapped to the requests
that trigger the action, such as the post of data from a form or the triggering of a
NavigationFlow. The controller possibly prepares the content of the model and then

316 CHAPTER 10 Implementation of applications specified with [FML

instantiates the proper action service in a way similar to that for ViewContainers
(as explained above). The action service implements the business logic. It may pro-
duce and consume the content of the model and terminate with different outcomes
corresponding to the termination events specified in the IFML model. The control-
ler detects the outcome of action service termination and returns the appropriate
view specification based on it, thus implementing the different flows that connect the
action termination events to the target ViewContainers.

10.3 IMPLEMENTATION OF THE FRONT END FOR RICH
INTERNET APPLICATIONS

The term rich Internet application (RIA) was first introduced in 2002 by Jeremy
Allaire in a white paper [Allaire02] to describe a novel generation of online applica-
tions that exploit several technologies to provide a sophisticated user experience on
top of the open architectural standards of the Internet. The most noticeable innova-
tion of RIAs lies in the powerful interaction mechanisms of the interface (such as
native multimedia support, transition effects, animations, widgets, drag and drop,
etc.) coupled to a flexible partition of work between the client and the server, com-
parable to that of preweb client-server applications. The twofold nature (part client-
side, part server-side) of RIAs is one of the main reasons for their success: using the
web as a back-end retains all the advantages of an open, low-cost, installation-free
architecture, while increasing the computation power of the client ensures the quality
of interaction that modern desktop applications and operating systems can offer. The
basic architecture of a RIA is shown in Figure 10.33 and consists of a web applica-
tion server connected with applications running on client machines. These appli-
cations are implemented inside the browser using a variety of technologies, such
as HTML 5, JavaScript, JSON, and XML. Communication between the application
tiers exploits multiple paths: synchronous client-server with HTTP, asynchronous
client-server with AJAX or WebSocket, and peer-to-peer with Web Real Time Com-
munication (WebRTC).

Having an application runtime environment at the client-side grants novel oppor-
tunities with respect to the pure HTML and HTTP architecture: (1) the control logic
can be implemented either at the client or at the server; (2) the business logic can
be partitioned between the client and the server opportunistically; (3) data can be
stored at both tiers; (4) communication can be more flexible: client to server, server
to client, and client to client; and (5) the client-side can work also when disconnected
from the server.

From the developers’ perspective, RIAs introduce a spectrum of new architec-
tural patterns, design decisions, and implementation languages. In essence, any event
(raised by the user or notified by the server or by another client) can be handled
locally at the client, delegated to the server, or treated at both tiers. In summary,
the new RIA architecture enables novel and more efficient web applications, where
data and business logic are distributed between the client and the server and where

10.3 Implementation of the Front End for Rich Internet Applications

Web browser

Web browser

317

0 User Interface (User Interface
(HTML) (HTML)
Ul events A Ul events A
v Ul updates Ul updates
Client-side Client-side
business logic business logic
(JavaScript) (JavaScript)
Client-side data Client-side data
(XML, JSON, DB) (XML, JSON, DB)
Communication Communication
(HTTP, WebSocket, (HTTP, WebSocket,
WebRTC) WebRTC)
- ARG —

Communication

(A)Synchronous
C/S Communication

C HTTP Server)
C Application Server)
Data Tier

FIGURE 10.33
Rich Internet application architecture.

the client and the server can communicate in both directions. The downside is the
increased complexity of the software and the proliferation of languages, data for-
mats, and communication protocols, which make the model-driven development of
RIAs an interesting possibility.

10.3.1 MAPPING IFML TO THE RIA ARCHITECTURE

The mapping of IFML constructs to the RIA architecture is based on the principle
of separating the management of user events from the invocation of the business
services implementing the ViewComponents. The implementation of the IFML con-
structs exploits HTML DOM events for ensuring a richer user experience, the JavaS-
cript language for event handling, and the XMLHttpRequest object for asynchronous
communication and data exchange with the server.

For space reasons, we limit the illustration to the master detail example of Figure
10.34, under the assumption that the application works online. More specifically, the
management of events and the display of the view are performed at the client side,
whereas the data binding logic of ViewComponents is executed (asynchronously) at
the server side.

Although in recent times there has been a proliferation of libraries and frameworks
for organizing the client-side functionality—including complete MVC frameworks

318 CHAPTER 10 Implementation of applications specified with [FML

[L] AllIBooks
«List» Books («Details» BookDetails
«DataBinding» Book | «DataBinding» Book

—"_h «ConditionalExpression»

Select | Q OID= bookID

«ParameterBindingGroup»
Selected> bookID

FIGURE 10.34
Master detail pattern.

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>All Books </title>

5 <link rel="stylesheet" type="text/css" href="style.css">
6 <script src="https://code.jquery.com/jquery.min.js"></script>
7 <script src="books.js"></script>

8 </head>

9 <body>

10 <h2>Books Sample</h2>

11 <div class="book-list"></div>

12 <div class="book-details"></div>

13 </body>

14 </html>

FIGURE 10.35
JSP template of the “AllBooks” ViewContainer.

implemented in the browser through JavaScript—in the following we exploit only public
or otherwise widely used standards (most notably the jQuery JavaScript library) to avoid
dependency on still not-so-consolidated toolkits.

The mapping of IFML concepts to the RIA architecture assigns a server-side page
template to each ViewContainer. In most cases, the [IFML model of a RIA applica-
tion comprises one top-level ViewContainer partitioned into several subcontainers
displayed either in parallel or in alternation.

Figure 10.35 shows the template of the “AllBooks” ViewContainer encoded in
JSP (the PHP implementation would be almost identical).

The head of the template references the JavaScript utility libraries (line 6) and the
JavaScript program that implement the client-side logics of the ViewContainer (line
7). The body contains one empty HTML <div> element for each ViewComponent.
These elements are filled dynamically by the client-side logic, which asynchronously
calls the server-side service for ViewComponent data binding.

10.3 Implementation of the Front End for Rich Internet Applications 319

1 jQuery (document) .ready (function ($) {
2
3 function loadBookList () {
4 S.ajax ({
5 type: "GET",
6 url: "book-list.jsp",
7 dataType: "xml",
8 success: function (xml) {
9 createBookList (xml) ;
10 }
11 })
12
13 function createBookList (data) {
14 var $list = $("");
15 $S.each ($ ("book", data), function (index, book) {
16 var S$book = $("<1i>" 4+ $("title", book).text ()
17 + "</1i>").data("id", $("id", book).text());
18 Sbook.click (function (e) {
19 loadBookDetails (this) ;
20 }) .appendTo ($list) ;
21 1)
22 $(".book-1ist") .html ($list);
23}
46 loadBookList (); // INVOKED WHEN THE DOCUMENT LOADING HAS COMPLETED
47 }); // END OF THE “ON READY” FUNCTION
FIGURE 10.36

JavaScript functions implementing the business logic of the “AllBooks” ViewContainer.

Figure 10.36 shows part of the JavaScript code contained in the “books.js” exter-
nal script, which exploits the jQuery library for simplifying the coding of the View-
Container computation.

The JavaScript code declares the business logic methods within a top-level func-
tion associated with the document ready event (line 1). This practice avoids running
any code before the document is completely loaded. When the document is ready,
function “loadBookList” is executed (line 46), which computes the content of the
“Books” ViewComponent as prescribed by the ViewContainer computation proce-
dure explained in chapter 12. Notice that—in contrast to the server-side implementa-
tions in PHP and Spring—the ViewContainer computation algorithm is embodied
within JavaScript code executed at the client side.

The “loadBookList” function performs an asynchronous call through the
$.ajax() method. The target of the call is the server-side JSP template book-
1ist.jsp, which contains the data extraction logic of the “BookList” ViewCom-
ponent. The server-side script returns a presentation-independent encoding of the
data in XML, which is then transformed into HTLM markup at the client-side.
For this purpose, the “loadBookList” function associates with the successful
completion of the AJAX request a presentation function called “createBookList”
(lines 8-9). This function (lines 13-23) receives as a parameter the data binding
content of the ViewComponent and creates the corresponding HTML markup for
the view.

|
320 CHAPTER 10 Implementation of applications specified with [FML

For example, the data binding content of the “BookList” ViewComponent could
be represented by the following XML document:

<books>

<book>

<id>1</id>

<title>Head First Design Patterns</title>

</book>

<hbook>

Gd>e</id>

<title>Programming Ruby: The Pragmatic Programmers’ Guide, Second
Edition</title>

</book>

<book>

Gd>3</id>

<tit1e>CSS Mastery: Advanced Web Standards Solutions</title>
</book>

<book>

<d>4</id>

<title>Beginning PHP 5 and MySQL: From Novice to Professional
Jtitle>

</book>

</books>

The “createBookList” function constructs an initially empty HTML unordered list
(line 14). Next, a loop (lines 15-21) iterates through all the <book> elements pres-
ent in the input data. At each iteration, a function is executed that constructs a list
item from the title and the id of the book data (lines 16—17) and appends it to the
unordered list. For each list item constructed, a function is associated with the user’s
selection event (line 18). The click event triggers the invocation of the “loadBook-
Details” function, with input equal to the selected book element. After each iteration,
the book item is appended to the unordered list (line 20), and at the end of the loop
the entire list is inserted into the ViewContainer as the HTML content of the <div>
element of class “book-list” (line 22).

Notice that in a RIA implementation, the creation of view element for producing
an event and the handling of the event itself are performed at the client side. Con-
versely, in a PHP or Spring implementation, the view element representing the event
is generated at the server side by producing an HTML anchor tag when the view is
rendered. The event handling is also delegated to the server because the navigation
of an HTML hyperlink implies a call to a web server.

The computation of the “BookDetails” ViewComponent proceeds in a similar
manner, using the JavaScript function illustrated in Figure 10.37.

Note that the “createBookDetails” function (lines 37-43) is invoked every time
the user selects a book. Therefore, it starts by emptying the HTML <div> element
that hosted the content of the previously selected book (line 38) before creating and
inserting the content of the newly selected one (lines 39—42).

10.4 Implementation of the Front End for Mobile Applications 321

24 function loadBookDetails (book) {

25 var bookId = $(book).data ("id");

26 $.ajax ({

27 type: "GET",

28 url: "book-details.jsp",

29 data: {id: bookId},

30 dataType: "xml",

31 success: function (xml) {

32 createBookDetails (xml) ;

33 }

34 1)

35 }

36

37 function createBookDetails (book) ({

38 S (".book-details") .empty ()

39 .append ($ ("<h3>") .text ($("title", book).text()))

40 .append ($ ("<div>") .html ("Authors: " + $("authors", book) .text()))
41 .append ($ ("<div>") .html ("Publisher: " + $("publisher", book).text()))
42 .append ($ ("<div>") .text ($ ("description", book).text()));
43 }

44

FIGURE 10.37

JavaScript functions implementing the computation of the “BookDetails” ViewComponent.

10.4 IMPLEMENTATION OF THE FRONT END FOR MOBILE
APPLICATIONS

Mobile application development is the perfect playground for the model-driven
specification and implementation of the interface. On the one hand, mobile apps
require an extremely effective user interface, given the interaction constraints
imposed by the usage context and by the device limitations. On the other hand,
they should be deployed across a variety of devices with very different capabili-
ties. Mobile app development faces the dilemma “native versus browser-based
versus cross-platform.” Native app development uses the programming frame-
work of the operating system (e.g., Android, iOS, or Windows), which grants a
better exploitation of the device capabilities and a deeper fine tuning of the inter-
face at the cost of more effort for portability. Browser-based development resorts
to web standards for improving device- and platform-independence and exploits
the same technologies used for RIAs (HTMLS, CSS, JavaScript). The resulting
applications are more portable but are less integrated with the device hardware
(e.g., sensors, camera) and cannot be deployed in the mainstream native app
stores. Cross-platform frameworks, such as Phonegap and Appcelerator Tita-
nium, exhibit a variety of architectures and approaches, all aimed at bridging the
gap between native and browser-based development. They allow the programmer
to use one development environment and then port the code to diverse native sys-
tems, either by cross-compiling the source code for the target operating system
or by equipping the operating system with a runtime interpreter.

For space limitations, we illustrate only one approach for mapping IFML to
mobile app code: the development of a native Android app. The browser-based

322

CHAPTER 10 Implementation of applications specified with IFML

approach is similar to that of RIAs, whereas cross-platform frameworks are a hybrid
between native and HTML-based development.

10.4.1 THE ANDROID DEVELOPMENT ENVIRONMENT

Android is an open-source software stack that includes the operating system, middle-
ware, and built-in mobile applications based on a modified version of Linux that
device vendors can further customize to differentiate their products.

Figure 10.38 summarizes the main elements of the Android architecture. The
operating system kernel handles low-level hardware operations, including driv-
ers and memory management, with special attention to power optimization. The
Android runtime supports applications written in Java, executed within a custom
virtual machine. It includes the core Android libraries and incorporates most

Application Layer

Native Apps .
‘ Th”d_Party Apps Developer Apps

Application Framework

Locat:on Based Content Wind ow Activity Package
Services Providers Manager Manager hanager
Bluetooth / NFC / — y Resource
Telephony WiFi Direct W ‘ Notifications J { Views J [Manager 1
Libraries Android Run Time

SSL & wWebkit

Graphics : st :

EOpenGL.SGL.FreeTypeJJ [Media] Android Libraries
i 4 Surface Dalvik

L libc J [SQlite J (Manager ’ Virtual Machine

Linux Kernel

Hardware Drivers Power Process Memory
(USE, Disphy, Bluetooth, etc) Management Management Managerment

N (GNNN

FIGURE 10.38

The Android architecture.

10.4 Implementation of the Front End for Mobile Applications 323

of the Java Standard Edition functionality. The runtime mediates the access to
such basic libraries as WebKit, SSL, and OpenGL. The application framework
interacts with the libraries indirectly through the virtual machine and exposes
high level APIs that developers can use in their applications for window manage-
ment, location management, data storage, communication, sensing, and more.
The application layer comprises the standard apps that ship with the Android
devices, such as the phone dialer, the SMS messenger, the contact manager, and
the music player, as well as proprietary apps bundled with the device, such as app
stores and e-mail clients.

Programming an Android application involves writing the business logic code,
supplying the multimedia assets needed by the application, and providing the
resources required for the user interface, such as the layout specification expressed
declaratively in XML, the icons, and the localization strings.

The main concepts that constitute an Android application are:

* Activities: an activity is a basic user task, such as entering a contact in the
agenda or taking a photo.

* Views and View Groups: a view is an interface widget, such as a button or a
text input; views are grouped into view groups, which represent hierarchical
organizations of the layout and content.

+ Intents: an intent is the specification of a request for action. Intents allow
communication between activities, either explicitly, by naming the activity the
intent is targeting, or implicitly, by naming the desired action to which activities
capable of performing it can be bound at runtime. Implicit intents are resolved
by associating activities to intent filters, which are conditions that specify
the actions an activity can perform. Intents are also used to send and receive
broadcast messages, which notify system or applications event. Intents can also
contain data to enable parameter passing among activities.

* Events and event listeners: an event is an intra-activity occurrence, which can
be handled directly by a business method hardwired to the view element that
produced the event. Alternatively, an event can be published so that registered
business methods (called listeners) can intervene.

10.4.2 MAPPING IFML TO NATIVE ANDROID CODE

For the sake of illustration, in the following we discuss how to implement in Android
a simple “ToDo” app, whose IFML model is shown in Figure 10.39. The app sup-
ports a simple interaction for managing to-do lists and alarms.

The application contains two landmark ViewContainers. The ‘“ToDoList” is
shown by default when the application is launched, whereby the user can access the
to-do list for viewing and deleting items. The “AddToDo” container allows the user
to enter a new to-do. Upon creation, a to-do can be enriched with an alarm (date and
time), in which case a pop-up message is displayed when the deadline occurs. The
firing of the alarm pops up another ViewContainer for clearing the alarm.

324 CHAPTER 10 Implementation of applications specified with I[FML

[XOR] ToDoApp

[L][D] ToDoList | [«modal» Confirmation

Discard

——
e o J
» ToDos J
—_—

~ «ParameterBindingGroup»
—(— selected > ToDos
AddToDo +

M |

Confirm
Delete

ToDo

[L] AddTodo ‘ «modal» ShowAlarmPopup ‘
Normal
Termination Close c - | alarmDeadline
«Form» NewToDo «Details» ToDo ~
Create
ToDo &

«ParameterBindingGroup»
text > title

SetAlarm S\mp\ereld » dateEnabler: Bool

Slmpleﬁeld date: date

submit Slmpleﬁeld title: string «DataBinding» ToDo
+—d

«ParameterBindingGroup» SlmD\Efdd hour time
title > title ...

FIGURE 10.39
The “ToDo” Android app.

Each nonmodal ViewContainer is mapped to an activity. The noncontextual Navi-
gationFlow between the “ToDoList” and the “AddToDo” ViewContainers is mapped
to an explicit intent because it denotes a direct communication path between distinct
activities. The system event that triggers the alarm pop-up is mapped to a broadcast
intent, which is received by an alarm handling activity. The IFML events and naviga-
tion flows internal to the boundaries of an activity, such as the selection of a to-do in
the “ToDos” ViewComponent, are mapped into Android events handled by suitable
event listeners.

Figure 10.40 shows the XML manifest file of the “ToDo” app, which contains the
declaration of the principal components and resources.

After a preamble (lines 1-8), the <application> element contains the declara-
tion of the main components of the application: three activities (“ToDoListActivity,”
“AddToDoActivity,” and “ShowAlarmPopupActivity”) and one broadcast intent
receiver (“AlarmReceiver”). The “ToDoListActivity” contains an intent filter (lines
18-21), which specifies that it responds to the implicit intent associated with a sys-
tem action called MAIN (i.e., the launch of the app by the user).

Each activity is associated with an XML resource file, which dictates the inter-
face layout of the activity’s ViewContainer. Figure 10.41 shows the layout specifica-
tion of the “ToDoListActivity.”

The ViewContainer of the activity is mapped into a <ScrollView> ele-
ment containing a vertical <LinearLayout> subelement; this defines an elemen-
tary screen configuration consisting of a vertical scrollable pane where items can
be placed. The XML layout also specifies the static elements that implement the

10.4 Implementation of the Front End for Mobile Applications 325

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
3 package="it.polimi.todo"

4 android:versionCode="1"

5 android:versionName="1.0" >

6 <uses-sdk

7 android:minSdkVersion="8"

8 android:targetSdkVersion="17" />

9 <application

10 android:allowBackup="true"

11 android:icon="@drawable/ic launcher"

12 android:label="@string/app name"

13 android:theme="@style/AppTheme" >

14 <activity

15 android:name="it.polimi.todo.activities.ToDoListActivity"
16 android:label="@string/app_name"

17 android:launchMode="singleTop" >

18 <intent-filter>

19 <action android:name="android.intent.action.MAIN" />
20 <category android:name="android.intent.category.LAUNCHER" />
21 </intent-filter>

22 </activity>

23 <activity

24 android:name="it.polimi.todo.activities.AddToDoActivity"
25 android:label="@string/title_activity add to_do" >

26 </activity>

217 <receiver

28 android:name="it.polimi.todo.receivers.AlarmReceiver"

29 android:label="@string/title activity alarm" >

30 </receiver>

31 <activity

32 android:name="it.polimi.todo.activities.ShowAlarmPopupActivity"
33 android:label="@string/title activity show alarm popup" >
34 </activity>

35 </application>

36</manifest>

FIGURE 10.40
The manifest file of the ToDo Android app.

1 <Scrollview xmlns:android="http://schemas.android.com/apk/res/android"
2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout width="fill parent"

4 android:layout height="fill parent"

5 tools:context=".ToDoListActivity">

6 <LinearLayout android:id="@+id/checkBoxContainer"

7 android:layout width="fill parent"

8 android:layout height="wrap_ content"

9 android:orientation="vertical">

10 <Button android:layout width="wrap_content"
11 android:layout height="wrap content"

12 android:text="@string/button requireAdd"
13 android:onClick="requireNewToDo" />

14 </LinearLayout>

15 </Scrollview>

FIGURE 10.41
The layout specification of the “ToDoListActivity” mapping the “ToDoList” ViewContainer.

326 CHAPTER 10 Implementation of applications specified with [FML

content-independent navigation: the “AddToDo” NavigationFlow is mapped to a
<Button> element (lines 10-13). The event triggering the NavigationFlow is mapped
into the “onClick™ attribute of the <Button> element, which specifies the activity
target of the NavigationFlow?.

The business logic for building the dynamic content of the ViewContainer maps
onto the implementation code of the activity. The general schema for such a mapping
is as follows:

e The ViewContainer is mapped to an activity class (i.e., a Java class that extends
Activity).

¢ Each ViewComponent is mapped to a helper class, which supports data extrac-
tion and content rendering for the component. The helper class is also respon-
sible of creating the listeners for the events associated with the ViewComponent.

e The standard “onCreate” method of the activity class implements the busi-
ness logic for populating the activity interface after a noncontextual access.

The method orchestrates the invocation of the ViewComponent helper classes,
according to the execution sequence discussed in chapter 6.

e The activity class contains one method implementing the refresh of the View-
Container after the navigation of a flow triggered by another activity. The
method extracts the possible parameter values associated with the Naviga-
tionFlow, implemented as data associated with the intent, and orchestrates the
invocation of the ViewComponent helper classes, according to the execution
sequence discussed in chapter 6.

e The activity class contains one method for each NavigationFlow of the corre-
sponding ViewContainer that triggers the navigation to a distinct ViewContainer.
This method creates an explicit intent, stores in it the data corresponding to the
parameters associated with the NavigationFlow, and fires the intent to start the
target activity.

Figure 10.42 shows the code of the “ToDoListActivity” class. Since the “ToD-
oList” ViewContainer contains only one component (the <<MultiChoice>> List
ViewComponent), the “ToDoListActivity” class exploits only one helper class (the
private data member of class “ToDoListService,” at line 4) for dynamic data retrieval
and rendering. The code of the “ToDoListService” helper class is shown in Figure
10.43. The “ToDoListActivity” class comprises: the “onCreate” method for populat-
ing the content of the ViewContainer after a noncontextual access (lines 7-14); the
“requireNewToDo” method for triggering the “AddToDo” activity (lines 17-20); and
the “onActivityResult” method, for refreshing the content of the ViewContainer after
the completion of the “AddToDo” activity (lines 23-29).

Note that the “requireNewToDo” method initializes the intent with the
REQUIRE_NEW_TODO request code (line 19). The “onActivityResult” method
then checks the “requestCode” and “resultCode” fields of the triggering intent (line
26) to verify that it has been activated by the normal termination of the previously
triggered activity. This mechanism realizes the point-to-point asynchronous com-
munication between activities.

10.4 Implementation of the Front End for Mobile Applications 327

1 public class ToDoListActivity extends Activity {

2 public static final int REQUIRE NEW_TODO = 0;

3 private DatabaseHandler databaseHandler;

4 private ToDoListService toDoList;

5 // Initial content creation

6 @Override

7 protected void onCreate (Bundle savedInstanceState) {
8 super.onCreate (savedInstanceState) ;

9 setContentView (R.layout.activity to_do_list);

10 this.databaseHandler = new DatabaseHandler (this);

11 LinearLayout linearLayout = (LinearLayout)findViewById(R.id.checkBoxContainer);
12 toDoList = new ToDoListService (this);

13 toDoList.loadAndRender (databaseHandler, linearLayout) ;

14}

15

16 //Implements the AddToDo event of the ToDOList ViewContainer
17 public void requireNewToDo (View view) {

18 Intent intent = new Intent(this, AddToDoActivity.class);
19 startActivityForResult (intent, REQUIRE NEW_TODO) ;

20 1}

21

22 //Answers to the completion of the AddToDo activity
23 @Override
24 public void onActivityResult (int requestCode, int resultCode, Intent intent) {

25 super.onActivityResult (requestCode, resultCode, intent);

26 if (requestCode == REQUIRE NEW_TODO && resultCode == RESULT_OK)
27 if (intent != null)

28 toDoList.loadAndRender (databaseHandler, linearLayout) ;

29 1}

30 }

FIGURE 10.42

Implementation of the “ToDoListActivity” class.

