
Internet Applications
Design and Implementation

2015 - 2016 - 1st edition
(6 - Web Services)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

João Costa Seco (joao.seco@fct.unl.pt)
Jácome Cunha (jacome@fct.unl.pt)

Web Services

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Web Services - Basics

• Web services are web application components
• Can be published, found, and used on the Web
• They communicate using open protocols
• Are self-contained and self-describing
• Can be discovered using UDDI
• Can be used by other applications
• HTTP and XML is the basis for Web services

214

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

• By using Web services, your application can
publish its function or message to the rest of the
world 

• Web services use XML to code and to decode
data, and SOAP to transport it (using open
protocols)

215

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Architecture
• The service provider sends a WSDL file to UDDI
• The service requester contacts UDDI to find out

who is the provider for the data it needs
• Then it contacts the service provider using the

SOAP protocol
• The service provider validates the service

request and sends structured data in an XML
file, using the SOAP protocol

• This XML file would be validated again by the
service requester using an XSD file

217

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

2 Types of Use
• Reusable application-components

• There are things applications need very often. So why make
these over and over again?

• WSs can offer application-components like currency
conversion, weather reports, language translation, etc., as
services

• Connect existing software
• WSs can help to solve the interoperability problem by giving

different applications a way to link their data
• With WSs it becomes possible to exchange data between

different applications and different platforms
• Any application can have a Web Service component
• WSs can be created regardless of PL

218

WSDL

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

WSDL

• WSDL stands for Web Services Description
Language

• It is used to describe web services (no way!)
• Specifies the location of the service
• And the methods of the service
• Written as regular XML documents
• WSDL is a W3C recommendation since 2007

220

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

WSDL Documents

221

Element Description

<types> Defines the (XML Schema) data types used by
the web service

<message> Defines the data elements for each operation

<portType> Describes the operations that can be performed
and the messages involved

<binding> Defines the protocol and data format for each
port type

<definitions>	

<types>	

	
 	
 data	
 type	
 definitions........	

</types>	

<message>	

	
 	
 definition	
 of	
 the	
 data	
 being	
 communicated....	

</message>	

<portType>	

	
 	
 set	
 of	
 operations......	

</portType>	

<binding>	

	
 	
 protocol	
 and	
 data	
 format	
 specification....	

</binding>	

</definitions>

<message	
 name="getTermRequest">	

	
 	
 <part	
 name="term"	
 type="xs:string"/>	

</message>	

<message	
 name="getTermResponse">	

	
 	
 <part	
 name="value"	
 type="xs:string"/>	

</message>	

<portType	
 name="glossaryTerms">	

	
 	
 <operation	
 name="getTerm">	

	
 	
 	
 	
 <input	
 message="getTermRequest"/>	

	
 	
 	
 	
 <output	
 message="getTermResponse"/>	

	
 	
 </operation>	

</portType>

• The <portType> element defines "glossaryTerms"
as the name of a port, and "getTerm" as the name
of an operation

• "getTerm" operation has

• an input message called "getTermRequest" and

• an output message called "getTermResponse"

• The <message> elements define the parts of each
message and the associated data types

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

The <portType> Element
• The <portType> element defines a web service, the

operations that can be performed, and the
messages that are involved

• The request-response type is the most common
operation type, but WSDL defines four types:

225

Type Definition

One-way The operation can receive a message but will not
return a response

Request-response The operation can receive a request and will return a
response

Solicit-response The operation can send a request and will wait for a
response

Notification The operation can send a message but will not wait
for a response

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

WSDL One-Way Operation

<message	
 name="newTermValues">	

	
 	
 <part	
 name="term"	
 type="xs:string"/>	

	
 	
 <part	
 name="value"	
 type="xs:string"/>	

</message>	

<portType	
 name="glossaryTerms">	

	
 	
 <operation	
 name="setTerm">	

	
 	
 	
 	
 <input	
 name="newTerm"	
 message="newTermValues"/>	

	
 	
 </operation>	

</portType	
 >

226

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

WSDL Request-Response Operation

<message	
 name="getTermRequest">	

	
 	