Figure 10.43 shows the code of the “ToDoListService” helper class, which wraps
the business logic for implementing the data binding and the rendition of the “ToD-
oList” multichoice ViewComponent. The “LoadAndRender” method (lines 9-22)
extracts from the database the list of to-dos, creates one check box GUI element for
each to-do, associates a listener method with each check box, and inserts the check
box into the GUI layout. Note that the “onCheckBoxClicked”” method implementing
the select event in the “ToDos” ViewComponent (lines 25-37) supports the navi-
gation to the “Confirmation” modal ViewContainer and implements also the con-
struction and rendition of that ViewContainer; specifically, the method creates the
alertDialog object corresponding to the modal ViewContainer (line 30) and attaches
the event listeners corresponding to the “discard” and “confirm” events to it (lines
33-34).

The “LoadAndRender” method exploits the “databaseHandler” utility object
(line 10), which wraps the connection with the data store. For brevity, we omit the
illustration of the code implementing the persistence of the to-do list; we only men-
tion that it can be realized quite simply using the SQLite engine natively supported
by the Android framework and extending the library class “SQLiteOpenHelper” to
obtain a “DatabaseHandler” class exposing the classical CRUD methods.

Figure 10.44 shows the implementation of the listeners for the “confirm” (lines
1-19) and “discard” (lines 21-35) events associated with the “Confirmation” modal
ViewContainer.

328 CHAPTER 10 Implementation of applications specified with [FML

public class ToDolListService {
private Activity activity;

1
2
3
4 public void ToDoListService (Activity activity) {
5 this.activity=activity;
6 }
7
8 //Implements the data binding and rendition of the ToDoList

9 public void loadAndRender (DatabaseHandler databaseHandler,LinearLayout
linearLayout) {

10 List<ToDo> toDos = databaseHandler.getAllToDos () ;
11 for (int 1 = 0; i < toDos.size(); i++) {

12 CheckBox checkBox = new CheckBox (this);

13 checkBox.setText (toDos.get (i) .getText ());

14 checkBox.setId(toDos.get (i) .getId());

15 checkBox.setOnClickListener (new View.OnClickListener () {
16 @Override

17 public void onClick (View v) {

18 onCheckBoxClicked (v) ;

19 }

20 linearLayout.addView (checkBox) ;

21 }

22}

23

24 // Implements the select event and NavigationFLow on the ToDoList

25 public void onCheckBoxClicked (View view) {

26 Resources resources = getResources();

27 ConfirmDialogListener confirmListener = new

28 ConfirmDialogListener (view, databaseHandler);

29 DiscardDialogListener discardListener = new DiscardDialogListener (view);
30 AlertDialog alertDialog = new AlertDialog.Builder (ToDoListActivity.this

31 .setTitle(resources.getString (R.string.confirmTitle))

32 .setMessage (resources.getString (R.string.confirmText)

33 .setPositiveButton (resources.getString (R.string.confirmButton),
confirmListener)

34 .setNegativeButton (resources.getString (R.string.discardButton),
discardListener

35 .create();

36 alertDialog.show () ;

37}

38 }

FIGURE 10.43
Implementation of the “ToDoListService” helper class for the “TodoList” ViewComponent.

The “ConfirmDialogListener” implements an “onClick” method (lines 11-19),
which extracts from the clicked checkbox the text of the to-do and passes it to the
“deleteToDo” method of the “databaseHandler” class as the identifier of the object
to delete (line 14). The method also updates the GUI of the ToDoList ViewContainer
by accessing the parent view’s layout and removing the deleted to-do from it (lines
15-16). The “DiscardDialogListener” “onClick” method simply unchecks the view
element corresponding to the selected to-do (lines 29-34).

Note that updating the content of the target “ToDoList” ViewContainer directly
in the “onClick” event handling method, as done at lines 15-16, is convenient only
is simple cases.If the ViewContainer comprises multiple interconnected View-
Components, it is better to delegate the refresh of its content to a method of the
ViewContainer’s activity class, similar to the “onActivityResult” method used for
inter-activity NavigationFlows.

The “AddToDo” ViewContainer is mapped onto an activity whose layout specifi-
cation is shown in Figure 10.45

10.4 Implementation of the Front End for Mobile Applications 329

1 public class ConfirmDialogListener implements OnClickListener {
2 private View clickedView;

3 private DatabaseHandler databaseHandler;

4

5

public ConfirmDialogListener (View clickedView, DatabaseHandler databaseHandler
6 this.clickedView = clickedView;

7 this.databaseHandler = databaseHandler;

8 }

10 @Override
11 public void onClick(DialogInterface dialog, int which) {

12 CheckBox checkBox = (CheckBox) clickedView;

13 ToDo toDo = new ToDo (checkBox.getId(), (String) checkBox.getText());
14 databaseHandler.deleteToDo (toDo) ;

15 LinearLayout layout = (LinearLayout)clickedView.getParent();

16 layout.removeView (clickedView) ;

17 }

18

19 }

20

21 public class DiscardDialogListener implements OnClickListener {
22 private View clickedView;

23

24 public DiscardDialogListener (View clickedView) {
25 this.clickedView = clickedView;

26 }

27

28 Q@Override

29 public void onClick(DialogInterface dialog, int which) {

30 if (clickedView.getClass() == CheckBox.class) {
31 CheckBox checkBox = (CheckBox)clickedView;
32 checkBox.setChecked (false);

FIGURE 10.44
Implementation of the listeners for the “confirm” and “discard” events.

The layout is a simple vertical scrollable pane that contains four widgets cor-
responding to the field of the “NewToDo” Form ViewComponent and one button
implementing the submit event.

Figure 10.46 shows the activity class implementing the “AddToDo” ViewContainer.

The “onCreate” method (lines 6-32) constructs and initialized the objects
corresponding to the GUI widgets. In particular, the “dateEnabler” check box is
enriched with an “onClick” event handler that toggles the state of the date and
time picker widgets so that they become visible when the checkbox is selected
(lines 18-26).

The “addToDoToList” method (lines 35-54) implements the submit event. It cre-
ates an intent (line 36), extracts the relevant information from the GUI widgets (lines
37-50), executes the “CreateToDoAndSetAlarm” action (line 51) implemented as
a private method of the activity class, stores the result of the execution in the intent
(line 52), and finishes. The “CreateToDoAndSetAlarm” method also schedules an
alert for the new to-do when the user has provided a deadline. This requires creating
another intent (line 61), targeted to an alarm receiver class, storing in it the identifier
of the to-do, and registering a pending intent with the system alarm manager (lines
67-69).

330 CHAPTER 10 Implementation of applications specified with [FML

1 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout width="fill parent"

4 android:layout height="fill parent">

5 <LinearLayout

6 android:id="@+id/newToDoLayout"

7 android:layout width="fill parent"

8 android:layout height="wrap content"

9 android:orientation="vertical">
10 <EditText android:id="@+id/toDoContent"
11 android:layout width="match parent"
12 android:layout height="wrap content"
13 android:hint="@string/defaultToDo"
14 android:inputType="text"/>
15 <CheckBox android:id="@+id/dateEnabler"
16 android:layout width="match parent"
17 android:layout height="wrap content"
18 android:text="@string/insertDate"/>
19 <DatePicker android:id="@+id/toDoAlarmDatePicker"
20 android:layout width="match parent"
21 android:layout height="wrap content"/>
22 <TimePicker android:id="@+id/toDoAlarmTimePicker"
23 android:layout width="match parent"
24 android:layout height="wrap content"/>
25 <Button android:layout width="wrap content"
26 android:layout_height="wrap_ content"
27 android:text="@string/button_addToList"
28 android:onClick="addToDoToList"/>
29 </LinearLayout>
30</Scrollview>
FIGURE 10.45

Layout specification of activity mapping the AddToDo ViewContainer.

Figure 10.47 shows the class implementing the alarm receiver, which maps the “alar-
mDeadline” system event and the “ShowAlarmPopup” ViewContainer of Figure 10.39.

The “AlarmReceiver” class implements the “onReceive” method (lines 6-16),
which extracts from the broadcast intent the message and the identifier of the to-do,
checks if the to-do exists in the database, and creates an intent to start the “Show-
AlarmPopup” activity. Note that setting the FLAG_ACTIVITY_NEW_TASK flag
for the intent causes the pop up alert to be brought to the front of the screen with the
state it was last in.

Finally, Figure 10.48 shows the layout and Figure 10.49 shows the activity class
mapping the “ShowAlarmPopup” ViewContainer.

The layout definition uses a <RelativeLayout> element and the flexible “match_
parent” size qualifier (lines 1-4), to let the pop-up window take all the space occu-
pied by the parent activity, which is the entire screen.

The activity class implements the “onCreate” method, which extracts from the
triggering intent the alarm message and creates a dialog box with one confirmation
button associated with the “ReturnToListListener” class, implementing the outgoing
NavigationFlow of the “ShowAlarmPopup” ViewContainer. This listener, shown in
Figure 10.50, simply declares the termination of the calling activity.

10.4 Implementation of the Front End for Mobile Applications

1 public class AddToDoActivity extends Activity {

2 public final static String TODO_CONTENT = "it.polimi.todo.TODO_ CONTENT";
3 public final static String TODO_DATE = "it.polimi.todo.TODO_ DATE";

4

5 @Override

6 protected void onCreate (Bundle savedInstanceState) {

7 super.onCreate (savedInstanceState);

8 setContentView (R.layout.activity add to_do);

9

10 CheckBox dateEnabler = (CheckBox) findViewById(R.id.dateEnabler);
11 dateEnabler.setOnClickListener (new View.OnClickListener () {

12 @Override

13 public void onClick (View v) {

14 CheckBox c¢ = (CheckBox) v;

15 TimePicker t = (TimePicker) findviewById(R.id.toDoAlarmTimePicker) ;
16 DatePicker d = (DatePicker) findViewById(R.id.toDoAlarmDatePicker);
17

18 if (c.isChecked()) {

19 t.setEnabled(true);

20 d.setEnabled (true) ;

21 }

22 else {

23 t.setEnabled(false);

24 d.setEnabled(false);

25 }

26 }

217 b

28 TimePicker t = (TimePicker) findvViewById(R.id.toDoAlarmTimePicker)
29 DatePicker d = (DatePicker) findviewById(R.id.toDoAlarmDatePicker);
30 t.setEnabled (false);

31 d.setEnabled (false) ;

32}

33

34 // Implements the submit event and NavigationFLow of NewToDo
35 public void addToDoTolist (View view) {

36 Intent intent = new Intent();

37 EditText editText = (EditText) findViewById(R.id.toDoContent);

38 String newContent = editText.getText ().toString();

39 CheckBox dateEnabler = (CheckBox) findViewById(R.id.dateEnabler);

40 if (dateEnabler.isChecked()) {

41 DatePicker datePicker = (DatePicker) findViewById(R.id.toDoAlarmDatePicker);
42 int day = datePicker.getDayOfMonth () ;

43 int month = datePicker.getMonth();

44 int year = datePicker.getYear();

45 TimePicker timePicker = (TimePicker) findViewById(R.id.toDoAlarmTimePicker);
46 int hour = timePicker.getCurrentHour () ;

47 int minute = timePicker.getCurrentMinute();

48 GregorianCalendar pickedDate = new

49 GregorianCalendar (year, month, day, hour, minute);

50 }

51 createToDoSetAlarm(newContent, pickedDate);

52 setResult (RESULT OK, intent);

53 finish();

54 }

55

56 private void createToDoSetAlarm(String message, GregorianCalendar alarmDate) {
57 if (!message.isEmpty()) {

58 ToDo toDo = new ToDo (message, alarmDate);

59 long id = databaseHandler.addToDo (toDo) ;

60 if (alarmbate != null

61 Intent intent = new Intent(this, AlarmReceiver.class);

62 intent.putExtra(AlarmReceiver.ALARM MESSAGE, message);

63 intent.putExtra ("toDoId", id);

64 PendingIntent pendingIntent = PendingIntent.getBroadcast (this, 0,

65 intent,

66 PendingIntent.FLAG UPDATE_CURRENT) ;

67 AlarmManager alarmManager = (AlarmManager) getSystemService(ALARMisERVICE);
68 alarmManager.set (AlarmManager.RTC_WAKEUP, alarmDate.getTimeInMillis(),

69 pendingIntent); }

70}

71}

FIGURE 10.46

I
331

Implementation of the listeners for the “confirm” and “discard” events.

332 CHAPTER 10 Implementation of applications specified with IFML

public class AlarmReceiver extends BroadcastReceiver {
public final static String ALARM MESSAGE = "it.polimi.todo.ALARM MESSAGE";
public final static int ALARM REQUEST = 2;

@Override
public void onReceive (Context context, Intent intent) {

String message = intent.getStringExtra (ALARM MESSAGE) ;

long toDoId = intent.getLongExtra ("toDoId",O0L);

DatabaseHandler dbHandler = new DatabaseHandler (context);

if (dbHandler.retrieveToDo (toDoId) != null) {
Intent startPopupIntent = new Intent (context, ShowAlarmPopupActivity.class);
startPopupIntent.putExtra (ALARM MESSAGE, message);
startPopupIntent.setFlags (Intent.FLAG ACTIVITY NEW TASK) ;
context.startActivity (startPopupIntent);

FIGURE 10.47

Implementation of the receiver for the to-do alarm.

1 <Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent"

5 android:paddingBottom="@dimen/activity vertical margin"

6 android:paddingLeft="@dimen/activity horizontal margin"

7 android:paddingRight="@dimen/activity horizontal margin"

8 android:paddingTop="@dimen/activity vertical margin"

9 tools:context=".ShowAlarmPopupActivity" >

10</RelativelLayout>

FIGURE 10.48

Layout specification of the “ShowAlarmPopup” ViewContainer.

17 }

public class ShowAlarmPopupActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);
setContentView (R.layout.activity show_alarm_popup) ;
Intent intent = getlIntent();

if (intent.getExtras() != null) {
String message = intent.getStringExtra(AlarmReceiver.ALARM MESSAGE) ;
Resources resources = getResources|();

AlertDialog dialog = new AlertDialog.Builder (this)
.setMessage (message)
.setPositiveButton (resources.getString (R.string.confirmButton),
new CloseListener (this)) .create();
dialog.show () ;
}

FIGURE 10.49

Implementation of the “ShowAlarmPopup” activity class.

10.6 Bibliographic Notes 333

1 public class CloselListener implements OnClickListener {
2 private Activity contextActivity;
3
4 public Closelistener (ShowAlarmPopupActivity contextActivity) {
5 this.contextActivity = contextActivity;
6 }
7
8 @Override
9 public void onClick (DialogInterface dialog, int which) {
10 contextActivity.finish();
11 }
12}
FIGURE 10.50

Implementation of the “CloseListener.”

10.5 SUMMARY OF THE CHAPTER

This chapter discussed on how to map the platform-independent IFML models into
specific technological platforms and provided a set of guidelines on how to gener-
ate running code from IFML diagrams. Ideally, the mapping to the implementation
layer could be illustrated for any software architecture that supports user’s interac-
tivity. For space reasons, this chapter illustrated four main categories of platforms
that represent a good sample of the current status of the practice: pure HTML with
a template based approach (specifically, on so-called LAMP environments compris-
ing Linux, Apache, MySQL and PHP), pure HTML with a presentation a framework
(namely, Spring, one of the most popular web presentation frameworks based on the
Model-View-Controller pattern), rich internet (specifically, Asynchronous JavaScript
and XML - AJAX), and mobile applications (Android is chosen as a representative of
native mobile application development).

10.6 BIBLIOGRAPHIC NOTES

Web programming is a very popular subject for which there are lots of online ref-
erences and textbooks. A popular online resource for beginners is the W3schools
web site (http://www.w3schools.com/), which publishes tutorials and self-evaluation
exercises on the most relevant web technologies.

The programming of web applications with the LAMP architecture is also
the subject of innumerable textbooks ad online resources. The book by Robin
Nixon [Nixon2012] is a good start on the subject. The PHP reference web site
(http://www.php.net/) is a hub for language documentation.

Spring-based development requires a background in Java servlets and possibly
in Java Enterprise Edition (JEE). The official reference for JEE is Oracle’s web
site (http://docs.oracle.com/javaee/), which offers both a tutorial and the reference
documentation of the platform APIs. The official web site of the Spring Project
(http://spring.io/) publishes online reference documentation, getting started guides,

http://www.w3schools.com/
http://www.php.net/
http://docs.oracle.com/javaee/
http://spring.io/

334 CHAPTER 10 Implementation of applications specified with [FML

and advanced tutorials, introducing the reader to several Spring tasks. Among the
many textbooks, Spring in Action by Craig Walls [Walls11] and Spring in Practice by
Willie Wheeler and Joshua White [WW13] offer a comprehensive overview.

Rich Internet applications are developed with a mix of technologies and
approaches, including HTMLS, JavaScript, CSS, AJAX, and jQuery. Quick tutorials
on all of these are published in the already mentioned W3School web site. The book
HTMLS: Designing Rich Internet Applications (Visualizing the Web) by Matthew
David [David13] addresses RIA development with HTML, from the tag structure
of HTMLS to its multimedia capabilities, and programming with JavaScript and
advanced AJAX patterns. An official introduction to HTMLS is published by the
W3C (http://www.w3.org/TR/html5/introduction.html).

Extensive coverage of jQuery and JavaScript programming can be found in the
Learning jQuery book by Jonathan Chaffer and Karl Swedberg [CS13].

Native, web-based, and cross-platform mobile application development
approaches are discussed and contrasted in [CL11, RB12, PSC12]. The Android
developers’ web site (http://developer.android.com/) is the official source of materi-
als for Android training, featuring the APIs references and development guides. A
popular text on Android development is Professional Android 4 Application Devel-
opment by Reto Meier [Meier12].

END NOTES

1. For brevity, the examples do not show PHP security practices such as storing sensitive data
in separate include files, masking error logs, interrupting the script upon database con-
nection failure, etc. See http://www.php.net/manual/en/security.php for an introduction to
PHP security.

2. Noncontextual navigation can be based on an explicit InteractionFlow from another View-
Container or on an implicit one if the target ViewContainer is a landmark.

3. Forms with preloaded fields may have one or more data retrieval queries. In this case, each
preloaded field is treated as a List (preload cardinality = many) or Details (preload cardi-
nality = 1).

4. An alternative is to use REST-style parameter concatenation in the URI template.

5. The .do suffix is commonly used in Java web frameworks to distinguish requests addressed
to the dispatcher.

6. For simplicity, we do not consider failures in the computation of ViewContainers.

7. The display of the news of the default category requires the extraction of the default
value from the “NewsCategoriesService” and its storage in the model before invoking the
“NewsltemsSearchService.”

8. In the sequel, we sometimes use the terms activity and ViewContainer interchangeably to
denote the activity that maps a ViewContainer and vice versa.

http://www.w3.org/TR/html5/introduction.html
http://developer.android.com/
http://www.php.net/manual/en/security.php

CHAPTER

Tools for model-driven
development of
iInteractive applications

The modeling notations, the development process, and the implementation tech-
niques for building interactive applications with IFML have been overviewed in pre-
vious chapters independent of any specific tool. As shown in chapter 10, the domain
model and the IFML models can be manually mapped to executable programs and
structures, such as a relational database and a set of JSP templates and components
of the MVC architecture. The guidelines provided in the previous chapters can help
engineers produce a working application using the coding environment and deploy-
ment platform of their choice. However, when a well-defined software engineering
method is in place, development can be assisted by rapid application development
tools, supporting and documenting the design and automating in part the production
of the implementation code.

To make this discussion concrete, this chapter exemplifies the support to IFML
model-driven development with the help of a specific tool, called WebRatio. WebRa-
tio is a composite application development tool that covers not only the front-end
design, but also domain modeling, business logic modeling, and process modeling,
thus providing an end-to-end approach to model-driven development. In the biblio-
graphic notes we will mention more tools that are either already IFML-ready or can
be customized to model application front ends with [FML.

11.1 INTRODUCTION TO WEBRATIO

WebRatio is a development environment supporting IFML. It was created in 2001
for the model-driven development of applications specified with the Web Modeling
Language.

The tool comprises several modeling perspectives and includes a code generation
framework that automates the production of the software components in all tiers of
the application and the connections between the application and external APIs. More
precisely, WebRatio focuses on the following main aspects:

e Domain modeling: it supports the design of domain models using the structural
features of the UML class diagram.

» Front-end design: it assists the design of IFML diagrams, comprising both built-in
IFML constructs and extensions defined by the designer and imported into the tool.

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00011-4 3 3 5
Copyright © 2015 Elsevier Inc. All rights reserved.

336 CHAPTER 11 Tools for model-driven development of interactive

Business logic design: it allows the designer to explode and refine an [IFML
Action by specifying its internal functioning as a workflow of component invoca-
tions, such as data query and update operations, Web API calls, utility functions,
and—more generally—any piece of user-defined code imported into the tool.
Data Mapping: it enables the declaration of JDBC/ODBC-compliant data
sources supporting the application, the automatic translation of the persistent
classes and associations of the domain model into relational schemas, and the
generation of the object-relational mapping (ORM) specifications bridging

the classes and associations of the domain model to the data structures of the
persistent store. If the database is pre-existing, only the ORM specifications are
created.

Presentation design: it offers functionality for defining or importing presentation
templates, typically encoded in HTMLS5, and for mapping the elements of a View-
Containers and ViewComponents to the layout and visual properties of a template.
Code generation: it automatically translates IFML models and presentation
templates into applications built in Java and HTMLS, with the front end running
on desktop and mobile terminals and the back end running on any Java server,
deployed either on premises or directly on public cloud resources.

The workflow of Figure 11.1 summarizes the design process of WebRatio, high-

lighting the design phases together with their inputs and outputs. The different tasks
will be described in more detail in the next sections.

Presentation design

Domain Modelling

Front-end Modelling

Business logic Modelling

mo‘del _-- ! Business logic
! model
i | IFML model
| R A,
|
I
|

{> Data Source Mapping

/\

Model checking & rapid
prototyping
Maintainance and Evolution

FIGURE 11.1

Templates

Code
generation

Application

Deployment

Development flow with WebRatio.

11.2 Domain Model Design 337

The software architecture of the applications created by WebRatio exploits the
design principles and techniques described in chapter 10 for web and mobile applica-
tions. In particular, web applications are built using the MVC pattern. Generic com-
ponents implement action in the business tier, while HTMLS5 and CSS presentation
rules are used for factoring out the look and feel from the page templates.

Mobile applications are built by translating the IFML model into platform-inde-
pendent code that is executed directly or through a wrapper in the target device. Pres-
ently, WebRatio generates code for the PhoneGap mobile development framework.!

In this chapter, we briefly overview the functionalities offered by WebRatio and
discuss some advanced features, such as model checking, model-level debugging,
cooperative work, automatic documentation, and user-defined IFML extensions. The
chapter ends with an annotated bibliograph, overviewing a sample of other tools for
the model-drive design of interactive applications.

11.2 DOMAIN MODEL DESIGN

WebRatio provides a graphical user interface embedded as a plugin in the popular
Eclipse workbench, which allows designers to compose both the domain model and
the IFML diagrams describing the interface of the application.
Figure 11.2 shows a snapshot of the WebRatio user interface, which is organized
into the typical four areas of application development tools:
e aproject tree (upper left frame), organizing all the elements of the application
project;
» awork area (upper right frame), where the specifications are visually edited;

-Project tree

| oo % g

Work area

Properties
frame

Message area

FIGURE 11.2

Overview of the WebRatio interface.

|
338

CHAPTER 11 Tools for model-driven development of interactive

e aproperty frame (lower left frame), where the properties of individual elements
can be set; and

* amessage area (lower right frame), where messages and warnings are
displayed.

A basic WebRatio application project consists of a single class diagram and of
a set of IFML diagrams. In particular, Figure 11.2 shows the WebRatio editor open
on the domain model of one of the sample applications shipped with the tool: the
“Acme” online shop. The work area visualizes the class diagram. The designer can
define classes, attributes, associations, and generalizations. The elements displayed
in the diagram are also presented in the project tree, where they are hierarchically
organized in folders. The properties of the currently selected element of the diagram
are displayed and can be edited in a property frame.

The Acme Domain model comprises both persistent and nonpersistent classes and
associations, as specified by the duration property set in the properties panel. The dif-
ferent duration is also highlighted visually in the diagram by the use of a different color.