 <part	
 name="term"	
 type="xs:string"/>	

</message>	

<message	
 name="getTermResponse">	

	
 	
 <part	
 name="value"	
 type="xs:string"/>	

</message>	

<portType	
 name="glossaryTerms">	

	
 	
 <operation	
 name="getTerm">	

	
 	
 	
 	
 <input	
 message="getTermRequest"/>	

	
 	
 	
 	
 <output	
 message="getTermResponse"/>	

	
 	
 </operation>	

</portType>

227

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

WSDL Binding to SOAP
<message	
 name="getTermRequest">	

	
 	
 <part	
 name="term"	
 type="xs:string"/>	

</message>	

<message	
 name="getTermResponse">	

	
 	
 <part	
 name="value"	
 type="xs:string"/>	

</message>	

<portType	
 name="glossaryTerms">	

	
 	
 <operation	
 name="getTerm">	

	
 	
 	
 	
 <input	
 message="getTermRequest"/>	

	
 	
 	
 	
 <output	
 message="getTermResponse"/>	

	
 	
 </operation>	

</portType>	

<binding	
 type="glossaryTerms"	
 name="b1">	

	
 	
 	
 <soap:binding	
 style="document"	

	
 	
 	
 transport="http://schemas.xmlsoap.org/soap/http"	
 />	

	
 	
 	
 <operation>	

	
 	
 	
 	
 	
 <soap:operation	
 soapAction="http://example.com/getTerm"/>	

	
 	
 	
 	
 	
 <input><soap:body	
 use="literal"/></input>	

	
 	
 	
 	
 	
 <output><soap:body	
 use="literal"/></output>	

	
 	
 </operation>	

</binding>

228

• The binding element has two attributes - name and type

• name: (you can use any name you want) defines the name of the binding

• type: points to the port for the binding, in this case the "glossaryTerms"
port.

• The soap:binding element has two attributes - style and transport

• style: can be "rpc" or "document". In this case we use document

• transport: defines the SOAP protocol to use. In this case we use HTTP

• The operation element defines each operation that the portType exposes.

• For each operation the corresponding SOAP action has to be defined. You
must also specify how the input and output are encoded. In this case we
use "literal".

SOAP

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

SOAP

• SOAP stands for Simple Object Access Protocol
• It is an application communication protocol
• It is a format for sending and receiving

messages
• It is platform independent
• Based on XML
• SOAP is a W3C recommendation since 2003

231

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Why SOAP?

• It is important for web applications to be able to
communicate over the Internet  

• The best way to communicate between
applications is over HTTP, because HTTP is
supported by all browsers and servers 

• SOAP provides a way to communicate between
applications running on different operating
systems, with different technologies and PLs

232

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

SOAP Building Blocks

• A SOAP message is an ordinary XML document
containing the following elements:
• Envelope: identifies the XML document as a

SOAP message
• Header: contains header information
• Body: contains call and response information
• Fault: containing errors and status information

233

<?xml	
 version="1.0"?>	

<soap:Envelope	

xmlns:soap="http://www.w3.org/2001/12/soap-­‐envelope"	

soap:encodingStyle="http://www.w3.org/2001/12/soap-­‐encoding">	

<soap:Header>	

...	

</soap:Header>	

<soap:Body>	

...	

	
 	
 <soap:Fault>	

	
 	
 ...	

	
 	
 </soap:Fault>	

</soap:Body>	

</soap:Envelope>

Don’t
change

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Spring & SOAP Web Services

https://spring.io/guides/gs/producing-web-service/

235

REST

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

REST
• REST stands for Representational State Transfer  

• It is a software architectural style  

• Not a standard per se 

• It may be implemented in different ways  

• Systems that conform to the constraints of REST can be
called RESTful 

• RESTful systems typically, but not always, communicate
over HTTP using its verbs (GET, POST, PUT, DELETE, etc.)