Classes and associations can be enclosed within Packages to help the organiza-
tion of large domain models. Furthermore, a default personalization subschema com-
prising the User and Group classes and the associations representing roles (described
in chapter 3) is added by default to the domain model, and the developer can extend
it with additional classes and associations.

11.3 IFML FRONT-END DESIGN

The same general organization of the graphical user interface also supports the edit-
ing of the IFML diagrams. The design of a diagram is accomplished by picking
constructs such as ViewContainers, ViewComponents, Events, InteractionFlows,
Actions, and Context dimensions from the tool palette and arranging them in the
work area according to the IFML diagram formation rules.

Figure 11.3 shows the IFML work area, open on the IFML diagram that specifies
the public site view of the Acme application, which includes multiple ViewContain-
ers, ViewComponents, and Actions. These are also displayed in the project tree, and
the properties of the currently selected ViewComponent (the ProductDetails Module
in Figure 11.3) appear in the properties frame.

The binding of ViewComponents to classes of the domain model can be specified
using the properties frame or a work area menu contextual to the View Component.
The designer can select the DataBinding class, set the VisualizationAttributes, and
define the ConditionalExpression.

Double clinking the icon of a Module brings up the IFML diagram where the
module content is defined, as shown in Figure 11.4. Figure 11.4 also shows that
hovering with the mouse over an InteractionFlow causes the information about the
associated ParameterBindingGroup to be displayed.

%%| Web IFML - Acme/Model.wr - WebRatio Personal = X

File Edit View Navigate Search Project Run Window Help
Hr-HQS AER S~ 8-2(F B d@ -0 A7 #rifivHroobrariWer|F 5 (8 Web IFML) *7 BPMN

* WebRati |3 Outline 2 12 Packag | D Cloud S| = O|(& AlphabeticalFilter () *Acme £ =0

& shop -
[5 Catalog

ome page

[Choose Quantity

&Y Home

@ Combination Details

@ Photo Gallery

[¥|¢y» @s sjalajalalaln

Choose Quantity kS

(Quantity |

@ Product Details. %
[& Search 5 { %1[D] Home
[5 Stores -
e = = Selected Product

1 Properties & T Overview o] o
‘=1 ® Product Details [miu10] ‘W Manage Cart
®|a Module + \
5 [Name Product Details

Module Definition | Product Details Be

Ignore Master Page m] e 5/ T

Home o] 7

/My shopping B

Default 5] D Shopeing sagw

Landmark =] @ Welcome Message

Protected]

Secure 0 5| [wstores x|

Custom Descriptor o E

Custom URL Name [D] Store Catalog

= —a
[iodf -
« | »

3* Project| 23 Domain Model | Shop| & Administrator| & Initialize| 5 Acme Modules|

(1 Layout [z Problems &, Generation Errors 23 x=0

) Press ESC to cancel

FIGURE 11.3

WebRatio interface for editing IFML diagrams.

d pu3-uoI4 N4l €°TT

ugisa

6€€

[5%] Web IFML - Acme/Modelwr - WebRatio Personal — — -

(Silol™ <" |

File Edit View Navigate Search Project Run Window Help
D-HRe MR -2 2B By JBiH-0-QriFfy BT reerariWa - |F

£ [F* Web VL] 7 8PN
]

* WebRati (3 Outiine % I Packag | @ Clouds| = O|(& B
[Operations Modules Allow |5 N ¢S | (wx MY TN EE i
E9 Product Details . Acme Modules » 3 Product Details » @ Product Details |
@ Combination Details B -
@ Photo Gallery — Product x *
@ Product Details = _).113:'
[3 Product Related Combinati c Details
Combination Details N = | Comblnation ey =
+3 Input Port J »
 Photo Gallery
W Cart -
[Properties 52 T Overview| (e Detai Photo Gallery
|5 @ Product Details [hym6] 5 Product Ke Product Ke
— — = -0 Product =
g hym6_[mov1#mpkg2#hymé] A F
‘| Name Product Details @ - Details
5 ||Landmarks & movl#mpkg2#hym6#icu7#olnd
Localized o '6 1 Parameter Binding
(Content Page RS o Product Key
Running Profiles & — Tech Record
&
| <[1 »
3* Project 23 Domain Model | Shop 1 Administrator | & Initialize | & Acme Modules|
i Layout {2/ Problems &, Generation Errors 2 x=0
o® Press ESC to cancel

FIGURE 11.4

Interface for defining the content of a Module.

QAI10RJBUI JO JUBLUAO|aABP UBALIP-[OPOW J0J S|00] TT ¥ILdVHD ObE

11.4 Data Mapping and Alignment 341

11.4 DATA MAPPING AND ALIGNMENT

WebRatio assists the implementation of the data tier for applications that deal with
persistent data by associating the front end to the data sources where the content
to be published and manipulated resides (Figure 11.5). The data sources supported
natively include any system accessible via JDBC/ODBC. Additional data storage
platforms—such as noSQL databases, XML repositories, and LDAP directories—
can be added by programming and importing within WebRatio the Actions and View-
Components for connecting to such data sources.

WebRatio guides the user in declaring the data sources and in mapping the classes
and association to tables and columns. The mapping information is stored in ORM
mapping files of the underlying ORM system (Java Persistence API and Hibernate
ORM formats are supported).

Derived data can be added to the elements of the domain model with the help
of a wizard. A code generator translates the OCL expressions of the derived ele-
ments into equivalent SQL statements, which can be automatically installed into
the appropriate data source in the form of stored procedures or views (Figure
11.6).

%* WebR [z Outlin 2% Packa | @ Cloud | = B[*Acme ®

=8 Domain Model A ElE v ¢y wx o |aa]a[])n
&) AcmeDB
& Cart # [Product X
& Product = 3 Cat
egory
g ICa‘eQOW [E) @ oid: integer
mage @ category: string
@ Product (R @' # products: integer
@ # photos N
@ category Pal 1

@ code
@ description
@ highlighted

@ name 3 Tech Record @ description: text
@ oid & oid: integer @ name: string
@ price @ colors: blob N N| @ price: currency K“
@® thumbnail @ dimensions: string @ tr}umpnailz blob
B gy Y @ highlighted: boolean
= — ——— ~ N .
] Properties 22\ @ Overview =~ =0 @ category: string
— L @ # photos: integer
= @ code [att39] -
E Schema APP - i
| |Table PRODUCT @Image

(3| [Column 2 oid: integer
s @ description: text

@ picture: blob

»| 44
[0 |

<

°* Project‘%‘ Domain Model | Shop | & Administrator |5 Site View 4| & Ir

4 Layout 52 2 Problems| & Generation Errors

Select a page from the Editor or the Outline to display its layout.

FIGURE 11.5

WebRatio interface for defining the mapping of the domain model onto a persistent data
store.

|
342

CHAPTER 11 Tools for model-driven development of interactive

%] Database Synchronizer

Database Synchronizer

Choose the elements to import into the model or to export to the database.

o "o S| G| B
4 @ Entities [1 elements]
4 & Product
4 @ Product <=> APP.PRODUCT
@® newAttribute <=> NEWATFRIBUTE\

@ newAttribute i NEWATTRIBUTE

[n] »

-

Identifier pkgl#ent8#attl0 Column NEWATTRIBUTE

Name newAttribute Type varchar(255)

@ < Back Next > Finish Cancel

FIGURE 11.6

WebRatio interface for aligning the domain model and the schemas of the persistent stores.

When an application is bound to some persistent stores, WebRatio can be used
to check the alignment between the domain model and the physical databases and to
reconcile changes made in the model with the database, and vice versa.

All the persistent classes and associations in the domain model and their derived
elements must be correctly mapped before generating the code and running the appli-
cation. Otherwise the code generation may produce incomplete results.

11.5 ACTION DESIGN

IFML treats the application business logic as a black box. The Action, which is modeled
only for its interplay with the user interface in terms of parameters exchange and the
effect on the visualized ViewContainer. WebRatio embeds [FML design within a broader
model-driven development approach and thus permits the designer to define the internal
details of actions in order to generate the complete code of the application. The internal
functionality of an Action can be defined by using the action definition editor, shown in
Figure 11.7, which opens by double clicking on the Action in the IFML diagram.

The action definition consists of a graph of component calls, in which the nodes are
business components and the arcs are InteractionFlows denoting the order of execution
of components. As in IFML, InteractionFlows can be associated with a ParameterBin-
dingGroup to specify input—output dependencies. Also, different InteractionFlows can
exit a component to express different termination conditions, similar the specification
of black-box Actions in the IFML diagram. The components that constitute the action
definition can be chosen from those predefined in WebRatio or developers can use
their own business components, which can be imported into the tool.

ﬁ] Web IFML - Acme/Model.wr - WebRatio Personal

— — O ——

(Sl x|

Eile Edit View Navigate Search Project Run Window Help

N RS MAR &SRB IB-IdB IS0 A A iHF oy IRA|F 5 (F Web IFML) *2 BPMN
** WebRatio Explorer | 5= Outline 22 I Package Explorer| & Cloud Services| = 8 icalFil P 28
@ Photo Gallery s 3w | ¢Y | aux YT >
@ Product Details & Acme Modules» W Cart
¥ Cart o
@ Save Cart m
< Cart Exists? | [T Save(Cart
©, Create Cart F
@, Create Cartltem Create Cart Item Success
& Select Cart s — :l—p
@® Time e et
+§ Input Port -
T Properties 22 [Overview| MEESIn
|
[u ©. Create Cart Item [cru18] D X
B d Create crul8 [mov Fe) Rrice
“®||Name Create Cart Item f Pioduce
0
| [Bulk @ QJ Quantity)
— [Entity Cart Item & d
Avoid Blank Records [u] | '6
Blank Attributes =) b
5 &
[u] =
5]
[u]
]
Secure | [a] |
Custom Descriptor | [u] [
Custom URL Name | I
« i] »
%* Project |2 Domain Model [Shop & Administrator | © Initialize | £ Acme Modules
 Layout 2 2! Problems| & Generation Errors| (laaqaq=o
Select a page from the Editor or the Outline to display its layout.

in® 1item(s) selected

FIGURE 11.7

WebRatio interface for action definition.

aquondy 911

ugisa

eve

344 CHAPTER 11 Tools for model-driven development of interactive

11.6 PRESENTATION DESIGN

An essential aspect of a successful user interface is its graphic design, especially
when the application is targeted to the general public and thus must be as attractive
as possible. IFML purposely ignores the presentation aspects and delegates them to
the implementation, possibly supported by tools.

WebRatio incorporates a presentation design functionality that addresses the defi-
nition of the interface look and feel with a template-based approach. In essence, the
designer can provide an example (a template in WebRatio terminology) for each
IFML ViewElement: ViewContainer; ViewComponents of different kind such as
Details, List and Forms; ViewComponentParts, such as VisualizationAttributes and
Fields; and Events with InteractionFlows.

Presentation templates are created by the graphic designer with the language of
choice, typically HTMLS5, CSS, and JavaScript. A template contains concrete presen-
tation elements, such as page layout constructs and graphic resources, and abstract
elements, which are placeholders for dynamically generated content.

Examples of concrete elements are layout grids, banners, footers, and graphic
resources. Abstract elements are markers for the different kinds of IFML elements
that could be visualized in a template, such as ViewComponents and landmark navi-
gation menus.

In practice, the graphic designer produces a set of annotated files in a source
presentation language, which specify an “example of rendition” for a given ViewEle-
ment. Such files contain simple directives, expressed as special-purpose XML tags,
that denote the insertion of IFML elements produced by the code generator. WebRa-
tio provides functionalities for importing the mock-ups of the graphic designer into
the tool and for transforming them into layout templates at different granularities
usable for code generation. Figure 11.8 shows the interface of the template import
wizard.

The tool also allows the developer to select and associate already available tem-
plates to IFML ViewElements in a project. The association can be done at different
levels of granularity depending on the generality of the template:

* A template can be specifically designed for an individual ViewContainer or
ViewComponent. In this case, the code of the template can reference the
individual subelements (e.g., the individual fields or submit events of a Form,
the various attributes of a Details or List ViewComponent, or the specific
ViewComponents within a ViewContainer). A distinct presentation style can be
defined for each of them. This approach is suited to ViewElements with highly
sophisticated presentation requirements, because it can apply fine-grain control
over the look and feel of each visualized element, but the resulting template is
not reusable across projects or different ViewElements of the same project.

* A template can be designed generically for multiple ViewElements. In this case,
the code of the template cannot reference individual ViewElements but must
express presentation features at a higher level. Usually, the template defines

11.6 Presentation Design

r

|$*| New Layout Template @Eu

Layout Template Type !
Choose the layout template type. U

Choose the type of template you want to create:

O [Attribute @ [3 Cell © [Field

O & Grid © B Flow © [Page @ [s] Component

O [3 Frame

Choose the component:

»

A, Alphabet
[BAM Component
['s] Calendar
= Checkable List
s

111

Excel L
[% Form

%, Graph Component

- Hierarchy

4% Job Status

i= List

= Message ¥

—— e—— e e - - seeeae e s

FIGURE 11.8

Layout template import wizard.

the same presentation style for all the ViewElements of the same type (e.g., for
all the List ViewComponents, all the Forms, all the fields of a given type), thus
providing a uniform look and feel across the interface. This approach is effec-
tive for large applications with simple presentation requirements.

As an intermediate approach, a set of ViewElements can be associated with the
same template, as in the previous case, but some rules of the default presentation
template can be overridden at the local level of some specific ViewElements.
For example, an application could set a default presentation template for List
ViewComponents, which could then be overridden for specific ViewCompo-
nents. In this way, different presentation styles for the same ViewElement can
coexist in the same application or even in the same ViewContainer, yielding

a good compromise between uniformity and specificity of presentation.

This approach is effective for large applications, with complex presentation
requirements.

345

346 CHAPTER 11 Tools for model-driven development of interactive

WebRatio supports all the above-mentioned approaches. In particular, the devel-
oper can assign a template at a coarse level of granularity (e.g., for the entire applica-
tion) and then override such a global default by assigning more specific templates to
finer-grain ViewElements at the individual ViewContainer, ViewComponent, View-
ComponentPart and InteractionFlow level. Figure 11.9 shows the property panel
whereby the developer can assign a specific presentation template to the selected
ViewElement and fine tune such presentation parameters as the positioning of labels
and the usage of icons.

Figure 11.10 shows a page generated by WebRatio that contains three List View-
Components published with three different layout templates.

Another aspect of presentation design is the definition of the relative position-
ing of dynamic content within the interface. An IFML ViewContainer may comprise
multiple nested ViewContainers and ViewComponents. The IFML model does not
prescribe the actual layout of such elements within the rendered interface. This task is
accomplished in WebRatio by means of the dedicated interface shown in Figure 11.11.

The interface consists of a grid- and location-based layout editor. The presentation
template associated with the ViewContainer is analyzed, and the abstract locations
defined in it are identified. An abstract location is a place where dynamic content can
be rendered. The designer can define the positioning system of each location (e.g., by
using a grid) and assign ViewElements to the places of the positioning systems (e.g.,
to the cells of the grid).

Figure 11.12 shows the page generated by WebRatio. The ViewComponents are
laid out as specified in the abstract grid model of Figure 11.11. In the rendition, only
two ViewComponents out of the three shown in the abstract grid are displayed in the
pop-up window, because the user has chosen only one product to be added to the trolley.

11.7 CODE GENERATION

After specifying the domain model and the IFML diagrams, assigning presentation
templates to ViewElements and defining their placement in the abstract positioning
systems, and mapping the persistent classes and associations of domain model to the
data sources, it is possible to launch automatic code generation, which transforms the
application models into components for the selected deployment platform. WebRatio
supports code generation for mobile platforms and for HTMLS5-CSS-Javascript web
front ends backed by a Java web server architecture.

Before generating the application code, the developer selects the target platform
and the deployment host, which can be a cloud resource.

11.7.1 CODE GENERATION FOR WEB AND RICH INTERNET
APPLICATION

The web code generator adopts the MVC software architecture presented in chapter
10. The simplest configuration exploits a pure-HTML encoding of the presentation

’ [E Layout Parameters ==
B Properties £ Overview| #Y=a Name Value Current Value ||
_
Selected Product [daus3] Label Position | v | left
I#d) |Label Label width 15ex
| [Style WebRatio ML T ittt
E Grid Layout <Grid System> ¥)
— |Frame Layout WebRatio/Basic v e & e [PEei
Component Layout | WRDefault/Normal v o & Use icon for BLOBs extensions v | | false
Attr. Layout WRDefault/Default v |e &R Icon Folder Resources II
Shown Attributes |M Automatic & . i
= - . Icon Extension png |
Field Layout WRDefault/EntryUnit ¥ |
Shown Fields ¥ Automatic = [
Flow Layout WRDefault/Default ~ o @ Restore Defaults| |
Shown Flows M Automatic & II
Style Class @ oK] [Cancel l
— —————

FIGURE 11.9

Assignment of a presentation template (Layout) to the "Selected Product” Details ViewComponent.

uoleJauan apo) £'11

VA2

348 CHAPTER 11 Tools for model-driven development of interactive

o' Alternative styles

€ 5 C i [localhost8080/Acme/pagel.do

Apps (3 Imported From ... @ sh20 wiki € www.sketchness... @ Pierofraternali ...

iCorsi2: My home I LongURL | The ... »

"% 0@

(3 Other bookmarks

WEB l‘O RATIO®

> Alternative styles

code name
5125
5126
5127
6755

v

Wilderness

v

Pink fantasy
Allair

v

v

Amplitude

v

8630
1243
1237
7145
4678

Baronetto
Allas

v

v

Aladdin

v

Silvestream

v

Sara

v

1243
1238
4680
7148
> 1245
4123
9876
3456

Mambo

v

Euclid

v

Andros

v

Byron
Landscape
Rodolfo

v

v

Lucid

v

Blue Fountain

7145 Sivestream v
—ProductsiWihAnctherStyle—
5125 Wikderness
5126 Pink fantasy
5127 Allair
6755 Ampitude
8630 Baronetto
1243 Atlas
1237 Aladdin
| 7145 Sivestream |
4678 Sara
1243 Mambo
1238 Eucid
4580 Andros
7148 Byron
1245 Landscape
4123 Rodolfo
9876 Lucid
3456 Blue Fountain

ProductsWithAnotherStyle ProductsWithYetAnotherStyle

name Wilderness name
Select Select
name Amplitude name
Select Select
name Aladdin name
Select Select
name Mambo name
Select Select
name Byron name
Select Select
name Lucid name
Select Select

| generated by WebzRatio® |

ral::(asy name Allair
Select

Baronetto name Atias
Select

Sivestream name Sara
Select

Euclid name Andros
Select

Landscape name Rodolfo
Select

Blue

Fountain

FIGURE 11.10

The same ViewComponent displayed with three different layout templates.

Drag to place elements

‘W Problems| & Generation Errors}

[} Choose Quantity »

a

[Quantity|
4 = quantity
B label
B value
B validation error message
- Add
Selected Combination
Selected Product
4 Grid
#: Cell

FIGURE 11.11

Selected Product

Selected Combination

[% Quantity

<

~_Locations Overview

f Main Grid

[
|

T

ght Location

==

Custom location

i Top

==

Custom location T...

Interface for relative positioning of ViewElements in ViewContainers.

11.7 Code Generation

code name startdate enddate photo

o
d {
i

[I generated by We

- - e— - [)|
/3¢ Home =
€« € i [[localhost8080/Acme/page14.do?flibck= sv1&hold=4&link=impl.redirect&nav=page14.0&cbck=wrReq95283 %O @ = |
| i Apps (3 Imported From ... Wl sh20 wiki € wwwisketchness... &l Pierofraternali... [# iCorsi2 My home [LongURL|The.. [® DECIMAL to BL. » (3 Other bookmarks \
|
‘ Welcome piero Logout
j WEB ‘. RATIO f
Caahy_Sear s pm— I
 Home
Ho code 1237
Highlighted Products T ||
h
code name ~category thumbnail price name
price €3,000
°
photo
Highlighted Combinations -

P—.
startdate 01/01/2007
enddate 01012008
highiighted yes

products

quantity [1

Add

FIGURE 11.12

349

Page generated by WebRatio, with the layout specified in Figure 11.11.

templates, a Java implementation of the back end, including dynamic page templates
for the view, a controller servlet and plain Java objects for the model, and a relational
implementation of the data tier. In this configuration, the output of code generation

includes:

A set of JSP templates for the View, including HTML code and JSP custom

tags. Each JSP template corresponds to a ViewContainer and is obtained by
merging the presentation templates relevant to the ViewContainer itself, the
ViewComponents included in it, and their ViewComponentParts, Events, and
InteractionFlows. The code generator injects code into the resulting assembled
JSP template by replacing the abstract XML elements of the presentation tem-

plate with concrete Java code for retriev

ing content from the model objects.

A set of generic Java components, deployed in the Model, supporting the com-

putation of the content of ViewContainers and ViewComponents and the orches-
tration of the workflow of IFML action definitions. One generic component is
deployed for each type of ViewComponent (e.g., Lists, Details). Such generic
components are instantiated with XML descriptors, which specify their concrete
properties, such as a query realizing the data binding, the parameters required in
input and provided in output, and the visualization attributes. Normally, the devel-
oper is not required to edit descriptors. If this need arises, however, for instance to
optimize a SQL query, the custom descriptor can be stored in a special directory
and will not be overwritten by subsequent invocations of the code generator.

The configuration file of the Controller.

350 CHAPTER 11 Tools for model-driven development of interactive

The produced JSP templates are completely agnostic of the rendition language
used, which depends on the presentation template provided by the graphic designer.
Therefore, the code generator can be used to deploy alternative renditions of the
same ViewContainer, such as an HTML page, a spreadsheet, or a PDF document.

For achieving the responsiveness of rich Internet applications, which refresh the
page content selectively upon user interaction, the JSP templates produced at the
server side embody an AJAX controller that manipulates the DOM of the page and
performs simple actions such as hiding and displaying portions of content based on
the page computation logic and pushing requests to the server side when the user
interaction requires content that is not already available.

11.7.2 CODE GENERATION FOR MOBILE APPLICATIONS

One of the main advantages of IFML as a platform-independent language is the capac-
ity of describing cross-platform applications. To exploit this opportunity, WebRatio
also supports the generation of code for mobile apps, starting from IFML diagrams.
The mobile application generator produces cross-platform code by exploiting Cor-
dova/ Phonegap, an open-source framework for mobile applications. Developers
write HTMLS, CSS3, and JavaScript code. The framework wraps this code within a
container (essentially a mobile browser). In this way, “native” apps can be deployed
on different mobile platforms (seven platforms are supported as of today). WebRatio
generates the HTMLS5, CSS3, and JavaScript sources from the IFML models and
automatically packages them as running mobile apps using the Phonegap services.
In contrast to the web and RIA generated applications, the code produced for mobile
applications implements all the logics required for page computation in the HTML
and JavaScript artifacts deployed in the Phonegap environment. This makes it pos-
sible to deploy stand-alone apps that work even when disconnected from the Internet.

11.8 ADVANCED FEATURES

WebRatio includes additional functionalities for model checking, debugging, coop-
erative work, automatic project documentation, and user-defined IFML extensions.

11.8.1 MODEL CHECKING

One of the benefits of conceptual modeling is the possibility of automatically check-
ing the project for errors at the design level. This feature allows the early verification
of the models produced by the designer, saving time in the code generation and in
the debugging of the application. WebRatio provides error checking at three levels:

* Domain and IFML Model: this function checks the correctness of the domain
model, of the IFML diagrams, and of the action definition workflows; it presents
the detected problems, together with their level of severity and hints on how to
fix them.

11.8 Advanced Features 351

¢ Domain Model Mapping: this function checks if the persistent classes and
associations of the domain model are correctly mapped to the data sources and
signals if the databases are misaligned with respect to the domain model due
to changes in the UML specification or in the physical data sources; detected
problems with the associated hints are highlighted.

* Presentation and publishing: this function checks if all the ViewElements are
associated with a presentation template, if all the elements comprised within a
ViewContainer have been placed in the locations provided by the presentation
templates, and if the deployment server contains all the components needed to
run the application; if anything is missing, appropriate warnings are provided,
with suggestions on how to solve problems.

Figure 11.13 shows an example of the output of the model checking applied to
the IFML diagram. The warnings signal that no ParameterBindingGroup has been
found for the Login flow, which may cause the Login Action to remain without the
mandatory input parameters of username and password.

11.8.2 MODEL DEBUGGING

Code-level debugging is one of the most popular methods in traditional applica-
tion development. WebRatio offers a similar functionality for inspecting the runtime
behavior of an application, but at the conceptual model level.

The developer can set breakpoints on any IFML model element in order to stop
the execution before or after the computation of the element. When a project contains
breakpoints, execution can be performed in debug mode, which permits the devel-
oper to follow the progress of the computation step-by-step, inspecting the input
and output parameter values of ViewComponents as well as the content extracted by
ViewComponent’s ConditionalExpressions.

Figure 11.14 shows the interface of the model debug perspective of WebRatio.
The upper-left frame lists all the pending interaction and internal application events,
such as a user event or the beginning and end of the computation of a ViewCon-
tainer or ViewComponent. The developer can interact with the interface and step
over or into each execution phase and inspect the principal computation variables,
shown in the upper right frame. At the same time, the work area and project tree
display the status of the execution visually, by highlighting the ViewElements under
computation.

11.8.3 COOPERATIVE WORK AND ENTERPRISE SCALE
DEVELOPMENT

WebRatio includes project alignment functions, which facilitate the parallel develop-
ment of an application by a work team. The typical workflow of a WebRatio project
consists in developing the data model first and then adding the specifications of the
site views necessary to fulfill the application requirements. Site views are natural

Y| ¥y | wx o|aaa|a|ale]d]d:

+ad

{iY Login bt

R,

@

&+

- Login
sv2#page3#enu2#inl

No Parameter Bindings

AP &

.

| s Project|lz§ Domain Model ‘@ AddressBook| (& Public| & Initialize‘@ Modulesl

7 Layout [Problems 52 &, Generation Errors|

0 errors, 3 warnings, 0 others

Description
& Warnings (3 items)

FIGURE 11.13

& The mandatory output parameter 'Password’ is not transported along an outgoing flow from the component 'Login’
& The mandatory output parameter ‘Remember credentials’ is not transported along an outgoing flow from the component ‘Login’
& The mandatory output parameter 'User Name' is not transported along an outgoing flow from the component 'Login’

Resource

Login
Login
Login

Path

/AddressBook
/AddressBook
/AddressBook

The model checking function detects problems in the IFML diagram.

[4°1%

dAI0BJBIUI JO JUBWAO|PASP UBALIP-[aPOW J40) S|00] TT ¥ALdYHI

[file Edit View Navigate Search Project Run Window Help
OrEes AdR

% Debug
% CreateOrModifyUnitsample (Web Application]

>

#® HTTP Request from localhost (Suspended)
) Select Product : Begin
- Link3 : Begin
I Create or Modify Unit Sample : Begin

= *CreateOrModifyUnitSample :
CYEYCICIEYCIE N)

Acme

<
% Project 28 Domain Model | Home | @ Init

|[(Console [Tasks & Properties &%

[5]|%]

Ted| Name

ua Home Page
Landmarks
Visibility Policy
Home

| |Protected

Home [sv1]

Home

1 item(s) selected

By ARV XA IO F IS

[FIEIRANES
=
o
=
@ - i
i g Select Product |,
-0 2] =
4 Product
S Fiaes

Ova-

RIE-YEIES

@ nttpy/localhost:8080/CreateOrModifyUnitsample ~ (debug port: 60195)

[E a4

7 = O fer Variables %

Name

@ Remote Request

@ Page Form

% Breakpoints

159/ Debuug - CreateOrModiyUnitSampIe/Viodelwr - WabRatio Personal o =

@ Execution Context

@ Session Context

@ Component Inputs

(slly

ERROR

11.8 Advanced Features

e 5 (B Babug)* wev e >
“87v°=0

Value

HTTP Request from localhost

Whtagefomnbean

il »

= O (&= Outline &
) Home.
- { Create or Modify Unit Sample
& Edit Product
Products
(5 Select Product
¢ productOid
led productSelected
) ERROR
. Save Product

FIGURE 11.14

I
353

The model debug perspective in WebRatio.

units of work, which can be independently developed by separate work teams. There-
fore, WebRatio includes two functions for facilitating parallel development:

into the current project, merging the two projects together. The import function
performs a number of consistency checks and transformations that ensure the
merged project is the correct union of the two merged subprojects. Consistency
checks and transformations are logged into a file and presented as a report to the

user, who can accept them or undo the import.
The export function makes it possible to export from the current project either

the data model alone or the data model together with one or more site views.
The export function creates a new project, consisting of the exported subsche-
mas. The new project can be evolved in parallel with the original project and
then merged back into the original project using the import function.

11.8.4 AUTOMATIC DOCUMENTATION

WebRatio automatically generates project documentation in a format inspired by the
popular JavaDoc documentation layout. The document generator is written as a set of
customizable rules, which the designer can override and extend to obtain a personalized
documentation format. The documentation can be produced in such formats as HTML,
PDF, or RTF, and describes every aspect of the project in an easy-to-browse format.

The import function makes it possible to import the site views of another project

354 CHAPTER 11 Tools for model-driven development of interactive

Figure 11.15 shows a sample documentation page, which includes a ViewCon-
tainer description. Clicking on each symbol and link opens the documentation page
associated with the selected concept. In the example, by clicking on the “Store-
sList” ViewComponent the user accesses the detailed information of the selected
element.

11.8.5 IFML EXTENSIBILITY

WebRatio exploits the extension mechanism of IFML and allows developers to cre-
ate and integrate into the development tool their own custom IFML extensions, such
as ViewContainers ,ViewComponents, and code generators.

Custom IFML elements permit the designer to reverse-engineer their interface
and business components and make them part of the conceptual modeling and code
generation process. Extending IFML requires defining a plug-in implementation-
level component and deploying it in WebRatio. The model editor and code generator
can then use the new component as any other IFML built-in element.

The definition of a custom component requires addressing both design-time and
runtime issues. Adding a custom ViewElement to WebRatio requires the creation of
the following artifacts:

* An IFML element definition: this is an XML descriptor file, created with a
wizard provided by WebRatio; it contains information that instructs WebRatio to
build the proper GUI commands for inserting the new IFML element within the
IFML Model, linking it to other elements, and defining the admissible input and
output parameters.

N =
)@ tiessycrusersrater © ~ & | @ acme x ‘—‘)k
F Eile Edit View Favorites Iools Help x_ &convert v BlSele(
&) CAUsers\fratemainore O ~ & | @ ac | [z =
@e‘ A p-olen i= powerIndexunit Stores List SoToHeader® pwi7| A

File Edit View Favorites Tools Help

Jrage Store Catalog

© General properties * Incoming Parameter

Name Stores List Block Factor None
Entity O store® Block Index None

e = Block Window N
Store Catalog Display Attributes ® address® M:: R!s':“:w NZ::
[Stores List Sort Attributes @ address® ascending currentoid None

© address® ascending

Default Sort Attributes
® email® ascending
5

% Qutgoing Parameter

oid [pataUnit Store Details® o Store[oid] ~ Details®

Block Factor

1 Block Window 4
Store Details Elow.Ordes ~ Details ®
Internal Link List
= Internal Flow In34 farlu lader ©
i PowerIndexUnit Stores List® / ~ Details
I
™ General properties
Property Section Name Details
& general properties Source £= PowerIndexUnit Stores
Name Store Catalog List®
URL Fragment Value Target [store Details®
= Type normal
Summary Section e atic .
|| Component Summary Binding s,
E pataUnit Store Details® validate true]
i powerIndexUnit Stores List © < >
Internal Flow Summary
- Details ® from {= PowerIndexunit Stores List® to [DataUnit Store Details ® v

FIGURE 11.15

Example of project documentation generated by WebRatio.

11.9 Summary of the Chapter 355

e Validation rules: these are optional rules, encoded following a standard template
provided by WebRatio, which enable the tool to validate the usage of the custom
IFML element in the IFML diagram and report errors, warnings, and repair
hints when some correctness rule is not respected.

e The input, output, and logic templates: if the element is a ViewComponent,
which typically requires some processing at runtime, the developer must fill
in a standard template to describe the admissible (optional and mandatory)
input and output parameters and the optional configuration aspects of the
element’s implementation; this information is then exploited by the actual
implementation code to configure the runtime service that realizes the cus-
tom component.

e The presentation template(s): if the element must be rendered in the interface
(e.g., a ViewContainer or a ViewComponent), the developer has to provide one
or more examples of its rendition in the presentation language of choice.

¢ The implementation code: an IFML extension is normally encoded as a runtime
object, which performs the actual business service for which the extension is
designed. The typical case is a ViewComponent, which is implemented as a Java
class responsible for input acquisition, content extraction and processing, and
output computation.

WebRatio comes with a set of predefined extensions, both general purpose and
specific for the development of web applications. Extensions are of two classes.
IFML extensions specialize the IFML model elements, according to the built-in
mechanism of the language. Action components provide business logic blocks that
can be used in the definition of the internal workflow of an IFML Action.

Figure 11.16 shows the interface for managing the construction of a custom
IFML extension. The project tree on the left organizes all the artifacts constituting
the extension. The work area shows the form for creating the XML descriptor file of
the “Hierarchy” ViewComponent extension.

Once a custom extension is completely defined, it appears in the WebRatio tool
palette of the IFML diagram editor, as shown in Figure 11.17. It can then be used in
the diagram with the standard IFML elements.

11.9 SUMMARY OF THE CHAPTER

This chapter presented an exemplary implementation of IFML built as a model-driven
development environment within the Eclipse framework. The described implementa-
tion, called WebRatio, is a composite application development tool that covers not
only the front-end design, but also domain modeling, business logic modeling, and
process modeling, thus providing an end-to-end approach to model-driven develop-
ment. The chapter also mentions more tools, which are either already IFML-ready,
or can be customized to model application front-ends with IFML, through UML
profiling or metamodeling.

(8% Web IFML - View C its/Hierarchi

File Edit Navigate Search Project Run Window Help

OrERe A& &~ 2vR|By B if@isv0vQA-ifyifiviveey I 35 Debug [§* WebIFM ~
(% WebR 23" &2 Outlin| [# Packa| @ Cloud] = O|() *Acme [HierarchicalindexUnit £5.), =0
{8 € B 7| General P i &l
& Operations -
g Service Components General Information Flows.
Session Components =
& Utility Components 16x16 Icon: + Flow Source
62 View Components 32x32 Icon: [¥] - Flow Target
& Components Dlfinstance i Default Intra-Page Flow: [v]
& Alphabet Name: [HierarchicalindexUnit Default Flow To Operatior: =
@ Details
@ Form IDPrefic hinu OK Flows
& Calendar hinu OK Flow Source
& Hierarchy Name Prefix: Hierarchy 10K Flow Target |
& Images Hierarchy Multiple OK Flows 7
& Layout -
[Bundlexml Label: Hierarchy OK Flow Codes Script:
[Bundle_itxml E Hierarch
& Logic
@ Inputtemplate
Logic.template Type KO Flows
" 5 Ovtputtemplate © View Component © Operation © Both KO Flow Source
larings -1 KO Flow Target
(3 WebModel.template RO &
& Unitxml iipe RO
& Simple List <l s KO Flow Codes Script: 1
[Properties & . B Overview| <8 & site View 5
B = General [Sub-El [Logic| Layout| D [Version
Propel Value
perty i Layout {2/ Problems 52"\ & ion Errors| T
0items
Description = Resource Path Location Type
“« Lk »

FIGURE 11.16

Form for editing the XML configuration file of a custom IFML extension.

QAI10RJB)UI JO JUBLUAO|aABP UBALIP-[OPOW J0J S|00] TT ¥ILdVHD 9S€

11.10 Bibliographic Notes 357

([*Acme 83
K[Gi|¥ ¢9 m= o ajaa
|}}
-

t= | View Components
)
=

Al

Z

FIGURE 11.17
The custom IFML ViewComponent extension (Hierarchy) of Figure 11.16 in the IFML
editor tool palette.

11.10 BIBLIOGRAPHIC NOTES

More information on WebRatio can be found at the web site of the product (http://
www.webratio.com/). Usage experience in large scale model-driven development
with WebRatio is reported in [FB2014]. An open-source IFML editor for Eclipse is
also available (https://ifml.github.io/).

Other tools that support the model-driven development paradigm with a philoso-
phy comparable to that of IFML and WebRatio are listed below.

e Mendix (http://www.mendix.com/) supports the design of multidevice, multi-
channel applications, based on a domain model, business logic components, and
process flows, with a visual modeling approach.

e Outsystems (http://www.outsystems.com/) exploits business process models,
domain models, and business logic models to specify application designs that
are then mapped to code for mobile and web devices and connected with a vari-
ety of backend platforms.

http://www.webratio.com/
http://www.webratio.com/
https://ifml.github.io/
http://www.mendix.com/
http://www.outsystems.com/

358 CHAPTER 11 Tools for model-driven development of interactive

¢ OrangeScape (http://www.orangescape.com/) focuses on the visual development
of business applications offered in a cloud-based, PaaS mode.

¢ LongJump/AgileApps Live (http://www.softwareag.com/special/longjump/)
allows subject matter experts and developers alike to build and deploy process-
driven application solutions visually.

e Tersus (http://www.tersus.com/) is an open-source tool for editing visual models
and deploying the corresponding web and mobile applications on dedicated server.

e SoftFluent Entities (http://www.softfluent.com/) maps conceptual entities of the
domain model to interface components for rapid application development.

UML modeling and code generation tools that support UML extensions can
be customized with an IFML profile, exploiting the UML profile representation of
IFML described in the standard.

Cross-platform frameworks for mobile application development have become very
popular, thanks to the advantage of overcoming the burden of developing multiple
versions of applications. Among the most popular ones, we can mention AppCelerator
(http://www.appcelerator.com/), and Apache Cordova (http://cordova.apache. org/)
and its distribution PhoneGap by Adobe (http://phonegap.com/). While, the former
lets developers write native apps in Javascript and then provides a unified Javascript
API for all the platforms, the latter operates by wrapping HTMLS, CSS3, and
JavaScript code into a container (basically consisting in a mobile browser). WebRatio
mobile code generation [BMU14] produces code for Cordova / PhoneGap (http://
phonegap.com/).

END NOTES

1. http://phonegap.com/.

http://www.orangescape.com/
http://www.softwareag.com/special/longjump/
http://www.tersus.com/
http://www.softfluent.com/
http://cordova.apache.org/
http://phonegap.com/
http://www.appcelerator.com/
http://www.appcelerator.com/
http://www.appcelerator.com/
http://phonegap.com/

CHAPTER

IFML language design,
execution, and
iIntegration

One of the main advantages of IFML is that it is not a stand-alone initiative insulated
from other modeling approaches. On the contrary, IFML is deeply rooted within the
Object Management Group model driven architecture (MDA) and, more in generally,
within the model driven engineering (MDE) development approach.

IFML is designed to be easily used together with other modeling languages, thus
allowing comprehensive system and enterprise modeling.Therefore, to exploit its
expressive power for system design, [IFML must be put in context within a broader
modeling perspective. In this chapter, we describe three aspects that contribute to a
deeper understanding of the language:

e The IFML language definition, which the standard specifies formally in terms
of metamodel, notation, and interchange format, following the OMG’s best
practices;

¢ IFML executability, which expresses the execution semantics of the language
and permits implementers to map the conceptual, platform-independent IFML
constructs to actual executable behaviors in the chosen user interface platform;
and

¢ IFML integration with other software design languages, through cross-referenc-
ing between model elements in different diagrams.

12.1 IFML LANGUAGE SPECIFICATION THROUGH
METAMODELING

The IFML language is specified within an official, human-readable OMG specifica-
tion document, which in turn is accompanied by some technical artifacts:

¢ The IFML metamodel, specifying the structure and relations between the IFML
elements;

e The IFML UML profile, defining a UML-based syntax for expressing IFML
models, through an extension of the concepts of the class, state machine, and
composite structure diagrams;

e The IFML visual syntax, offering a graphic notation for expressing [FML
models in a concise and intuitive way, as shown in the examples throughout this
book; and

¢ The IFML model serialization and exchange format, for tool portability.

Interaction Flow Modeling Language. http://dx.doi.org/10.1016/B978-0-12-800108-0.00012-6 3 59
Copyright © 2015 Elsevier Inc. All rights reserved.

360 CHAPTER 12 IFML language design, execution, and integration

Altogether, these artifacts compose the IFML language specification. Each of

them is specified according to the OMG standards:

¢ The metamodel is defined through the MOF metamodeling language (an equiva-
lent ECORE definition is available too).

¢ The UML profile is defined according to UML 2.4 profiling rules.

¢ The visual syntax is defined through Diagram Definition (DD) and Diagram
Interchange (DI) OMG standards.

¢ The model serialization and exchange format is defined based on XMI.

A discussion of the complete language specification is outside the scope of this
book, but it can be found in the OMG specification document. In the following, we
report a few excerpts of the specification.

12.1.1 METAMODEL

The IFML metamodel is defined according to the best practices of language defini-
tion, including abstraction, modularization, reuse, and extensibility. The metamodel
is divided in three packages: the Core package, the Extension package, and the
DataTypes package. The Core package contains the concepts that build up the inter-
action infrastructure of the language in terms of InteractionFlowElements, Interac-
tionFlows, and Parameters. Core package concepts are extended by concrete concepts
in the Extension package to cater to more precise behaviors. The DataTypes package
contains the custom data types defined by IFML.

The IFML metamodel reuses the basic data types from the UML metamodel,
specializes a number of UML metaclasses as the basis for [IFML metaclasses, and
assumes that a domain model is represented with a UML class diagram or with an
equivalent notation.

Figure 12.1 shows an excerpt of the IFML metamodel that represent some of the
elements at the highest level of abstraction. IFMLModel, as its name suggests, repre-
sents an IFML model and is the top-level container of all the other model elements.
It contains an InteractionFlowModel, a DomainModel, and may optionally contain
ViewPoints.

InteractionFlowModel represents the user’s view of the application, with refer-
ences to sets of InteractionFlowModelElements, which collectively define a fully
functional portion of the system.

NamedElement is an abstract class that specializes the Element class (the most
general class in the model) denoting the elements that have a name. For any Ele-
ment, Constraints and Comments can be specified. InteractionFlowModelElement
is an abstract class that generalizes all the elements of an InteractionFlowModel. As
such, it will not be used directly within IFML diagrams. Instead, it is specialized by
more precise concepts (e.g., InteractionFlow, InteractionFlowElement). In turn, these
subconcepts are abstract, and must be specialized as well. Figure 12.2 shows some
concrete subelements of InteractionFlowElement and InteractionFlow, which are the
ones that we have actually used in the examples of the preceding chapters.

12.1 IFML Language Specification Through Metamodeling 361

«Metaclass» «Metaclass» «Metaclass»
IFML: :Co.re:: IFML::Core:: JFML::Core::
Annotation jpe——=) Element T o Constraint
+text : String [1] +d : String [1]
)
«Metaclass» «Metaclass»
IFML::Core:: IFML::Core::
InteractionFlowModelEfement | 0" NamedElement
+name : String [1]

=

O [[[|
«Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Core: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:
i il i 1 1 [IFMLModel 1 1 i 1 0..* | De i
b !
«Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core::
j i low Parameter inding indi j
+direction : Direction = in +language : String [1]
+defaultValue : Expression +body : String [1]

FIGURE 12.1
IFML metamodel excerpt describing the abstract elements of the language.

«Metaclass» «Metaclass» 1 o «Metaclass»
IFML::Core:: IFML::Core:: - IFML::Core::
Parameter 0. 1 / i / y=y
+direction : Direction = in 1 0.*
+defaultValue : Expression

«Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»
0.* IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core::
ViewElement ViewComponentPart Action Event NavigationFlow DataFlow
0.* 0.*
0.1 1

«Metaclass» «Metaclass»
IFML::Core:: IFML::Core::

ViewContainer ViewComponent

+isLandmark : Boolean
+isDefault : Boolean
+isXOR : Boolean 0.1

FIGURE 12.2
IFML metamodel excerpt describing some core elements of the language.

All the other concepts of the language and their associations are defined in the
metamodel in a similar way.

12.1.2 EXTENSIBILITY

As seen in chapter 7, IFML can be extended by adding new, more refined concepts. To
this end, IFML uses the native extensibility mechanisms of UML to allow the defini-
tion of stereotypes, tagged values, and constraints on existing concepts, making them

362

CHAPTER 12 IFML language design, execution, and integration

more fitting for specific purposes or scenarios. The IFML standard specification docu-
ment already includes an Extensions package, which exemplifies how the extension
mechanism works. In particular, it contains some specializations of the concepts in the
Core package. In the same way, users of the language can define new packages con-
taining new constructs to model platform-independent or platform-specific features.

According to the philosophy of the language, not all possible extensions are
allowed. Valid extensions should refine or adapt the core concepts to specific cases,
specializing their semantics without altering them. The IFML specification explicitly
mentions that only the following concepts (and their specializations) can be extended
while retaining compliance with the standard: ViewContainer (for defining specific
screens or interface containers), ViewComponent (for describing specific widgets
or controls), ViewComponentPart (for specifying particular properties of existing
or new ViewComponents), Event (for covering platform specific events), Domain-
Concept and FeatureConcept (for covering additional content sources), and Behav-
iorConcept and BehavioralFeatureConcept (for covering integration with additional
behavioral models or modeling languages). Extensions of other elements are disal-
lowed by the standard. Any other extended concept will be considered proprietary
and outside the IFML notation.

12.1.3 PROFILE, VISUAL NOTATION, AND INTERCHANGE FORMAT

Besides the core packages and their extensions, the remaining parts of specifications
describe the UML profile, the visual notation, and the interchange format. The IFML
UML profile specifies the IFML elements as stereotypes of UML elements. The dia-
gram notation defines the symbols and graphical rules for the elements that must be
represented graphically in the diagrams. The XMI definition defines an XML syntax
for the serialization of the models.

12.2 IFML MODEL EXECUTION

This section provides an illustration of the execution semantics of IFML (i.e., an
informal description of the kind of computation that an IFML model specifies). Mod-
els, like programs, are meant to represent the execution of a computer-based applica-
tion, so it is important that syntactically correct models, like any program, behave in
ways conforming to the intention and intuition of the designer.

An interface is essentially a device that reacts to stimuli (events) by changing its
state (transition) and possibly emitting output signals. In an interactive application,
the user is the main source of events. A user interacts with the view, which provides
a representation of the current status of the system. An event produced by the user
triggers the reaction of the system, which possibly executes some Action and causes
a transition to a new state, manifested by an update of the view.

The semantics of IFML do not address the internal functioning of the Actions,
which can be described separately. Actions are considered black boxes: they are

12.2 IFML Model Execution 363

started by a triggering event and terminate by signaling another event (e.g., normal
or exceptional termination).
The semantics of a modeling language such as IFML have important applications:
¢ They allow checking models for the presence of desired properties and the
absence of anomalies.
e They drive the construction of model interpreters and code generators, for which
it is imperative to know exactly what the model does.

Completely formalizing the semantics of IFML exceeds the scope of this book.
This section provides some hints on the subject that are meant to let the designer better
understand the meaning of an IFML diagram. For simplicity, we restrict the illustra-
tion to synchronous user interfaces (i.e., we exclude the case of asynchronous system
events). The bibliographic notes contain several sources that discuss at greater length
the semantics of modeling languages, including interaction description languages.

12.2.1 STATE REPRESENTATION

An IFML models describes the state of the user interface and its evolution in response to
events. A state of the interface is the set of visible ViewContainers and active ViewCom-
ponents and Events. Intuitively, a ViewContainer is visible if it is in view according to
the nesting of ViewContainers in the composition model of the interface. A ViewCom-
ponent is active if its content can be determined. An Event is active if it can be triggered.

12.2.2 VIEWCONTAINER STATE

The state of a ViewContainer can be visible or invisible. The set of existing View-
Containers can be represented as an AND-OR tree, that is, a tree where the root is
the top ViewContainer and the internal nodes are unlabeled (if the children nodes are
displayed together) or labeled with OR (if the children nodes are displayed alterna-
tively). The default subview container of a XOR ViewContainer must also be dis-
tinguished (e.g., by marking the corresponding node in the tree). For example, the
interface of Figure 6.17 can be represented as the tree of Figure 12.3. Note that, if the

Mail

Settings MessageWriter
FIGURE 12.3

AND-OR tree corresponding to the interface of Figure 6.17.