237

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Architectural Properties
• Performance - component interactions can be the dominant

factor in user-perceived performance and network efficiency
• Scalability to support large numbers of components and

interactions among components
• Simplicity of interfaces
• Modifiability of components to meet changing needs (even

while the application is running)
• Visibility of communication between components by service

agents
• Portability of components by moving program code with the

data
• Reliability is the resistance to failure at the system level in the

presence of failures within components, connectors, or data
238

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Architectural Constraints
• Architectural properties of REST are realized by

applying specific interaction constraints to
components, connectors, and data elements 

• If a service violates any of the required constraints,
it cannot be considered RESTful 

• Complying with these constraints, and thus
conforming to the REST style, enables any kind of
system to have the desirable non-functional
properties described in the previous slide

239

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Architectural Constraints
• Client–server: a uniform interface separates clients from

servers
• Stateless: client–server communication is further

constrained by no client context being stored on the
server between requests

• Cacheable: clients and intermediaries can cache
responses

• Layered system: a client cannot ordinarily tell whether it
is connected directly to the end server, or to an
intermediary along the way

• Code on demand (optional): servers can temporarily
extend or customize the functionality of a client by the
transfer of executable code (e.g. JS)

240

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Architectural Constraints
• Uniform interface: simplifies and decouples the architecture,

which enables each part to evolve independently
• Identification of resources: individual resources are identified

in requests; resources are conceptually separate from the
representations that are returned to the client

• Manipulation of resources through these representations:
when a client holds a representation of a resource, including
any metadata attached, it has enough information to modify or
delete the resource.

• Self-descriptive messages: each message includes enough
information to describe how to process the message (e.g.
MIME type, cacheability)

• Hypermedia as the engine of application state (HATEOAS):
clients make state transitions only through actions that are
dynamically identified within hypermedia by the server

241

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

REST & Web Services
• Web service APIs that adhere to the REST

architectural constraints are called RESTful APIs
• HTTP-based RESTful APIs are defined with these

aspects:
• base URI, such as http://example.com/resources/

• an Internet media type for the data; this is often JSON but
can be any other valid Internet media type (e.g., XML,
images, etc.)

• standard HTTP methods (e.g., GET, PUT, POST, or DELETE)

• hypertext links to reference state

• hypertext links to reference-related resources

242

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Example

243

Resource GET PUT POST DELETE

Collection URI, such as http://
api.example.com/v1/
resources/

List the URIs and
perhaps other
details of the
collection's
members.

Replace the
entire
collection
with another
collection.

Create a new entry
in the collection.
The new entry's
URI is assigned
automatically and is
usually returned by
the operation.

Delete the
entire
collection.

Element URI, such as http://
api.example.com/v1/
resources/item17

Retrieve a
representation of the
addressed member
of the collection,
expressed in an
appropriate Internet
media type.

Replace the
addressed
member of
the collection,
or if it does
not exist,
create it.

Not generally used.
Treat the
addressed member
as a collection in its
own right and
create a new entry
in it.

Delete the
addressed
member of
the
collection.

RESTful API HTTP methods

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Final Notes

• Unlike SOAP-based web services, there is no
"official" standard for RESTful web APIs  

• This is because REST is an architectural style,
while SOAP is a protocol 

• Even though REST is not a standard per se, most
RESTful implementations make use of standards
such as HTTP, URI, JSON, and XML

244

Spring DEMO

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Spring RESTful Web Service Example
@RestController
@RequestMapping(value="/hotelsrest")
public class HotelRestController {

 @Autowired
 HotelRepository hotels;

// GET /hotels - the list of hotels
 @RequestMapping(method=RequestMethod.GET)
 public Iterable<Hotel> index(Model model) {
 return hotels.findAll();
 }

@RequestMapping(value="{id}", method=RequestMethod.GET)
 public Hotel show(@PathVariable("id") long id, Model model)
{
 Hotel hotel = hotels.findOne(id);
 if(hotel == null)
 throw new HotelNotFoundException();
 return hotel;
 }

246

Internet Applications Design and Implementation, FCTUNL, João Costa Seco, Jácome Cunha 2015-2016

Automatic Spring RESTful Web Service Example
@RepositoryRestResource(

collectionResourceRel="hotelsautorest",
path="hotelsautorest")

public interface HotelRepository extends
CrudRepository<Hotel, Long> {

}

247