364 CHAPTER 12 IFML language design, execution, and integration

interface is page-based, as in a typical web application, it can still be represented as
a single tree by adding a dummy XOR ViewContainer at the top, with all the pages
as first-level children and the home page as the default sub-ViewContainer of the
dummy element.

The tree representation facilitates understanding what is visible when a View-
Container is accessed. When a ViewContainer X is accessed, the set of visible View-
Containers is given by the union of X and its visible ancestors and descendants,
determined according to the following visibility propagation rules:

e IfY is the default XOR child of X orY is a conjunctive child of X,
VisibleDescendants(X) = { Y} U VisibleDescendants(Y).

e If X is a conjunctive child of Z, VisibleAncestors(X) = {Z} U
VisibleDescendants(Z) U VisibleAncestors(Z).

e If X is a XOR child of Z, VisibleAncestors(X) = {Z} U VisibleAncestors(Z).

For example, considering the tree of Figure 12.3:

¢ When “Mail” is accessed, VisibleAncestors(“Mail”) = {} and
VisibleDescendants(“Mail”) = {“Messages”, “MessageManagement”, “Message
Search”, “MailBox”}.

e When “Settings” is accessed, VisibleAncestors() = {*“MessageManagement”,
“Messages”, “MessageSearch”, “Mail”’} and VisibleDescendants(“Settings™) ={} .

12.2.3 STATE OF A VIEWCOMPONENT

The state of a ViewComponent can be active or inactive. A ViewComponent is active
when the enclosing ViewContainer is visible and the values of its input parameters
are available.

12.2.4 ACTIVATIONEXPRESSIONS

ActivationExpressions add restrictions on top of the set of visible and active
ViewElements. If they evaluate to false, an otherwise visible/active element is
treated as invisible/inactive. ActivationExpressions can be applied with a finer
grain to individual Events, so it may happen that a ViewElement is visible/active
but loses its interactivity because the ActivationExpressions associated with one of
its Events evaluates to false.

Considering again the model of the running example (repeated for convenience
in Figure 12.4). When accessing the e-mail application, the “MessageList” View-
Component is active because the enclosing ViewContainer (“MailBox”) is visible
and the ViewComponent receives the needed parameter from the DataFlow outgo-
ing from the “MailBoxList” ViewComponent (thanks to the PATTERN CN-DEEF:
default selection, introduced in chapter 5). However, the toolbar with the events for
deleting, archiving, reporting, and moving messages remains inactive until at least
one message is selected in the “MessageList” ViewComponent, as conveyed by the
MessageSet->notEmpty() ActivationExpression.

[XOR] Mail

[D] [L] Messages [L] Contacts

[XOR] MessageSearch

«List» MailBoxList

«DataBinding» [XOR] MessageManagement
MailBox

‘/> [D] MailBox [L] Settings

«ConditionalExpression»
Self.MailMessageGroups->
includes(Mbox|

! Select [XOR] MessageViewer

1 Mailbox

d [D] MessagelList MessageDetails

1

! «Multichoice» MessageList Detailsy [L] MessageWriter
: «DataBinding»MailMessage ‘- MessageReader

1

1

1

<<checking>>~_
SelectMultiple ™

<<unchecking>>
<<setselection>> Deselect
MarkAllAsRead

—/ «ParameterBindingGroup»
—— / SelectedMessages — MessageSet

Delete MessageTooIbar
Archive —~ | | «ActivationExpression»
«Parameter» MessageSet | I MessageSet->notEmpty()
Report
M
MoveTo U Labels

FIGURE 12.4

Model of the e-mail application interface for reading a single message, with activation expression.

uonnoaxy PO 1IN4I 72T

G9¢€

366 CHAPTER 12 IFML language design, execution, and integration

12.2.5 EVENT PROCESSING

The execution semantics of IFML dictate how events are treated. Event process-
ing can be regarded as an algorithm that takes as input the state of the interface
and an occurred event and computes the next state of the interface. The occur-
rence of an event has two main effects. It updates the visibility status of View-
Containers, and it updates the active status of ViewComponents within the visible
ViewContainers.

12.2.6 VIEWCONTAINER VISIBILITY UPDATE

The initial state of the application can be regarded as an initialization event, which
marks as visible the root of the ViewContainer tree. For example, when the applica-
tion initial event occurs, the root of the tree in Figure 12.3 becomes visible, and so do
its descendants according to the visibility propagation rules. During the application
usage, two kinds of events cause the update of the ViewContainer visibility:

* InteractionFlow navigation: A point-to-point navigation is performed from a
source ViewElement to a target ViewElement. When the actual destination of
the navigation is a ViewComponent, the target ViewContainer is the one directly
enclosing the ViewComponent. When the destination of the NavigationFlow is
an Action, the target ViewContainer is the one reached by the InteractionFlow
exiting from the termination ActionEvent of the Action. As a result of naviga-
tion, the target ViewContainer becomes visible, and the visibility propagation
rules are applied to determine the visibility status of the other containers. Inter-
actionFlow navigation can further be distinguished into:

* Inter-container navigation flow traversal: The source ViewContainer is
neither among the visible descendants nor among the visible ancestors of the
target ViewContainer. This situation appears to the user as a replacement of
a portion of the view (the source ViewContainer disappears from view and is
replaced by the target ViewContainer plus its visible ancestors/descendants).
For example, the navigation of a web application falls in this category: all
pages are same-level siblings of a (dummy) top XOR ViewContainer, and
navigation flow traversal makes the destination page replace the source page.

¢ Intra-container navigation flow traversal: The source ViewContainer is
either among the visible descendants or among the visible ancestors of the
target ViewContainer. This situation appears to the user as a refresh of the
content of a portion of the view: the source ViewContainer remains in view
but some other part of the view changes. For example, in Figure 12.4, the
selection of a single message from the “MessageList” ViewComponent is an
intra-container flow traversal within the “MessageViewer” ViewContainer.
The container remains in view, but a part of its content changes because the
“MessageDetails” subcontainer replaces the “MessageList” one. Note that
the “MessageToolBar” remains in view because it is a visible descendant of
“MailBox,” which is a visible ancestor of “MessageViewer.”

12.2 IFML Model Execution

¢ Landmark navigation: A ViewContainer that is reachable due to the Landmark
visibility property is accessed. This is equivalent to the navigation of an implicit
content-independent InteractionFlow from any of the currently visible View-
Containers to the target Landmark ViewContainer.

12.2.7 VIEWCOMPONENT STATUS UPDATE

The status of parameter availability, and thus of the ViewComponents nested within
the ViewContainers, is also updated by the occurrence of events, as exemplified in
Figure 12.5.

When the “Products” ViewContainer is accessed, the “ProductList” ViewCom-
ponent is active. It requires no input, and its content can be computed by evaluating
its ConditionalExpression (which defaults to true in this case) over its DataBind-
ing instances (all the instances of entity “Product”). Conversely, as shown in Figure
12.5.a, the “ProductDetails” ViewComponent is inactive. It lacks an input param-
eter value (the “product” parameter holding the primary key of a Product instance),
and thus its content cannot be computed. When the “SelectProduct” event occurs
(Figure 12.5.b), it updates the status of the “product” parameter of the “ProductDe-
tails” ViewComponent, which then has all the values of its input parameters defined
and becomes active.

The computation of the content of a ViewContainer may be nontrivial. Sev-
eral ViewComponents may be linked in a network of input—output dependencies
expressed through NavigationFlows and DataFlows. Parameter values may be
propagated from one ViewComponents to other ViewComponents through several
ParameterBindings.

The propagation of computation within a ViewContainer can be schematized by
a best-effort rule: everything that can be computed is computed. The best-effort rule
marks as active all ViewComponents for which the needed input parameters can be
determined.

Figure 12.6 shows an example of the best-effort rule. When the “Home” ViewCon-
tainer is accessed, the “ProductDetails” ViewComponent becomes active because its
container is visible and it requires no input. Next, by the best-effort rule, the “Acces-
sories” ViewComponent also becomes active because its input parameter “product”
can be determined from the output of the “ProductDetails” ViewComponent and the
(default) DataBinding associated to its incoming DataFlow. Conversely, the “Acces-
soryDetails” ViewComponent is inactive because its input parameter “selected” can-
not be determined from the output of the “Accessories” List ViewComponent prior
to the occurrence of the “Select” event.

12.2.8 NAVIGATION HISTORY PRESERVATION

When the user triggers an Event, the content of the destination ViewContainer is
refreshed in a way that may depend on the past history of the user interaction. The
alternatives for recomputing a ViewContainer (or a part thereof) depends on the

.
367

Products

«List» ProductList

«DataBinding» Product

SelectProduct

«Details» ProductDetails

«DataBinding» Product

«ConditionalExpression»
self = product

(a)

«ParameterBindingGroup»
Selected = product

Products

(b)

Product List

ALUMINUM TUBE - RECTANGLE ATRE243 Select

ALUMINUM TUBE - ROUND ATROG44 Select
ALUMINUM TUBE - SQUARE ATSQ765 Select
COPPER ROUND BAR CRBA345 Select
COPPER PLATE COPL789 Select
COPPER SHEET SAMPLE PACK COSP876 Select
COPPER SQUARE ROD CSRO785 Select

METAL PACKS - STAINLESS MPST347 Select

= Product Details
Nome
Code

Price

Description:

Products

Select Product

ALUMINUM TUBE - RECTANGLE ATRE243 Select

ALUMINUM TUBE - ROUND ATROG44 Select
ALUMINUM TUBE - SQUARE ATSQ765 Select
COPPER ROUND BAR CRBA345 Select
COPPER PLATE CcoPL789 Select
COPPER SHEET SAMPLE PACK COSP876 Select
COPPER SQUARE ROD CSRO785 Select

METAL PACKS - STAINLESS MPST347 Select

Name
Code
Price

Description

= Product Details

COPPER PLATE
COPL789
30.00

Each pack contains a
2° x 4° section of

12 02(0162%)

16 02.(0216%)

20 02(.0410%)

22 02(0630%)

FIGURE 12.5

Example of active and inactive ViewComponents.

uolneJi8aiul pue ‘uonnoaxe ‘udisep adenduel N4l 21 ¥3LdVYHD 89¢%

12.2 IFML Model Execution

«ParameterBindingGroup» «ParameterBindingGroup»
productOID - product Selected > selected

Home

«Details» ProductDetails | «List» Accessories \ «Details» AccessoryDetails

«DataBinding» Product | \ «DataBinding» Product
\ «DataBinding» Product \

«ConditionalExpression» «ConditionalExpression»
ProductOfTheDay = true «ConditionalExpression» selectAccessory self = selected
accessoryOf = product

Home Home
Product Detals Product Details
ri i
Nome SUPER KIT Accessories Noina SUPERKIT Accessories
ALUMINUM TUBE Select ALUMINUM TUBE Select
Code SUKIgsq COPPER BAR Select Code SUKISSq COPPER BAR Select
Sel Select
Price 40000 COPPERPLATE Select brice T COPPER PLATE
METAL PACKS Select METAL PACKS Sefget
Description. Each pack contains: Jescription: Each pack contains.
2 ALUMINUM TUBE, S rane: = Accessory Delalls_D—\
3 ALUMINUM TUBE, 3 ALUMINUM TUBE — METAL PACKS escription:
1 ALUMINUM TUBE, 1 ALUMINUM TUBE, ST
4 METAL PACKS 4 METAL PACKS Code MPST347 5"X4", 6°X9"

FIGURE 12.6
Best-effort computation of the content of a ViewContainer.

“degree of memory” used for the computation. Two interaction history policies are
possible:

* Without history: The contents of the ViewComponents are computed as if the
ViewContainer was accessed for the first time. The computation without context
history may be used to “reset” and forget the choices previously made by the
user in a ViewContainer.

* With history: The contents of the ViewComponents are computed based on the
input history of the ViewComponents existing prior to the last navigation event.

Figure 12.7 shows an example of the effect of the history management policy.

When the “ProductContentManagement” ViewContainer is accessed for the first
time, the list of categories is displayed and, by virtue of the default selection pat-
tern, a default product is also shown in the “ProductOfCategory” list. When the user
selects a different category, the list of products is updated to reflect the choice. Then
the user can delete one product, by selecting it from the “ProductOfCategory” list.
After the termination of the “Delete” Action, the ‘“ProductContentManagement”
ViewContainer is re-accessed, and the displayed category depends on the history
management policy. It is the default category if the policy is “Without history.”
Otherwise it is the last category selected by the user.

The history preservation policy can be expressed as a general property of the
IFML model, which applies to all NavigationFlows. This choice makes the inter-
pretation of the model simpler and the resulting user experience more consistent.

369

370 CHAPTER 12 IFML language design, execution, and integration

ProductContentManagement

«List» ProductsOfCategory

«List» Categories

SelectProduct

DeleteProduct

«DataBinding» Product

7777777777777 «ConditionalExpression»
’ category = selected

«DataBinding» Category | Delete

Product

FIGURE 12.7
Example of history-less and history-based ViewComponent computation.

When the need arises to apply different policies, the chosen option can be associated
with the NavigationFlows as a stereotype.

12.2.9 PARAMETER VALUES CONFLICTS

Conflicts may arise in the application of the best-effort rule for computing the con-
tent of a ViewContainer. A conflict arises when a ViewComponent receives more
than one input value for the same Parameter. This could happen due to multiple
incoming flows in a ViewComponent or ViewContainer. Such conflicts could be due
to multiple navigation events that determine the computation of the same component
or to default selection patterns (see chapter 5 and Figure 12.4), which provide values
of a parameter at different times (an initial value and then a subsequent value pro-
duced by the user’s interaction).

A conflict resolution strategy (CRS) specifies which Parameter value is exploited
to compute the content of the ViewComponent. Different strategies are possible:

* Nondeterministic: One input parameter is chosen nondeterministically at run-
time from the set of available inputs.

¢ Priority-based: Priorities are assigned at design-time to the incoming flows
(for the ViewComponent or ViewContainer). When runtime conflict occurs, the
Parameter value associated with the flow with highest priority is chosen.

* Specificity-based: A mix of priority and nondeterministic choice, which
exploits priority based on specificity. Specificity of a parameter is assessed
according to the following rules:

* Values which are directly or indirectly derived from the user’s current
choice, expressed by the last navigation event, are the most specific.

* Values that depend on the user’s previous choices, derived from the history
log, are the second most specific.

* Values taken from system-generated default choices or from DataFlows
coming from ViewComponents not affected by the last navigation event are
the least specific.

12.2 IFML Model Execution 371

Home

«Details» ProductDetails «List» Accessories «Details» OtherProductDetails

«DataBinding» Product «DataBinding» Product

SelectAccessory

DataBindi P
«DataBinding» Product «ConditionalExpression»

«ConditionalExpression» self = Selected
accessoryOf = product || bk -o-----ooo ——

«ConditionalExpression»
ProductOfTheDay = true

LN «List» FrequentlyBoughtTogether

\“ «DataBinding» Product

SelectProduct

«ConditionalExpression»
H soldWith->includes(product)
|

FIGURE 12.8
Example of priority-based conflict resolution policies.

Figure 12.8 shows a case in which the priority-based CSR helps resolve the con-
flict between multiple default selection patterns affecting the same ViewComponent.

The “Home” ViewContainer shows the “ProductOfTheDay” together with a list
of accessories, which could be empty, and the list of products frequently purchased
together with the product of the day. To avoid the effect of leaving the interface space
dedicated to the “OtherProductDetails” ViewComponent empty at the first access,
two default selection patterns are provided: one that selects an accessory and one that
selects a related product, in case no accessory list is available. To enforce that the
default accessory should be displayed when both the accessory and related products
list are available, a priority based policy can be set, giving precedence to the default
DataFlow from the “Accessories” ViewComponent.

Figure 12.9 shows a case in which the specificity-based CSR helps resolve the
conflict between multiple events that cause the computation of the same ViewCom-
ponent in different conditions. The conflict resolution logic requires explaining the
order in which ViewComponents are considered for computation.

12.2.10 VIEWCOMPONENT COMPUTATION PROCESS

The interface content computation process is performed every time an Event arises.
The process applies the best-effort rule to determine the content of the ViewCom-
ponents of the target ViewContainer. Intuitively, the process identifies at each step
the set of computable ViewComponents (i.e., the subset of the ViewComponents
for which the value of the input Parameters is determined). The computation of a
ViewComponent determines the value of its output parameters, which may be men-
tioned in the DataBinding of other components that thus become computable at the
next iteration.

[L] User’s profile

«List» Preferred
Categories

ChoosePreferredCategory

NormalTermination

ExceptionTermination

Delete
Product

[L] Home

\

«List» Categories

SelectCategory.

«Details» Category

«DataBinding»
Category

«DataBinding» Category

«List» Shops SelectShop

«ConditionalExpression»
self = Selected

«Details» Shop

«List» Products

«DataBinding» Product

«ConditionalExpression»
category = Selected

«DataBinding»
Shop

«DataBinding» Product

«ConditionalExpression»
self = Selected

SelectProduct

«Details» Product

«DataBinding» Product

«ConditionalExpression»
self = Selected

DeleteProduct

FIGURE 12.9

Example of specificity-based conflict resolution policies.

¢LE

uolei3aiul pue ‘uonnoaxs ‘udisap a3en3due| N4l 2T ¥3LdYHD

12.2 IFML Model Execution 373

The following pseudo-code describes the algorithm:

INPUT:
- The ViewContainer
- The event that triggers the computation and its InteractionFlow
(if any)
- The parameter values associated with the InteractionFlow (if any)
- The conflict resolution strategy CSR (default =
specificity-based)
- The interaction history policy IHP (default = with history)
- The parameter value history Tlog
QUTPUT:
The sequence of computable ViewComponents
The value of their input parameters
PROCEDURE:
ToCompute = all ViewComponents
WHILE (ToCompute is not empty) DO
IF a component C exists such that
(C has no input parameters OR all its parameters have a value AND
A11 Components potentially providing input to C have been computed)
THEN
Assign to each parameter of C a value according to the CRS and IHP
Compute C and its output parameters using the chosen input values
ToCompute = ToCompute - C
ELSE HALT
END DO

Figure 12.9 shows a ViewContainer on which we illustrate the application of the
algorithm for processing several events.

The content of the ViewContainer can be computed in several ways, depending on
the actual navigation performed by the user. Each ViewComponent exploits param-
eters values that are either “current” (i.e., produced by the user’s navigation action),
“preserved” (i.e., coming from the history of past user’s selections), or “default”
(i.e.,, determined by a default selection pattern).

12.2.10.1 ViewContainer access with landmark navigation (or content-
independent NavigationFlow)

The “Home” ViewContainer is accessed via landmark navigation, and thus no ini-
tial parameter values are available. Therefore, ViewComponent computation starts
from either one of the “Categories” and the “Shops” ViewComponents, which have
no input and are computable. Their content is the entire population of the underly-
ing class. Their output is—by effect of the default selection pattern—a heuristically
chosen object appearing in the List (e.g., the first object). After the computation of
the ViewComponents, both the “Category” and “Shop” ViewComponents have their
input parameter settled and thus become computable. When the “Category” View-
Component is computed, it provides a category object as output to the “Products”
ViewComponent, which becomes computable. After the “Products” ViewComponent

374 CHAPTER 12 IFML language design, execution, and integration

has been computed, the default product listed in the “Products” ViewComponent
is available as output and can be used as input for the “Product” ViewComponent,
which becomes computable. No other ViewComponent remain to be computed, so
the algorithm halts.

12.2.10.2 ViewContainer access after the “ChoosePreferredCategory”
event

The “Category” ViewComponent is the destination of the navigated NavigationFlow
and thus the initial assignment of the input parameters includes the object to be shown
in the “Category” ViewComponent, which is a “current” value. Computation can start
from the ViewComponents that do not require input or from the “Category” View-
Component, for which the input parameter is available. Supposing that computation
starts from the ViewComponents that do not require input, everything proceeds as in
the previous case. The only difference occurs in the computation of the “Category”
ViewComponent, which has two possible values for its input parameter: the current
object coming from the triggering event and the object chosen by default from the
“Categories” ViewComponent. According to the specificity rules, the current value
prevails over the default one supplied by the “Categories” ViewComponent. Then the
ViewComponents dependent on the “Category” ViewComponent are computed as
before. The “Products” ViewComponent will contain the products of the (preferred)
category shown in the “Category” ViewComponent, and the “Product” ViewCompo-
nent will contain the default product appearing in the “Products” ViewComponent.

12.2.10.3 ViewContainer access after event “SelectProduct”
The ViewContainer is computed after the user selects a product in the “Products”
ViewComponent. The parameters passed as input to the ViewContainer comprise the
input parameter of the “Product” ViewComponent as a current value plus the input
parameters of ViewComponent “Category” and “Shop,” from the history log as val-
ues to be preserved (by default, we assume the “with history” preservation policy).
Computation starts from the ViewComponents that require no input (“Categories”
and ”Shops”) and proceeds to their dependent ViewComponents. Due to the specific-
ity rule, history values prevail over defaults taken from List ViewComponents, and
thus the “Category,” “Products,” and ”Shop” ViewComponents continue to show
the same content they displayed before the navigation. Current values prevail over
defaults, and thus the “Product” ViewComponent shows the object selected by the
user instead of the default product extracted from the “Products” ViewComponent.
In summary, after the “SelectProduct” event, the “Home” ViewContainer shows con-
tent that depends on new input (the object shown in the “Product” ViewComponent)
and content derived from “old input” (all the remaining ViewComponents). The new
input affects the ViewComponents directly or indirectly depending on the user’s nav-
igation, whereas the old input is preserved for all the ViewComponents not affected
by such navigation, to maximize the “stability” of the ViewContainer.

Note that “old input” does not mean “old content,” as the following example
demonstrates.

12.3 IFML Models Integration with Other System Modeling Perspectives 375

12.2.10.4 ViewContainer access after successful deletion

ViewContainer “Home” is accessed after the successful deletion of a product. The
parameters in input to the ViewContainer comprise the input parameters of View-
Component “Category” and “Shop” from the history log. Conversely, no input is
preserved for the “Product,” because such input would correspond to an object no
longer existing after the deletion. Computation starts from the ViewComponents that
require no input and proceeds to their dependent ViewComponents, whose input
parameters are set to the preserved values and not to the default values taken from
the List ViewComponents. In particular, the “Products” ViewComponent has the
same input as before, because the category object shown in the “Category” View-
Component has been restored from the history log, but different content, because the
deleted product no longer appears in the List. The default value of the “Products”
ViewComponent is then used as the input of the “Product” ViewComponent, replac-
ing the deleted product.

12.2.10.5 ViewContainer access after unsuccessful deletion

The ViewContainer is accessed after the deletion of the currently displayed product
has failed. The parameters input to the ViewContainer comprise the output of the
Action, which is the OID of the Product object that could not be deleted, plus the
input values of ViewComponents “Category” and ”Shop” from the history log. The
computation starts from the ViewComponents that require no input (“Categories”
and “Shops”) and proceeds to their dependent ViewComponents. These are instanti-
ated according to the parameters passed as input to the ViewContainer and the speci-
ficity rule, which leads to restoring all ViewComponents to their previous content
before the triggering of the delete Action.

As a final remark, in the illustration of the ViewContainer computation algorithm,
we assumed that the content of ViewComponents is calculated from scratch, even if
the ViewContainer is re-accessed with the same input parameters for some View-
Components. In a practical implementation, caching mechanisms and more intel-
ligent ViewComponent computation logics can be used to improve the performance
of ViewContainer computation by avoiding the recomputation of ViewComponents
that have not been affected by the navigation and using the cached results instead of
recalculating the content of ViewComponents.

12.3 IFML MODELS INTEGRATION WITH OTHER SYSTEM
MODELING PERSPECTIVES

Thanks to its integration in the MDA framework, IFML enables a tight integration
with other system modeling perspectives. In particular, three aspects are defined
explicitly in the standard: integration with the content model, integration with busi-
ness logic, and integration with business process models. Further integrations are
possible, for example, with platform-specific models, system deployment models,
and enterprise architecture models Figure 12.10.

UML Use Case

BPMN process

. @
A Reject

Paymentexecuton @ .
Rema Date

Check customer

Register
customer

Customer
Stas?

@ 77777

Handle Rental

|
Ele
s|g
<<Extend>> 2(@

5]

<<Include>>
I lerk |

Sales Cler Handle Renter Handover Car 2
€
<3
bt
v
(8
5|3

2

k]

g

H
41
8
b
)
g
ki

UML Statechart
Car Available

CarRented Car Damaged

S

Amount l

Car Under
Maintenance

Car Under
Cleaning

@®—]

Payment Execution

Customer Information

Payment Information

«Form>»
Customer
Information

«Form»
Payment
Information

Execute
the
payment

FIGURE 12.10

/

/

/
ParameterBindingGroup»

«ParameterBindingGroup: «
Name -> Name Name - Name

CreditCard > CC

Confirmation

Examples of integration with requirements and business models.

uolneJi8aiul pue ‘uonnoaxe ‘udisep adenduel N4l 21 ¥3LdVYHDY 9/§

12.3 IFML Models Integration with Other System Modeling Perspectives 377

12.3.1 INTEGRATION WITH BUSINESS MODELS
AND REQUIREMENTS

In many cases, system development starts from a requirements model, such as UML
use case diagrams, or from a procedural view of the enterprise operations, such as
business process models specified in OMG’s BPMN. IFML enables the traceability
of user interaction models to the requirement specifications that generated them. This
can be done by establishing a reference between the requirements model of interest
and the IFML model derived from it. Figure 12.12 illustrates the case in which an
IFML module specifies the user interaction needed for addressing a use case or a
business process task. Furthermore, the execution of an IFML Action or Module may
induce some internal state change of the system, whose dynamics is specified in a
UML state chart (as also visible in Figure 12.12).

The IFML standard natively provides the possibility of referencing, for instance,
a business process task from an IFML module that specifies its user interface. Analo-
gously, references could be defined toward use case scenarios, goal-oriented specifi-
cation diagrams, state charts, or any other specification model.

12.3.2 INTEGRATION WITH CONTENT MODEL AND BUSINESS LOGIC

The cases of integration of IFML with content models and business logics have been
already illustrated extensively in the examples of the preceding chapters. Every time
a content binding is specified for a ViewComponent, the integration with the content
model is achieved.

As an example, Figure 12.11(a) shows a List ViewComponent that specifies the publi-
cation of some contents through a ContentBinding, which establishes a reference between
the IFML diagram and the UML class diagram where the “Product” class is defined.

The integration with the business logic is specified when a ViewComponent or
Action references a method of a class or a more complex behavior (represented in
the language metamodel with a BehavioralFeatureConcept and a BehaviorConcept,
respectively). IFML includes dedicated extensions of these concepts for integra-
tion with UML. Specifically, BehaviorConcept and BehavioralFeatureConcept are
extended respectively by UMLBehaviorConcept and UMLBehavioralFeatureCon-
cept, which allow the designer to directly reference a UML class method or a UML
dynamic diagram (sequence, activity, or state chart diagram).

Figure 12.12. shows an example of an IFML model referencing simple behavioral
features, such as UML methods from a sequence diagram, and a more complex behavior,
such as an UML activity diagram specifying the internal functioning of an IFML Action.

Figure 12.12 contrasts three different concrete syntaxes for integrating an IFML
element with an external model: (a) a DataBinding referencing a domain model
class,(b) a DynamicBehavior referencing a specific UML method, and (c) a Dynam-
icBehavior referencing an entire UML diagram. The references can be embedded
within both ViewComponents and Actions. Typically, the content of a ViewCom-
ponent is detailed through a DataBinding, as most of the previous examples have
illustrated, but it can also be specified using a DynamicBehavior, which describes the
logic to extract or build the content of the ViewComponent.

378 CHAPTER 12 IFML language design, execution, and integration

(a) (b) (c)

Products

Submit VISA
Application

«DynamicBehavior»
ApplyForVISA(...)

«List» CheapProductList CreateProduct

«DynamicBehavior»
ProductFactory.
CreateProduct(...)

«DataBinding» Product

«ConditionalExpression»
self.Price <= 1.00

FIGURE 12.11

(a) Integration with content model — UML class, (b) Simple behavioral feature - UML
method, and (c) Complex behavior - UML diagram.

<<UML Actor>>

IFML Model Sales Clerk UML Sequence Diagram

New Rental

b 4

<<Window >> Sales Clerk N

| v ;(): <<UML Model>>}
<<View Container>> Handie Rental
<<View Container>> Main Menu 7: <y { Crange Dates IT system
=4 ~ |
I ; >
i - Accept Payments:

P

Handover Car >
Quote start, end
dates, vehicle &

/ accept payment 1
i
pickup office

Lookup file

Ask for No
alternate
Check availability
Create rental Issue rental Register
agreement number reservation

Integration with simple behavioral feature (class methods) and with complex behavior
(UML activity diagram).

)

new rental

change dates

UML Activity Diagram

Agree to price?

Reserve for
customer

12.3.3 INTEGRATION WITH IMPLEMENTATION AND DEPLOYMENT
ASPECTS

Finally, one important aspect of IFML is its complementary role with respect to
deployment and implementation-oriented (possibly platform-specific) design models.
Figure 12.13 shows the typical relation of the IFML model to other alternative system
representations. An IFML module is mapped to the elements of an UI mockup, and
it shares a common namespace with a sequence diagram describing the interplay
between the different architectural layers, described in a UML deployment diagram.

Payment Execution

Ul mockup models

Customer Information Payment Information

|
«Form>» «Form>» Execute
Am":j-. Customer (¢J)— Payment (« the
Information Information / payment

y 4 /"

7

/ Name > Name "/ Name > Name
/_CreditCard - CC / (submi)

Confirmation

UML deployment
diagram

ProductiorServer

Customer | ‘Bmwnl ‘ WebServer DataServer
Corecom e | [(eseecionsovronmarts 1: Update
WebServer EJBContainer J2: updateQuantiy(product ay |
| 3: updateshoppingCart

: -

Draserver & empiyCant
| oemebCat L 7 empyshoppingCan
RoBs

.

8:

10: checkOut
| 10:checkout i

11: CustomerinformatonForm

12: SubmitForm

13: formData
— *]_14: getCustomerinfo

16: verifyUserinfo

«

17 aumorizePayment

UML sequence diagram

[Externalgankservice

18

FIGURE 12.13

Integration of the IFML model with implementation-oriented specifications.

SoAIN0adsIad SUllBpolN WB1SAS Jayl0 Yiim uonelsaiu| s|spojN T4l €21

6L€

380 CHAPTER 12 IFML language design, execution, and integration

12.4 SUMMARY OF THE CHAPTER

This chapter discussed some of the aspects of the IFML language design: the formal
definition of the concepts in the IFML metamodel, the notation and model exchange
format, the executability, and the integration with models representing other aspects of
the system. The definition of the [IFML metamodel follows the OMG best practices. It
exploits metaclasses and their associations to specify the main aspects of the language.

The IFML execution semantics allow the developer to understand the meaning
and behavior of any IFML diagram as that of a machine that takes as input the stimuli
produced by the user or by the system and updates the visibility status of the View-
Containers and the active status of ViewComponents and Events, thus determining
an updated view for the user to continue the interaction.

Designers can integrate IFML with other modeling languages for obtaining a
comprehensive view of the system, spanning both the front end and the back end, and
for ensuring the traceability between the interaction model and other models built
during the requirement collection phase and the architecture design phase.

12.5 BIBLIOGRAPHIC NOTES

Integration of different modeling perspectives for describing completely an informa-
tion system is one of the most basic practices of model-driven engineering [BCW12].
UML itself supports different diagrams [FowlerO3] that complement each other.
Some methodologies, such as Model Driven Enterprise Engineering (MDEE), pro-
pose a pragmatic approach to integration of OMG and non-OMG modeling specifi-
cations, so as to cover all the modeling needs of the enterprise thanks to integrating
and relating together multiple and diverse models, through the definition of a vocabu-
lary (SBVR-based) and integrated metamodel. The related idea of megamodeling
addresses the complexity that has been observed in real-life model-driven solutions
to practical problems. Various experience show how to apply traceability between
models, starting from the early phases of requirements elicitation [Brambillal1].

The semantics of interface modeling language is a subject treated in several aca-
demic articles [CFO1]. Among the early works, [SF89] used Petri Nets to describe
static hypertexts, where pages do not access content dynamically. [ZP92] also
addresses the navigation semantics of static hypertexts, using Statecharts instead of
Petri Nets. [FTMO1] introduces HMSB (Hypermedia Model Based on Statecharts)
to specify both the structural organization and the browsing semantics of static
hypermedia applications, focusing on synchronization of multimedia data (e.g., text,
audio, animations, images).

Executable specifications of systems can also be expressed with high-level design
approaches like executable UML, initially proposed by Shlaer and Mellor in 1988
[SM88]. The approach is embodied in specifications published by the OMG, specifi-
cally the f{UML (Foundational UML) [FUML] and the associated action language
ALF (Action Language for f{UML) [ALF].

Appendix A: IFML notation
summary

Appendix A lists the core concepts of IFML and the set of extension concepts speci-
fied in the standard, together with their meaning and graphical notation.

381

Table 1 IFML Core Concepts

Concept

View Container

XOR View Container

Landmark View
Container

Default View
Container

View Component

Meaning

An element of the interface that
comprises elements displaying
content and supporting interaction
and/or other ViewContainers

A ViewContainer comprising child
ViewContainers that are displayed
alternatively

A ViewContainer that is reachable

from any other element of the user
interface, without explicit incoming
InteractionFlows

A ViewContainer presented by
default to the user when the
enclosing container is accessed.

An element of the interface that
displays content or accepts input

IFML Notation

MyViewContainer

[XOR] MyXorViewContainer

[L] MyLandmark

[D] MyDefaultContainer

MyViewComponent

Examples

Web page, window, screen,
pane

Tabbed panes in Java, frames
in HTML

A login page in an HTML site
that is reachable through a
link visible on every page.

The message list pane in a
mail application (as opposed
to the contact list pane shown
on demand)

HTML list, image gallery, input
form

8¢

Aewwns uoneou N4 Y Xipuaddy

Catching Event

Throwing Event

Action

Navigation Flow

Data Flow

Parameter

Parameter Binding
Group

An occurrence that is captured in
the model and affects the state of
the application

An event that is launched by some
occurrence in the application

A reference to a piece of business
logic triggered from the interface

Update of the interface elements
in view or triggering of an action
caused by the occurrence of an
event; data may be associated
with the flow through parameter
bindings

Input—output data dependency
between ViewComponents,
ViewContainers, or Actions

A typed and named value,
which can be received (input) or
produced (output)

Set of mappings from

output parameters of a source
element to input parameters of a
target element associated with a
NavigationFlow or DataFlow

v

«InputParameter» Parameter1: String ‘

«OutputParameter» Parameter2: String ‘

«ParameterBindingGroup»
OutParameterl > InParameterl
OutParameter2 > InParameter2

User click, form submission,
device location change

Notification after an operation
has finished

Database update,
sending of an e-mail,
spell-checking of a text

Navigation from one web
page to another,change of tab
in a tabbed pane

Default element of a

list (output), displayed
automatically in another
ViewComponent (input)
HTTP query string
parameters, HTTP post
parameters,

JavaScript variables and
function parameters

(Continued)

Aewwns uoneou JN4| Y Xipuaddy

€8¢

Table 1 IFML Core Concepts—cont’d

Concept

Activation
Expression

Interaction
Flow Expression

Module and
ModuleDefinition

Meaning

Boolean expression associated
with a ViewElement,
ViewComponentPart, or Event; if
true, the element is enabled

Expression that determines which
InteractionFlow is followed after an
event occurrence

Piece of IFML diagram enclosed
in a container (ModuleDefinition),
which may be reused by

referencing it (through a Module)

IFML Notation

«ActivationExpression»
MyVar = “MyValue”

«InteractionFlowExpression»
If Condition1 then

Flow1
Else

Flow2

«ModuleDefinition»
MyModule

MyModulel

«Module»

Examples

Button enabled or information
shown only if a condition
holds (e.g., if the user has
logged in)

Event triggered after selecting
a given value in a ComboBox.

Checkout procedure on an
e-commerce site

Aewwns uoneou JA4| Y Xipuaddy 8§

InputPort and
InputPortDefinition

Output Port and
OutputPortDefinition

ViewComponentPart:

DataBinding,
Conditional-
Expression, ...

Interaction points between a
Module and its environment;

it collects InteractionFlows

and parameters arriving at the
module and associates them with
ModuleDefinition elements.

Interaction points between a
Module and its environment; it
collects InteractionFlows and
parameters within a module and
associates them with the elements
outside the module

A part of a ViewComponent that
cannot exist by its own.

| ~

o - In Module

In ModuleDefinition

In Module
In ModuleDefinintion

l_/ v

«DataBinding» MyDataSource

«ConditionalExpression»
condition1

«VisualizationAttributes»
attributel, attribute2

«OrderBy»
Attribute 3 DESC

«Field» Key: String

The user identity in an order
checkout module

The transaction confirmation
code and message in an
order checkout module

Fields in a form, DataBinding
and ConditionalExpression in
a ViewComponent

Aewiwins uolielou N4 Y Xipuaddy

G8¢€

Table 2 Extension IFML Concepts

Concept Extension
Examples
Select Event

Submit Event

List

Form with Fields

Details

Meaning

Event denoting the selection of items
in a list

Event that submits information in a
form

ViewComponent used to display
multiple DataBinding instances

ViewComponent used to display a
form that is composed of fields

ViewComponent used to display
details of a specific DataBinding
instance

IFML Notation

V)
@

(«List» MyList

«DataBinding» MyDataSource

A\

«Form» MyForm

«SimpleField» MyField1: String ‘

«SelectionField» MyField2: String \

«Details» MyDetails

«DataBinding» MyDataSource

Example at Implementation
Level

Selection of a row in a table or of
multiple elements in a checklist

A form submission button in
HTML

Table with rows of elements of
the same kind.

HTML form with fields

Information about a product on
an e-commerce web site, profile
of the user

Aewwns uoneou JA4| Y Xipuaddy 98§

Window (Modal and
Modeless)

A ViewContainer rendered as a
window.

Modal: when displayed, it blocks
interaction in all other containers.

Modeless: when displayed, it is
superimposed over containers that
remain active.

«Window» MyWindow

«Modeless » MyModelessWindow

«Modal» MyModalWindow

Desktop window, modal pop-up
in HTML, modeless pop-up in
HTML

Aewwns uoneou JN4| Y Xipuaddy

L8€

This page intentionally left blank

Appendix B: List of IFML design

patterns

Appendix B lists all the design patterns described in the book. The name of a pattern

is structured as XY-Z, where:

* Xis the category of pattern. For instance, interface organization patterns start
with the letter “O,” and content and navigation patterns are prefixed with “CN.”

* Y is the deployment platform where the pattern originated or is most frequently
found. For instance, desktop patterns are labeled with “D,” web with “W,”
mobile with “M.” The prefix is omitted for patterns that apply equally well to
multiple platforms and for which there is no clearly prevalent platform.

e Zis a mnemonic label identifying the specific pattern.

Name Title
Interface Organization Patterns

Description

Section

OD-SWA Simple work area

OD-MWA Multiview work area

OD-CWA Composite work area

OD-MCWA Multiview composite
work area

OW-MFE Multiple front ends on
the same domain model

OW-LWSA Large web sites
organized into areas

OM-MSL Mobile screen layout

Distinguishes a work area where
the main tasks of the application
are performed along with one or
more service areas

Extension of OD-SWA for multiple
alternative views of the item in the
work area

Splits the work area into
subregions devoted to different
perspectives of the item,
presented simultaneously
Combines the decomposition

of the work area into alternative
perspectives and simultaneous
partial views

Provides different interfaces for
different user roles upon the same
information

Applications that exhibit a
hierarchical structure, whereby
the pages of the site are clustered
into sections dealing with a homo-
geneous subject

Maps the interface to a top-level
grid that contains three regions:
the header, the content area, and
the footer

4.8.1.1

4.8.1.2

4.8.1.3

4.8.1.4

4.8.2.1

4.8.2.2

4.8.3.1

(Continued)

389

390 Appendix B: List of IFML design patterns

Name

Title

Content and Navigation Patterns

Description

Section

CN-MD and
CN-MMD

CN-MLMD

CN-DEF

CN-SOT

CN-MOT

CN-DT

CN-MSC

CN-ClI

CN-CIM&B

CN-UP

CN-BACK

CN-BREAD

Master detail and Master
multidetail

Multilevel master detail

Default selection

Single object toolbar

Multiple object toolbar

Dynamic toolbar

Multistep commands

Commands with inline
input

Content-independent

navigation bar and menu

Up navigation

Back navigation

Breadcrumbs

Presents some items, and a
selection permits the user to
access the details of one instance
at atime

Also called a cascaded index;
consists of a sequence of lists
over distinct classes, such that
each list specifies a change

of focus from one object,
selected from the index to the
set of objects related to it via an
association role; in the end, a
single object is shown
Simulates a user choice at

the initial access of a list, thus
selecting a default instance
Content-dependent toolbar that
supports commands upon one
object

Content-dependent toolbar with
commands that can be applied to
multiple objects

Toolbar with commands that may
vary at runtime based on the
status of the interaction
Commands that involve multiple
interaction steps

Collapses in the toolbar several
steps needed to perform an
action

Groups commands that do not
act upon specific objects but
shortcut the navigation or help the
user go back quickly

Refers to some hierarchical struc-
ture associated with the interface;
it leads the user to the superior
element in the view hierarchy
“Back” refers to the chronology of
user interaction; it leads back to
the last visited ViewElement

A navigation aid that shows the
user location in the application
interface

5.6.1
8.3.1

5.6.2

5.6.3

8.2.1.1

8.2.1.2

8.2.1.3

8.2.1.4

8.2.1.5

8.2.1.6

8.2.2

8.2.2

8.2.3

Name
CN-PG

CN-PR

CN-ALPHA

Appendix B: List of IFML design patterns

Title
Paging

Collection preview

Alphabetical filter

Description

Displays a block of objects at a
time and allows the user to scroll
rapidly through the collection
Used with CN-PG, provides a
preview of the object’s location in
the sequence and of what comes
before and after

Provides an alphabetic filter to
partition the collection into chunks

Section
8.3.2

8.3.3

8.3.4

Data Entry Patterns

DE-FRM

DE-PLDF

DE-PASF

DE-DLKP

DE-CSF

DE-WiIZ

DE-TDFP

DE-RTE

DE-AUTO

DE-DYN

DE-INPL

Multifield forms

Preloaded field

Pre-assigned selection
field

Data lookup

Cascade selection fields

Wizard

Type-dependent field
properties
Rich text editing

Input auto-completion

Dynamic selection fields

In-place editing

Form for submitting information
through several fields

Variant of DE-FRM where some
fields are preloaded with an
existing value

Form where the value of a
selection field is preselected
Data entry task that involves
looking up information for filling in
the fields

The data entry task involves
entering a set of selections that
have some kind of dependency
on one another

Partition of a data entry procedure
into logical steps that must

be followed in a determined
sequence

Provides data entry facilities for
form fields of specific data types
Provides an enriched text field in
the shape of a microapplication
that embodies the commands
applicable to the text

Automatically provides
suggestions for completing the
input based on what the user has
already typed in a field

Occurs when the application
requires the user to input data
that have dependencies

Allows the user to edit content
without abandoning the current
view to access a data entry form

5.7.1

5.7.2

5.7.3

5.7.4

5.7.5

5.7.6

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

.
391

(Continued)

|
392

Appendix B: List of IFML design patterns

Name Title Description Section

DE-VAL User input validation Checks the correctness of the 8.4.6
user input against validation
rules and returns appropriate
notification message(s)

Content Search Patterns

CS-SRC Basic search Keyword search upon a collection | 5.8.1
of items

CS-MCS Multicriteria search Composite search criteria upona | 5.8.2
collection of items

CS-FSR Faceted search Allows the progressive refinement | 5.8.3
of search results upon struc-
tured multidimensional data, by
restricting the objects that match
the query based on their property
values

CS-RSRC Restricted search Restricts the search focus to 8.5.1
specific subcollections when
searching large collections

CS-SRCS Search suggestions Exploits the auto-completion 8.5.2
pattern and requires the logging
of keywords previously inserted
by the users; logged keywords
matching the current user input
are shown sorted by frequency

GEO-LAS Location-aware search Enables search of items that are | 8.10.1
related and close to the current
user position

Content Management Patterns

CM-OCR Object creation Enables the creation of a new 6.3.2
object in a data storage

CM-OACR Object and association Creates a new object and sets its | 6.3.3

creation associations to other objects

CM-ODL Object deletion Deletes one or more objects ofa | 6.3.4
given class

CM-CODL Cascaded deletion Removes a specific object and all | 6.3.5
the objects associated with it via
one or more associations

CM-OM Object modification Updates one or more objects of a | 6.3.6
given class

CM-AM Association Used to create, replace, or delete | 6.3.7

management instances of an association, by

connecting or disconnecting
some objects of the source and
target classes

Appendix B: List of IFML design patterns

393

Name Title Description Section
CM-NOTIF Notification The interface is updated 6.3.8
(typically asynchronously) by the
occurrence of a system generated
event
CM-CBCM Class-based content Addresses the creation, 8.6.1
management modification and deletion of
an object and its association
instances
CM-PBCM Page-based content Supports blogs and page-based | 8.6.2.
management content management systems;
management of whole pages is
allowed
Identification and Authorization Patterns
IA-LOGIN Login Recognizes and checks the valid- | 8.7.1
ity of a user-provided identity
IA-LOGOUT Logout Clears user’s authenticated iden- | 8.7.2
tity preserved in the application
navigation context upon explicit
user request
IA-CEX Context expiration The authenticated identity of the 8.7.3
notification user is cleared by the system for
security reasons or because of
timeout
IA-SPLOG Login to a specific Recognizes and checks the valid- | 8.7.4
ViewContainer ity of a user-provided identity and
enables access to a specific part
of the user interface
IA-ROLE User role display and Displays the user role and allows | 8.7.5
switching change of role
IA-RBP and (Negative) role-based Implements (possibly negative) 8.7.6
IA-NRBP permissions for view access permissions at the view 8.7.7
elements level that depend on the user’s
role
IA-OBP Object-based Access control is expressed over | 8.7.8
permissions the content objects and personal-
ization associations in the content
model
IA-PRO User profile display and Shows and enables the editing of | 8.7.9
management application-dependent information
associated with the identity of an
authenticated user
IA-IPSI In-place sign-in When the user attempts to trigger | 8.7.10

an action, the user is warned
of the need to sign in and then
routed to the login form

(Continued)

394 Appendix B: List of IFML design patterns

Name Title Description Section
Session Management Patterns
SES-CR Creating session data Stores information in the 8.8.1
from persistent data navigation session by collecting
them from a persistent data
source
SES-PER Persisting session data Creates persistent data from user | 8.8.2
navigation session data
SES-EXC Session data expiration | Handles the asynchronous 8.8.3
catching notification of the expiry of the
session to the user interface by
causing an automatic refresh of
the content
Social Functions Patterns
SOC-AW Activity wall Logs the social activity typical of a | 8.9.1
social network platform
SOC-SH Sharing, liking, and Enables posting, comment- 8.9.2
commenting ing, liking, and sharing content
produced by other community
members
SOC-FR Friendship management | Manages a symmetric (friendship) | 8.9.3

or asymmetric (following) associa-
tion between users

References

[ACMO1]

[ALF]

[Allaire02]
[Android]
[BalesO1]

[BBCO3]

[BCN92]
[BCW12]
[Bergsten00]
[BF14]
[BJR98]

[BIV04]

[BLCLNS94]

[BMU14]

[Boehm88]
[Booch94]
[Borchers01]

[BR82]

Alur D, Crupi J, Malks D. Core J2EE patterns: best practices and design
strategies. Englewood Cliffs, NJ: Prentice Hall; 2001.

Object Management Group. Concrete syntax for a UML action language:
Action Language for Foundational UML [Internet]. [updated 2013; cited
n.d.] Available from: http://www.omg.org/spec/ALF/.

Allaire J. Macromedia Flash MX: a next-generation rich client. San Fran-
cisco, CA: Macromedia; 2002.

Android Developers [Internet]. [cited 2013 Sep n.d.] Available from:
http://developer.android.com/.

Bales D. Java Programming with Oracle JDBC. Sebastopol, CA: O’Reilly;
2001.

Bongio A, Brambilla M, Ceri S, Comai S, Fraternali P, Matera M.
Designing data-intensive web applications. San Francisco, CA: Morgan
Kaufmann; 2003.

Batini C, Ceri S, Navathe B. Conceptual database design: an entity-
relationship approach. Redwood City, CA: Benjamin-Cummings; 1992.
Brambilla M, Cabot J, Wimmer M. Model-driven software engineering in
practice. N.p: Morgan & Claypool Publishers; 2012.

Bergsten H. Java server pages. Sebastopol, CA: O’Reilly; 2000.
Brambilla M, Fraternali P. Large-scale model-driven engineering of web
user interaction: the WebML and WebRatio experience. Sci Comput Pro-
gram 2014;89:71-87.

Booch G, Jacobson I, Rumbaugh J. The Unified Modeling Language user
guide. Reading, MA: Addison-Wesley; 2005.

J. Bézivin, F. Jouault, P. Valduriez. On the Need for Megamodels. In Best
Practices for Model-Driven Software Development Workshop (co-located
with OOPSLA 2004 and GPCE 2004) Vancouver, Canada October
25, 2004.

Berners-Lee T, Cailliau R, Luotonen A, Frystyk Nielsen H, Secret A. The
World-Wide Web. Communication of ACM 1994;97:76-82.

Brambilla M, Mauri A, Umuhoza E. Extending the Interaction Flow Mod-
eling Language (IFML) for model driven development of mobile appli-
cations front end. Mobile Web Information Systems Conference: 11th
International Conference, MobiWIS, 2014 August 27-29. Barcelona,
Spain. Proceedings 8640:176—191. N.p: Springer International Publishing;
2014.

Boehm B. A spiral model of software development and enhancement. IEEE
Computer 1988;21:61-72.

Booch G. Object oriented analysis and desing with applications. 2nd ed.
Redwood City, CA: Benjamin-Cummings; 1994.

Borchers J. A pattern approach to interaction design. New York: John Wiley
& Sons; 2001.

Brodie ML, Ridjanovic D. On the design and specification of database trans-
actions. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Concep-
tual Modelling: Perspectives from Artificial Intelligence, Databases, and
Programming Languages, SpringerVerlag, New York 1984: 277-312.

395

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0010
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0010
http://www.omg.org/spec/ALF/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0020
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0020
http://developer.android.com/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0030
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0030
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0035
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0040
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0040
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0045
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0045
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0050
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0055
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0060
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0060
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref8865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref8865
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0070
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0075
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0075
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0080
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0080
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0085
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0085
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0090

396

References

[Brambillal1]

[BrusilovskyO1]

[CFO1]

[CFMO02]
[CFP99]
[CS13]
[CL11]
[Chen76]

[CKLMR97]

[Conallen00]
[Conallen99]
[CY90]
[Date95]
[David13]
[DFAB98]
[EN94]
[EP0O]

[Erickson14]

[Fincher14]

[FFG+03]

Brambilla M. From requirements to implementation of ad-hoc social
web applications: an empirical pattern-based approach. IET Software
2011;6:114-26. http://dx.doi.org/10.1049/iet-sen.2011.0041. IET 2011.
Brusilovsky P. Adaptive Hypermedia. User modeling and user-adapted
interaction 2001;11:87-210.

Comai S, Fraternali P. A semantic model for specifying hypermedia
applications using WebML. International Semantic Web Workshop, Infra-
structure and Applications for the Semantic Web. Stanford, CA: Stanford
University; 2001 July 30-31. Available at: http://webml.org/webml/upload/
ent5/1/SemanticWeb01.pdf.

Ceri S, Fraternali P, Matera M. Conceptual modeling of data-intensive web
applications. IEEE Internet Computing 2002;6:20-30.

Ceri S, Fraternali P, Paraboschi S. Design principles for data-intensive web
sites. SIGMOD Record 1999;28:84-9.

Chaffer J, Swedberg K. Learning jQuery. 4th ed. Birmingham, UK: Packt
Publishing; 2013.

Charland A, Leroux B. Mobile application development: web vs. native.
Communication of the ACM 2011;54:49-53.

Chen PP. The entity-relationship model: toward a unified view of data.
ACM TODS 1976;1:9-36.

Colby LS, Kawaguchi A, Lieuwen DF, Mumick IS, Ross KA. Sup-
porting multiple view maintenance policies. ACM SIGMOD Record
1997;26:405-16.

Conallen J. Building web applications with UML (2nd Edition). Reading,
MA: Addison Wesley; 2002.

Conallen J. Modeling web application architectures with UML. Communi-
cations of the ACM 1999;42:63-70.

Coad P, Yourdon E. Object-oriented design. Englewood Cliffs, NJ: Prentice
Hall International; 1990.

Date C. An introduction to database systems. 7th ed. Reading, MA:
Addison-Wesley; 1999.

David M. HTMLS: designing rich internet applications. 2nd ed. Burling-
ton, MA: Focal Press; 2012.

Dix A, Finlay J, Abowd G, Beale R. Human—computer interaction. 2nd ed.
Englewood Cliffs, NJ: Prentice Hall; 1998.

El-Masri R, Navathe SB. Fundamentals of database systems. 3rd ed. Read-
ing, MA: Addison-Wesley; 2000.

Eriksson HE, Penker M. Business modeling with UML. New York: John
Wiley & Sons; 2000.

Erickson T. The interaction design patterns page [Internet]. [cited 2014
Aug n.d.] Available from: http://www.visi.com/~snowfall/Interaction
Patterns.html.

Fincher S. The pattern gallery [Internet]. [cited 2014 Aug n.d.] Available
from: http://www.cs.kent.ac.uk/people/staft/saf/patterns/gallery.html.
Fincher S, Finlay J, Greene S, Jones L, Matchen P, Thomas J, Molina
PJ. Perspectives on HCI patterns: concepts and tools. In Ext. Proc. of
CHI’2003. New York: ACM Press; 2003. p. 1044-5.

﻿﻿http://dx.doi.org/﻿10.1049/iet-sen.2011.0041﻿
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0100
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0100
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0110
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0110
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0115
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0115
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0120
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0120
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0125
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0125
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0130
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0130
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0135
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0140
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0140
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0145
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0145
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0150
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0150
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0155
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0155
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0160
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0160
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0165
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0165
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0170
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0170
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0175
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0175
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.visi.com/%7Esnowfall/InteractionPatterns.html
http://www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0190

References 397

[FKHO06] Falb J, Kaindl H, Horacek H, Bogdan C, Popp R, Arnautovic E. A dis-
course model for interaction design based on theories of human com-
munication. In: Extended Abstracts on Human Factors in Computing
Systems; 2006 Apr 22-27. Montreal. New York: ACM Press; 2006.
p. 754-9.

[FLMMO04] Fraternali Piero, Luca Lanzi Pier, Matera Maristella, Maurino Andrea.
Exploiting conceptual modeling for web application quality evaluation.
In: Proceedings of the 13th international world wide web confer-
ence on alternate track papers and posters; 2004 n.d., n.p. New York:
ACM Press; 2004. p. 342-3. Available at: https://www.researchgate.
net/publication/221022826_Exploiting_conceptual_modeling_for_web_
application_quality_evaluation.

[Fowler03] Fowler M. UML distilled: a brief guide to the Standard Object Modeling
Language. 3rd ed. Reading, MA: Addison-Wesley; 2003.

[FPOO] Fraternali P, Paolini P. Model-driven development of web applications: the
AutoWeb system. ACM Trans. Inf. Syst 2000;18. 323-2.

[FCBT10] Fraternali P, Comai S, Bozzon A, Toffetti Carughi G. Engineering rich
internet applications with a model-driven approach. TWEB 2010:4. n.p.

[FTMO1] Ferreira De Oliveira MC, Turine MAS, Masiero PC. A statechart-

based model for modeling hypermedia applications. ACM TOIS
2001;19:28-52.

[fUML] OMG. Semantics of a foundational subset for executable UML
models [Internet]. [updated 2011; cited n.d.] Available from:
http://www.omg.org/spec/FUML/.

[FVBO6] Folmer E, van Welie M, Bosch J. Bridging patterns: an approach to
bridge gaps between SE and HCI. Information and Software Technology
2006;48:69-89.

[GBMS6] Greenspan SJ, Borgida A, Mylopoulos J. A requirements modeling lan-
guage and its logic. IS 1986;11:9-23.

[GHJV95] Gamma E, Helm R, Johnson R, Vlissedes J. Design patterns: elements of
reusable object oriented software. Reading, MA: Addison-Wesley; 1995.

[GLMO1] Génova G, Llorens J, Martinez P. Semantics of the minimum multiplicity

in ternary associations in UML. In: Gogolla M, Kobryn C, editors. The
Unified Modeling Language: modeling languages, concepts, and tools:
Proceedings of the 4th International Conference; 2001 Oct 1-5. Toronto,
Canada. Berlin: Springer; 2001. p. 329-41.

[GPS93] Garzotto F, Paolini P, Schwabe DHDM. a model-based approach to
hypertext application design. ACM Transactions on Information Systems
1993;11:1-26.

[GP99] Gulutzan P, Pelzer T. SQL-99 complete, really. Lawrence, KS: R&D
Books; 1999.

[GR93] Gray J, Reuter A. Transaction processing: concepts and techniques. San
Mateo, CA: Morgan Kaufmann; 1993.

[GVBA99] Grefen PWPJ, Vonk J, Boertjes E, Apers PMG. Semantics and architecture

of global transaction support in workflow environments. In: Proceedings
of CooplS ‘99 1999:348-59. Available at: http://www.informatik.uni-trier.
de/~ley/db/conf/coopis/coopis99.html.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0195
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
https://www.researchgate.net/publication/221022826_Exploiting_conceptual_modeling_for_web_application_quality_evaluation
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0205
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0205
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0210
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0210
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0215
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0215
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0220
http://www.omg.org/spec/FUML/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0230
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0235
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0235
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0240
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0240
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0245
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0250
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0255
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0255
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0260
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0260
http://www.informatik.uni-trier.de/%7eley/db/conf/coopis/coopis99.html%20
http://www.informatik.uni-trier.de/%7eley/db/conf/coopis/coopis99.html%20

References

[HB11]

[HBRY4]

[iOS]
[ISB95]
[Jacobson94]
[JavaSwing]
[JBR99]
[Kelly08]

[Kiss07]

[Klyne04]

[Kobsa01]
[Kopparapu02]
[Kruchten99]

[LaurentO1]
[LVMO04]

[MR92]

[MAO1]

[Meierl2]

[MBS11]

Hoober S, Berkman E. Designing mobile interfaces. Sebastopol, CA:
O’Reilly Media; 2011.

Hardman L, Bulterman D, van Rossum G. The Amsterdam hypermedia
model: adding time and context to the dexter model. Communications of
the ACM 1994;97:50-62.

iOS Dev Center [Internet]. [cited 2013 Sep n.d.] Available from:
https://developer.apple.com /devcenter/ios/index.action.

Isakowitz T, Sthor EA, Balasubranian P. RMM a methodology for struc-
tured hypermedia design. Communications of the ACM 1995;38:34-44.
Jacobson I. Object-oriented software engineering: a use case driven
approach. Reading, MA: Addison-Wesley; 1994.

Package javax.swing [Internet]. [cited 2013 Sep n.d.] Available from:
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html.
Jacobson I, Booch G, Rumbaugh J. The unified software development pro-
cess. Reading, MA: Addison-Wesley; 1999.

Kelly S, Tolvanen J-P. Domain-specific modeling: enabling full code gen-
eration. New York: Wiley-IEEE Computer Society Press; 2008.

Kiss C. Composite capability/preference profiles (CC/PP): struc-
ture and vocabularies 2.0, W3C working draft [Internet]. [updated
2007 Apr 30; cited 2013 Sep n.d.] Available from: http://www.w3.org/
TR/2007/WD-CCPP-struct-vocab2-20070430.

Klyne G, Reynolds F, Woodrow C, Ohto H, Hjelm J, Butler MH, Tran L.
Composite capability/preference profiles (CC/PP): structure and vocabular-
ies 1.0, W3C recommendation [Internet]. [updated 2004 Jan n.d.; cited 2013
Sep n.d.] Available from: http://www.w3.org/TR /CCPP-struct-vocab/.
Kobsa A. Generic user modeling systems. User modeling and user-adapted
interaction 2011;11:49-63.

Kopparapu C. Load balancing servers, firewalls, and caches. New York:
John Wiley & Sons; 2002.

Kruchten P. The rational unified process: an introduction. Reading, MA:
Addison-Wesley; 1999.

St. Laurent S. XML.: a primer. 3rd ed. New Jersey: John Wiley & Sons; 2001.
Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, Florins MUSIXML.
auser interface description language supporting multiple levels of indepen-
dence. In: Matera M, Comai S, editors. Engineering advanced web applica-
tions: proceedings of workshops in connection with the 4th international
conference on web engineering (ICWE 2004); 2004 July 28-30. Munich,
Germany. Princeton, NJ: Rinton Press; 2004. p. 325-38.

Mannila H, Ridihd KJ. The design of relational databases. Reading, MA:
Addison-Wesley; 1992.

Menasce DA, Almeida VAF. Scaling for e-business: technologies, models,
performance, and capacity planning. Englewood Cliffs, NJ: Prentice Hall;
2001.

Meier R. Professional Android 4 application development. 3rd ed. New
York: Wrox; 2012.

Meixner G, Breiner K, Seissler M. Model-driven useware engineering. In:
Hussmann H, Meixner G, Zuehlke D, editors. Model-driven development
of advanced user interfaces studies. Heidelberg: Springer; 2011. p. 1-26.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0270
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0270
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0275
http://https://developer.apple.com%20/devcenter/ios/index.action
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0280
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0280
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0285
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0285
http://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0290
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0290
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0295
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0295
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430
http://www.w3.org/TR%20/CCPP-struct-vocab/
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0310
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0310
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0315
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0315
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0320
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0320
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0325
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0330
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0335
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0335
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0340
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0345
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0345
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0350

References 399

[MBWS80] Mylopoulos J, Bernstein PA, Wong HKT. A language facility for design-
ing database-intensive applications. Transactions on Database Systems
1980;5:185-207.

[Meyer88] Meyer B. Object-oriented software construction. 2nd ed. Englewood Cliffs,
NJ: Prentice Hall; 2000.
[MPS04] Mori G, Paternd F, Santoro C. Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Transactions on
Software Engineering 2004;30:507-20.

[NB12] Nielsen J, Bodiu R. Mobile usability. San Francisco, CA: New Riders;
2012.

[Neil12] Neil T. Mobile design pattern gallery. Sebastopol, CA: O’Reilly; 2012.

[Nielsen00] Nielsen J. Designing web usability: the practice of simplicity. San Fran-
cisco, CA: New Riders; 1999.

[Nixon12] Nixon R. Learning PHP, MySQL, JavaScript, and CSS: a step-by-step guide
to creating dynamic websites. 2nd ed. Sebastopol, CA: O’Reilly; 2012.

[NMO1] Naiburg EJ, Maximchuck RA. UML for database design. Reading, MA:
Addison-Wesley; 2001.

[PSC12] Palmieri M, Singh I, Cicchetti A. Comparison of cross-platform mobile

development tools. In: 16th International Conference on Intelligence in Next
Generation Networks; 2012 Oct 8-11. Berlin. N.p: IEEE; 2012. p. 179-86.
Available at: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6376
023&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%
3Farnumber%3D6376023.

[Popescul2] Popescu A. Geolocation API specification, editor’s draft (for W3C pro-
posed recommendation) [Internet]. [updated2012 May n.d.; cited 2013 Sep
n.d.] Available from: http://dev.w3.org/geo/api/spec-source.html.

[PSS09] Paterno F, Santoro C, Spano LD. Maria: A universal, declarative, mul-
tiple abstraction-level language for service-oriented applications in ubiq-
uitous environments. ACM Transactions on Computer-Human Interaction
2009;16(19):1-19. 30.

[Rabin10] Rabin J, Trasatti A, Hanrahan R, eds. Device description repository core
vocabulary, W3C working group note [Internet]. [updated 2008 Apr 14;
cited n.d.] Available from: http://www.w3.org/TR/ddr-core-vocabulary/.

[RB12] Raj R, Babu Tolety S. A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach. Kochi,
Kerala, India: IEEE INDICON Conference; 2012 Dec 7-9. Available at:
http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=6410222.

[RBPELI1] Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorenson W. Object-
oriented modeling and design. Englewood Cliffs, NJ: Prentice Hall;
1991.

[RMB13] Raneburger D, Meixner G, Brambilla M. Platform-independence in

model-based multi-device Ul development. In: Proceedings of ICSOFT.
2013. p. 265-72. Available at: http://link.springer.com/chapter/10.1007
%2F978-3-662-44920-2_12.

[RPK11] Raneburger D, Popp R, Kavaldjian S, Kaindl H, Falb J. Optimized GUI
generation for small screens. In: Hussmann H, Meixner G, Zuehlke D, edi-
tors. Model-driven development of advanced user interfaces studies; 2011.
Heidelberg: Springer; 2011. p. 107-22.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0355
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0360
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0360
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0365
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0370
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0370
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0375
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0380
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0380
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0385
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0385
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0390
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0390
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://ieeexplore.ieee.org/xpl/login.jsp?tp=%26arnumber=6376023%26url=http%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6376023
http://dev.w3.org/geo/api/spec-source.html
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0405
http://www.w3.org/TR/ddr-core-vocabulary/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6410222
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0415
http://link.springer.com/chapter/10.1007%252F978-3-662-44920-2_12
http://link.springer.com/chapter/10.1007%252F978-3-662-44920-2_12
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0425

References

[RS02]
[Sano96]
[SF89]

[Shackel91]

[Shasha92]
[SM88]

[SPCJ10]

[SR95]
[Starr02]
[SWJ98]

[VM10]

[Voelter13]
[WKO03]
[Walls11]
[WW13]

[ZP92]

Rabinovich M, Spatscheck O. Web caching and replication. Reading, MA:
Addison-Wesley; 2002.

Sano D. Designing large scale web sites: a visual design methodology. New
York: John Wiley & Sons; 1996.

Stotts P, Furuta R. Petri-net-based hypertext: document structure with
browsing semantics. TOIS 1989;7:3-29.

Shackel B. Usability: context, framework, definition, design, and evalua-
tion. In: Shackel B, Richardson S, editors. Human factors for informatics
usability. Cambridge, UK: Cambridge University Press; 1991. p. 21-38.
Shasha D. Database tuning: a principled approach. Englewood Cliffs, NJ:
Prentice Hall; 1992.

Schlaer S, Mellor S. Object oriented system analysis: modeling the world
in data. Englewood Cliffs, NJ: Prentice Hall; 1988.

Shneiderman B, Plaisant C, Cohen M, Jacobs S. Designing the user inter-
face: strategies for effective human-computer interaction. 5th ed. Reading,
MA: Addison-Wesley; 2010.

Schwabe D, Rossi G. The object-oriented hypermedia design model. Com-
munication of ACM 1995;38:45-6.

Starr L. Executable UML: how to build class models. Englewood Cliffs,
NIJ: Prentice-Hall; 2002.

Schneider G, Winters JP, Jacobson I. Applying use cases: a practical guide.
Reading, MA: Addison-Wesley; 1998.

Vanderdonckt J, Simarro FM. Generative pattern-based design of user
interfaces. In: PEICS ‘10 Proceedings of the 1st International Workshop on
Pattern-Driven Engineering of Interactive Computing Systems; 2010 June
20. Berlin, Germany. New York: ACM; 2010. p. 12-9.

Voelter M. DSL engineering: designing, implementing, and using domain-
specific languages. N.p.: CreateSpace 2013.

Warmer J, Klepp A. The Object Constraint Language: getting your models
ready for MDA. 2nd ed. Reading, MA: Addison-Wesley; 2003.

Walls C. Spring in action. 3rd ed. Shelter Island, NY: Manning Publica-
tions; 2011.

Wheeler W. White J. Spring in practice. Shelter Island, NY: Manning Pub-
lications; 2013.

Zheng Y, Pong M. Using statecharts to model hypertext. ECHT
1992;1992:242-50.

http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0430
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0430
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0435
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0435
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0440
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0440
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0445
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0450
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0450
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0455
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0455
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0460
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0465
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0465
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0470
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0470
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0475
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0475
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0480
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0485
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0485
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0490
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0490
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0495
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0495
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0500
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0500
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0505
http://refhub.elsevier.com/B978-1-78242-300-3.16001-9/ref0505

Index

Note: Page numbers followed by “b”, “f” and “t” indicate boxes, figures and tables respectively.

A

Access objects, 38-39
Access subschema designing, 41-43
Acme Domain model, 338
Action design, 342
Action Language for {UML (ALF), 380
Action server-side script, 298f
ActionEvent, 117b
Actions, 116-118, 116b
ActivationExpression, 59b, 364
e-mail application interface, 365f
Activity wall (AW), 225
ALF. See Action Language for {UML
Alphabetical filter pattern (ALPHA filter pattern),
196, 196f
AM pattern. See Association management pattern
AND-OR tree, 363-364, 363f
Android, 279
Android development environment,
322-323, 322f
IFML mapping, 323-330
Application implementation. See also Interaction
Flow Modeling Language (IFML)
bibliographic notes, 333-334
IFML platform-independence, 279
mapping for exemplary platforms, 280t-281t
mobile application, 321-330
presentation frameworks, 301-316
RIA, 316-320, 317f
URE-HTML page templates, 282-301
Architecture design, 17
Area, 145b
Association management pattern (AM pattern),
128-129
Association roles. See Associations—ends
Associations, 32-34
ends, 33
Attributes, 26-27
built-in data types, 29t
graphic notation, 29f
type and visibility, 29-30
Auto-completion pattern, 198
Automatic documentation, 353-354
AW. See Activity wall

Basic search pattern, 99
Best-effort rule, 367

Binary association, 33
Breadcrumb, 187-190, 191f
Business action modeling, 115
actions, 116-118
business action patterns, 119-131
e-mail application example, 131-136
notification, 119
Business action patterns, 119
AM pattern, 128-129
CODL pattern, 123-125
content management patterns, 119
NOTIF pattern, 130-131
OACR pattern, 120-122
OCR pattern, 120
ODL pattern, 122-123
OM pattern, 125-128
Business logic, 377
design, 336
implementation, 17-18
modeling, 17
Business models, 377

Cc

“CameraCanvas”, 155
Cameras, 155
Cascade selection field pattern (CSF pattern), 98
Cascaded deletion pattern (CODL pattern),
123-125
Cascaded index. See Multilevel master detail
(MLMD pattern)
Categorizing class, 42
CBCM. See Class-based content management
CEX. See Context expiration notification
CII. See Commands with inline input
CIM&B. See Content-independent navigation bars
and menus
Class instances. See Objects
Class-based content management (CBCM),
205-208, 207f
Classes, 25-26
CMS. See Content management systems
CMWA. See Composite work area
Code generation, 346
for mobile applications, 350
for rich internet application, 346-350
for web application, 346-350
Code-level debugging, 351
CODL pattern. See Cascaded deletion pattern

401

Index

Collection PR pattern. See Collection preview
pattern
Collection preview pattern (Collection PR pattern),
192-196, 195f
Commands with inline input (CII), 184
Comments module, 243-244
Common Warehouse Metamodel diagram (CWM
diagram), 4
Component extensions, 140, 148-152, 155
dynamically-sorted list, 149-150
Nested list, 151-152, 152b
Scrollable list, 150-151, 151b
table, 141-144
tree explorer, 140
ComponentPart extensions, 144
Composite work area (CMWA), 63
Conflict resolution strategy (CRS), 370
priority-based, 371f
specificity-based, 372f
Container extensions, 145-147, 154-155
Content
content-dependent navigation, 77
ContentBinding, 81b
dependencies, 81-83
management patterns, 119, 205
CBCM, 205-208, 207f
PBCM, 208, 209f
model, 377
pattern, 190
ALPHA filter pattern, 196, 196f
Collection PR pattern, 192-196, 195f
MMD pattern, 190-192, 193f
PG pattern, 192, 194f
previewing, 190-196
publishing, 190-196
scrolling, 190-196
Content management systems (CMS), 68
Content-independent
NavigationFlow, 373-374
toolbars, 184
Content-independent navigation bars and menus
(CIM&B), 184-186
Context, 59-61, 59b
extensions, 153-154
Context expiration notification (CEX),
210-213
ContextDimension, 59b
ContextVariable object, 47, 60, 60b
Cooperative work, 351-353
Core objects, 38
Core package, 360
Core subschema designing, 4041
CRS. See Conflict resolution strategy

CSF pattern. See Cascade selection field pattern
CWM diagram. See Common Warehouse
Metamodel diagram

D
Data access object (DAO), 310
Data entry, 197. See also Search patterns
extensions, 89-91
input data validation, 203-204
patterns, 93
Auto-completion, 198, 200f
CSF, 98
DLKP, 97-98
DYN selection fields, 201, 202f
FRM, 93-94
INPL, 201, 203f
PASF, 96-97
PLDF, 94
wizard design, 99
RTE, 197
TDFP, 197, 198t
Data implementation, 17-18
Data lookup pattern (DLKP pattern),
97-98
Data mapping, 336
and alignment, 341-342
Data publishing extensions, 86—87
DataBinding, 81-83, 81b
DataFlow, 85b
DD. See Diagram definition
Default selection pattern, 92-93
Default viewcontainers, 55b
Deployment, 18
Derived association, 38f
Derived attributes, 36-37, 37f
Desktop extensions, 138. See also Web
extensions
component extensions, 140-144
componentpart extensions, 144
event extensions, 138-140
Desktop interface organization patterns, 62.
See also Mobile interface organization
patterns
CMWA, 63, 66f
MCWA, 63, 67f
MWA, 63, 65f
SWA, 62-63, 64f
Details ViewComponent, 86b
Device, 59b
DI. See Diagram interchange
Diagram definition (DD), 360
Diagram interchange (DI), 360
Dispatcher. See Front controller

DLKP pattern. See Data lookup pattern
Domain modeling, 16-17, 25
access subschema designing, 4143
associations, 32-34
attributes, 26-27
classes, 25-26
core subschema designing, 40—41
derived information, 36-38
design, 337-338
e-mail management application, 48f
generalization hierarchies, 31-32
identification and primary key, 27-29
interconnection subschema designing, 41
media sharing app, 233-234
OCL, 36-38
online auctions, 253-256, 255f
operations, 30
patterns and practices, 38-39
personalization subschema designing, 44—47
process of, 39-47
DT pattern. See Dynamic toolbars pattern
Dynamic finder methods, 312
Dynamic selection field pattern (DYN selection
field pattern), 201, 202f
Dynamic toolbars pattern (DT pattern), 179181
Dynamically-sorted list, 149-150
DynamicBehavior, 83b
DynamicSortedList, 150b

E
EditableSelectionField, 144b
EditableVisualizationAttribute, 201b
Enterprise scale development, 351-353
Entity—Relationship model (E-R model), 25
Event, 52b
Event extensions, 138-139, 155

Drag and Drop, 140

flow extensions, 147-148

OnFocusLost event, 139b
Exclusive containers (XOR containers), 11-12

F

Faceted search pattern (FSR pattern),

101-103
Facets, 101
Field, 89b

Flexible interface composition, 163, 164f
Form, 89b

Foundational UML (fUML), 380
Friendship management, 228, 229f

FRM pattern. See Multi-field form pattern
Front controller, 303

Front-end modeling, 17

Index

Generalization hierarchies, 31-32
GEO patterns, 228
Gestures, 161

H

“handleRequest” method, 314
“Home Page”, 53

403

Hypermedia Model Based on Statecharts (HMSB), 380

Identification and Authorization (IA), 208-209. See

also Personalization
IFML. See Interaction Flow Modeling Language
IFML in nutshell, 9. See also Interaction Flow
Modeling Language (IFML)
development process, 15-16, 16f
architecture design, 17
business logic modeling, 17
deployment, 18
domain modeling, 16-17
front-end modeling, 17
implementation, 17-18
maintenance and evolution, 18
requirements specification, 16
testing and evaluation, 18
events triggering business actions, 15f
mutually exclusive subcontainers, 12f
parameter bindings, 15f
scope and perspectives, 9—11
top-level interface structures, 12f
use cases
Bookstore application, 19f, 21f
Browse books, 20f
Browse Products, 22f-23f
“Manage cart”, 21f
ViewComponents
interaction flow, 14f
within view containers, 13f
IFML language. See also Interaction Flow
Modeling Language (IFML)
model execution, 362
ActivationExpressions, 364, 365f
active and inactive ViewComponents, 368f
event processing, 366
navigation history preservation, 367-370
parameter values conflicts, 370-371
state representation, 363
ViewComponent state, 364, 367
ViewContainer state, 362—-364
ViewContainer visibility, 366-367
model integration, 375-378, 376f
specification through metamodeling, 359-362

Index

Implementation, 17-18
In-place editing pattern (INPL pattern), 201, 203f
In-place sign-in pattern (IPSI pattern), 220, 221f
Input data validation, 203-204
Input-output dependencies, 83-85
Inter-container navigation flow traversal, 366
Interaction flow extensions, 147—-148
Interaction Flow Diagram, 10
InteractionFlow navigation, 366
InteractionFlowModel, 360
Interaction Flow Modeling Language (IFML), 2,
233
design principles, 3—4
extensibility, 354-355
extensions, 137
desktop extensions, 138—144
mobile extensions, 152-161
multiscreen extensions, 161-164
web extensions, 145-152
front-end modeling, 2
mapping to RIA, 317-320
media sharing app, 233, 234f
domain model, 233-234
IFML model, 234-252, 235f
“Media SharingTop” ViewContainer, 238f
online auctions, 252-276
technical artifacts, 3
Interconnection
objects, 38
subschema designing, 41
Interface content and navigation modeling, 77
content dependencies, 81-83
data entry patterns, 93-99
e-mail application interface, 103-112
input-output dependencies, 83-85
patterns and practices, 91-93
search patterns, 99-103
ViewContainers, 78
Interface implementation, 17-18
Interface organization, 167. See also User interface
modeling
MasterPage, 169-173, 174f
mock-up of checkout process, 171f
multiscreen design pattern, 170f
pattern, 62
desktop, 62-63
mobile, 70-71
web, 63-69
reusable modules, 167-169, 172f
Intra-container navigation flow traversal, 366
IPSI pattern. See In-place sign-in pattern
Is-a hierarchy. See Generalization hierarchies

Java DataBase Connectivity (JDBC), 310-312
Java Enterprise Edition JEE), 333-334

Java Persistence API (JPA), 310-312

Java Server Pages (JSP), 305

JSP Standard Template Library (JSTL), 305

L

Landmark navigation, 367

Landmark viewcontainers, 55b

Large web sites organized into areas (LWSA), 69

Linux, Apache, MySQL, PHP (LAMP), 279

List ViewComponent, 86b

Location-aware search (LAS), 228

Login to specific viewcontainer pattern (SPLOG
pattern), 213

M

Maps, 160-161
MapView, 160b
Marker, 160b
Master detail pattern (MD pattern), 92
Master multidetail pattern (MMD pattern),
190-192, 193f
MCS. See Multicriteria search pattern
MCWA. See Multiview composite work area
MD pattern. See Master detail pattern
MDA. See Model driven architecture
MDE. See Model driven engineering
Media sharing app, 233
domain model, 233-234, 235f
IFML model, 234, 235f
Comments module, 243-244
“MediaTiled” module, 249f
MediaViewer module, 237-243, 239f
search users and tags, 250-252
Tag module, 252
User module, 244-248, 248f
“Media SharingTop” ViewContainer, 238f
MediaViewer module, 237-243, 239f
refined model, 242f
“MessageWriter” ViewComponent, 135
Meta Object Facility (MOF), 3
Metamodeling, 359
extensibility, 361-362
interchange format, 362
metamodel, 360-361, 361f
profile, 362
visual notation, 362
MFE. See Multiple front-ends
MLMD pattern. See Multilevel master detail
MMD pattern. See Master multidetail pattern

Mobile application, 321-330
Mobile extensions, 152. See also Desktop
extensions
cameras, 155
communication, 156-157
component and event extensions, 155
containers extensions, 154—155
context extensions, 153-154
gestures, 161
maps, 160-161
position, 157-160
sensors, 155
Mobile interface organization patterns, 70. See also
‘Web interface organization patterns
Mobile screen layout (MSL), 70-71
Modal window, 57b
Model checking, 350-351, 352f
Model debugging, 351, 353f
Model driven architecture (MDA), 3, 359
Model driven engineering (MDE), 359
Model-driven development, 335. See also
WebRatio
Modeless window, 57b
Modeling patterns. See also Interaction Flow
Modeling Language (IFML)
content
management pattern, 205-208
previewing, 190-196
publishing, 190-196
scrolling, 190-196
data entry, 197-204
GEO patterns, 228
1A, 208-220
interface organization, 167-173
navigation and orientation, 173
breadcrumb, 187-190
toolbars and menus, 174—186
up and back navigation, 186-187, 189f
personalization, 208-220
search pattern, 204
session data management, 220-224
social networks, 225-228
Model-View—Controller (MVC), 9, 10f, 301-305,
302f
mapping operations, 315-316
spring components, 304f
Module, 168b
ModuleDefinition, 167b
MOF. See Meta Object Facility
MOT pattern. See Multiple objects toolbar pattern
MSC. See Multistep commands
MSL. See Mobile screen layout

Index

Multi-field form pattern (FRM pattern), 93-94
MultiChoice List, 87b
Multicriteria search pattern (MCS), 101
Multilevel master detail (MLMD pattern), 92
Multiple front-ends (MFE), 68—-69
Multiple objects modification pattern, 128f
Multiple objects toolbar pattern (MOT pattern),
174-175

content-dependent toolbar, 178f
Multiscreen

applications, 161-163

extensions, 161-164
Multistep commands (MSC), 181-184
Multiview composite work area (MCWA), 63
Multiview work area (MWA), 63
MVC. See Model-View—Controller

N-ary associations, 33-36
NamedElement, 360
NavigationFlow, 52b, 366
Near field communication (NFC), 156
Negative role-based permissions pattern (NRBP
pattern), 216-217. See also Role-based
permissions pattern (RBP pattern)
Nested list, 151-152, 152b
Nested ViewContainer, 295-298
“NewsCategory” Class, 312
data access interface for, 311f
entity declaration, 311f
NFC. See Near field communication
“NFCCardReceiver” interface, 156-157
“NFCCardSender” interface, 156
Notification pattern (NOTIF pattern), 130-131
NRBP pattern. See Negative role-based permissions
pattern

0

OACR pattern. See Object and association creation
pattern

Object and association creation pattern (OACR
pattern), 120-122

Object constraint language (OCL), 36-38

Object creation pattern (OCR pattern), 120

Object deletion pattern (ODL pattern), 122—-123

Object identifier (OID), 28

Object Management Group (OMG), 2

Object modification pattern (OM pattern), 125-128

Object-based permissions pattern (OBP pattern),
217

Object-relational mapping (ORM), 336

Objects, 25-26

405

|
406

Index

OBP pattern. See Object-based permissions pattern

OCL. See Object constraint language

OCR pattern. See Object creation pattern

ODL pattern. See Object deletion pattern

OID. See Object identifier

OM pattern. See Object modification pattern

OMBG. See Object Management Group

On-line resources, 67

OnDragStart event, 140b

OnDrop event, 140b

OnFocusLost event, 139b

Online auctions, 252-253

domain model, 253-256, 255f
IFML model, 256

category pages, 265-266, 267f-268f
“Collections” reusable module, 265f
home page, 261-265, 263f-264f
listings, 272-276, 273f, 275f
repeated content element, 258-261
search results, 269-272, 271f

Operations, 30, 31f

ORM. See Object-relational mapping

P
Page, 145b
Page template, 282
Page-based content management (PBCM),
208, 209f. See also Class-based content
management (CBCM)
Paging pattern (PG pattern), 192, 194f
ParameterBinding, 84b
ParameterBindingGroup, 84b
PASF pattern. See Preassigned selection field
pattern
Path, 161b
PBCM. See Page-based content management
PDO. See PHP Data Object
Personalization, 208-209
associations, 44
authentication expiration pattern, 212f
CEX, 210-213
IPSI pattern, 220, 221f
login pattern, 209-210, 211f
logout pattern, 210, 212f
NRBP pattern, 216-217
OBP pattern, 217
RBP pattern, 215-216
SPLOG pattern, 213
subschema designing, 44—47
switching pattern, 213-215, 214f
user profile display and management, 217-220,
219f
user role display, 213-215

PG pattern. See Paging pattern
“PhotoShooter” ViewContainer, 155
PHP code, 282
PHP Data Object (PDO), 291
PHP implementation
“Categories” ViewContainer, 288f
“CategoryDetails” ViewContainer, 289f
disjunctive ViewContainers, 297f
login Action, 300f
NewsCategories page, 286f
search pattern, 294f
Platform independent model (PIM), 1, 13
Platform-specific model (PSM), 13
PLDF pattern. See Preloaded field pattern
Port, 168b
PortDefinitions, 168b
Position, 59b
Preassigned selection field pattern (PASF pattern),
96-97
Preloaded field pattern (PLDF pattern), 94
Presentation design, 336, 344-346
Presentation frameworks, 301
IFML mapping, 305
mapping forms, 312-315
MVC, 301-305, 302f
MVC mapping operations, 315-316
ViewComponents mapping, 310-312
ViewContainer mapping, 305-310
Primary key, 27-29
Profile data, 44
PSM. See Platform-specific model

R

Requirements specification, 16

Restricted search pattern (RSRC pattern), 204

Reusable modules, 167-169

Rich Internet application (RIA), 316-320, 317f

Rich text editing (RTE), 197

Role-based access control system (RBAC system),
39, 60, 146

Role-based permissions pattern (RBP pattern),
215-216

)
Scrollable list, 150-151, 151b
Search interface, 250-252, 251f
Search patterns, 99, 204

basic search pattern, 99

FSR pattern, 101-103

MCS, 101

RSRC pattern, 204

search suggestions, 206f

SRCS pattern, 204

Index 407
Search suggestions pattern (SRCS pattern), 204 attribute-based selector, 287f
SelectEvent, 87b context information, 299-301
SelectionField, 89b dynamic page template, 283f
Sensors, 155 forms, 293-295
Session data management, 220 landmarks, 295-298
creation, 222-223 navigation across ViewContainer, 287-290
expiration catching, 224 navigation within same ViewContainer, 290-293
persistance, 223, 223f nested ViewContainer, 295-298
Simple work area (SWA), 62-63 PHP template, 283f
SimpleField, 89b standalone ViewContainer, 284-287
Single object modification pattern, 127f ViewContainer computation steps, 282-284
Single object toolbar pattern (SOT pattern), URL. See Uniform resource locator
174-175 User groups, 44
content-dependent commands, 177f User interface modeling, 51
content-dependent toolbar, 176f, 179f context, 59-61
Single screen applications, 161-163 e-mail management application, 71-76
SiteView, 145b interface organization, 51-53
Social networks, 225 user interaction patterns, 62
AW, 225 view container
friendship management, 228, 229f navigation, 55
sharing, liking, and commenting, 226-228 nesting, 53-54
SOT pattern. See Single object toolbar pattern relevance and visibility, 55-57
Specialized subclass, 42 viewpoint, 59-61
SPLOG pattern. See Login to specific viewcon- windows, 57
tainer pattern User module, 244-248, 248f
Spring architecture, 304 UserRole, 59b
Spring MVC framework
IFML mapping, 305 v
mapping forms, 312-315 Validation rules, 355
ViewComponents mapping, 310-312 View container
ViewContainer mapping, 305-310 navigation, 55
SRCS pattern. See Search suggestions pattern nesting, 53-54
SubmitEvent, 90b relevance and visibility, 55-57
SWA. See Simple work area ViewComponents, 78, 78b, 364
Switching pattern, 213-215, 214f computation process, 371-375
System ViewContainer, 154b, 155f events and navigation flows, 79
SystemEvent, 119b extending IFML, 85-91
SystemFlow, 119b ViewComponentPart, 78b
ViewContainers, 51, 51b, 363-364
T best-effort computation, 369f
Table ViewComponent, 142b ChoosePreferredCategory event, 374
Tag module, 252 computation steps, 282-284
Tree explorer, 140, 141b controller, 306
TriggeringExpression, 119b deletion of product, 375
Type-dependent field properties (TDFP), 197, 198t with landmark navigation, 373-374
navigation across, 287-290
U by NavigationFlow, 288f
Unified Modeling Language (UML), 3 SelectProduct event, 374
Uniform resource locator (URL), 145 service, 306-307, 308f
Unique value, 27-28 standalone, 284-287
Up and back navigation, 186-187, 189f unsuccessful deletion, 375
URE-HTML page templates, 282 ViewElementEvent, 52

actions, 298-299 ViewElements, 77

408 Index
ViewPoint, 59-61, 60b domain model design, 337-338
Visibility propagation rules, 364 features, 350
Visual notation, 362 automatic documentation, 353-354
cooperative work, 351-353
w enterprise scale development,
Web extensions, 145 351-353
component extensions, 148—152 IFML extensibility, 354-355
container extensions, 145-147 model checking, 350-351, 352f
event and interaction flow extensions, 147-148 model debugging, 351, 353f
‘Web interface organization patterns, 63—68 IFML ViewComponent extension, 357f
LWSA, 69 interface, 337f
MFE, 68-69 for action definition, 343f
‘Web Modelling Language (WebML), 7 content of Module, 340f
‘Web programming, 333 for editing IFML diagrams, 339f
Web Real Time Communication (WebRTC), 316 page generated by, 349f
‘WebContexts, 304 Presentation design, 344-346
WebML. See Web Modelling Language project documentation generation, 354f
WebNavigationFlow, 147b ‘WebRTC. See Web Real Time Communication
‘WebRatio, 335-337, 336f Windows, 57, 57b
Action design, 342 Wizard design pattern, 99
bibliographic notes, 357-358
code generation, 346-350 X

data mapping and alignment, 341-342 XOR containers. See Exclusive containers

	Front
Cover
	Interaction Flow
Modeling Language
	Copyright
	Contents
	Foreword
	Chapter
1 - Introduction
	1.1 WHAT IFML IS ABOUT
	1.2 THE IFML DESIGN PRINCIPLES
	1.3 HOW TO READ THIS BOOK
	1.4 ON-LINE RESOURCES
	1.5 BACKGROUND
	1.6 ACKNOWLEDGMENT
	END NOTES

	Chapter
2 - IFML in a Nutshell
	2.1 SCOPE AND PERSPECTIVES
	2.2 OVERVIEW OF IFML MAIN CONCEPTS
	2.3 ROLE OF IFML IN THE DEVELOPMENT PROCESS
	2.4 A COMPLETE EXAMPLE
	2.5 SUMMARY OF THE CHAPTER
	2.6 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter
3 - Domain modeling
	3.1 CLASSES
	3.2 ATTRIBUTES
	3.3 IDENTIFICATION AND PRIMARY KEY
	3.4 ATTRIBUTE TYPE AND VISIBILITY
	3.5 OPERATIONS
	3.6 GENERALIZATION HIERARCHIES
	3.7 ASSOCIATIONS
	3.8 N-ARY ASSOCIATIONS AND ASSOCIATIONS WITH ATTRIBUTES
	3.9 DERIVED INFORMATION AND THE OBJECT CONSTRAINT LANGUAGE (OCL)
	3.10 DOMAIN MODELING PATTERNS AND PRACTICES
	3.11 THE PROCESS OF DOMAIN MODELING
	3.12 RUNNING EXAMPLE
	3.13 SUMMARY OF THE CHAPTER
	3.14 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 4 - Modeling the composition of the user interface
	4.1 INTERFACE ORGANIZATION
	4.2 VIEW CONTAINER NESTING
	4.3 VIEW CONTAINER NAVIGATION
	4.4 VIEW CONTAINER RELEVANCE AND VISIBILITY
	4.5 WINDOWS
	4.6 CONTEXT AND VIEWPOINT
	4.7 USER INTERACTION PATTERNS
	4.8 INTERFACE ORGANIZATION PATTERNS AND PRACTICES
	4.9 RUNNING EXAMPLE
	4.10 SUMMARY OF THE CHAPTER
	4.11 BIBLIOGRAPHIC NOTES

	Chapter
5 - Modeling interface content and navigation
	5.1 WHAT VIEWCONTAINERS CONTAIN: VIEWCOMPONENTS
	5.2 EVENTS AND NAVIGATION FLOWS WITH VIEWCOMPONENTS
	5.3 CONTENT DEPENDENCIES: DATA BINDING
	5.4 INPUT-OUTPUT DEPENDENCIES: PARAMETER BINDING
	5.5 EXTENDING IFML WITH SPECIALIZED VIEWCOMPONENTS AND EVENTS
	5.6 CONTENT AND NAVIGATION PATTERNS AND PRACTICES
	5.7 DATA ENTRY PATTERNS
	5.8 SEARCH PATTERNS
	5.9 RUNNING EXAMPLE
	5.10 SUMMARY OF THE CHAPTER
	5.11 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 6 - Modeling business actions
	6.1 ACTIONS
	6.2 NOTIFICATION
	6.3 BUSINESS ACTION PATTERNS
	6.4 RUNNING EXAMPLE
	6.5 SUMMARY OF THE CHAPTER
	6.6 BIBLIOGRAPHIC NOTES

	Chapter 7 - IFML extensions
	7.1 DESKTOP EXTENSIONS
	7.2 WEB EXTENSIONS
	7.3 MOBILE EXTENSIONS
	7.4 MULTISCREEN EXTENSIONS
	7.5 SUMMARY OF THE CHAPTER
	7.6 BIBLIOGRAPHIC NOTES

	Chapter 8 - Modeling patterns
	8.1 INTERFACE ORGANIZATION
	8.2 NAVIGATION AND ORIENTATION
	8.3 CONTENT PUBLISHING, SCROLLING, AND PREVIEWING
	8.4 DATA ENTRY
	8.5 SEARCH
	8.6 CONTENT MANAGEMENT
	8.7 PERSONALIZATION, IDENTIFICATION, AND AUTHORIZATION
	8.8 SESSION DATA
	8.9 SOCIAL FUNCTIONS
	8.10 GEO PATTERNS
	8.11 SUMMARY OF THE CHAPTER
	8.12 BIBLIOGRAPHIC NOTES

	Chapter
9 - IFML by examples
	9.1 MEDIA SHARING APP
	9.2 ONLINE AUCTIONS
	9.3 SUMMARY OF THE CHAPTER
	END NOTES

	Chapter
10 - Implementation of applications specified with IFML
	10.1 IMPLEMENTATION OF THE FRONT END FOR URE-HTML PAGE TEMPLATES
	10.2 IMPLEMENTATION OF THE FRONT END FOR PRESENTATION FRAMEWORKS
	10.3 IMPLEMENTATION OF THE FRONT END FOR RICH INTERNET APPLICATIONS
	10.4 IMPLEMENTATION OF THE FRONT END FOR MOBILE APPLICATIONS
	10.5 SUMMARY OF THE CHAPTER
	10.6 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter
11 - Tools for model-driven development of interactive applications
	11.1 INTRODUCTION TO WEBRATIO
	11.2 DOMAIN MODEL DESIGN
	11.3 IFML FRONT-END DESIGN
	11.4 DATA MAPPING AND ALIGNMENT
	11.5 ACTION DESIGN
	11.6 PRESENTATION DESIGN
	11.7 CODE GENERATION
	11.8 ADVANCED FEATURES
	11.9 SUMMARY OF THE CHAPTER
	11.10 BIBLIOGRAPHIC NOTES
	END NOTES

	Chapter 12 - IFML language design, execution, and integration
	12.1 IFML LANGUAGE SPECIFICATION THROUGH METAMODELING
	12.2 IFML MODEL EXECUTION
	12.3 IFML MODELS INTEGRATION WITH OTHER SYSTEM MODELING PERSPECTIVES
	12.4 SUMMARY OF THE CHAPTER
	12.5 BIBLIOGRAPHIC NOTES

	Appendix A - IFML notation summary
	Appendix B: - List of IFML design patterns
	References
	Index

