departamento de informatico

FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Concurrency and Parallelism

(Concorréncia e Paralelismo - CP
11158)

Lecture 4
— Cache Coherence—

Memory Hierarchy

C

informatica

FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

* Most programs have a high degree of locality in their accesses

— Spatial locality: accessing things nearby previous accesses

- Temporal locality: accessing an item that was previously accessed
* Memory Hierarchy tries to exploit locality

processor

Operation Units

datapath

registers

L1
cache

L2
cache

Third
level
cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

Shared Memory Organizations

. Pl . Pn
| |
$ | 8 8 $
] |
1 1
Mem I/O devices

* Bus-based Shared Memory

Mem

C

informatica

FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Interconnection network

Mem

Mem

* Dance Hall (UMA)

Mem

Interconnection network

* Distributed Shared Memory (NUMA)

informatica

c FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Bus-Based Symmetric Multiprocessors

* Symmetric access to main memory from any processor
* An important architecture until very recently

— Building blocks for larger systems; arriving to desktop
* Attractive as throughput servers and for parallel programs

 Uniform access via loads/stores

* Automatic data movement and T
= . . . e e

coherent replication in caches Multilevel ® @ @ ultilev
Cache BUS Cache

* Cheap and powerful extension to 4——|-|_|'—>

uniprocessors
[Main memory] [I/O system j

* Normal uniprocessor mechanisms to access data
* Key is extension of memory hierarchy to support multiple processors

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Caches are Critical for Performance

* Reduce average latency
— Main memory access costs from 100 to 1000 cycles
— Caches can reduce latency to few cycles

* Reduce average bandwidth and demand to access main
memory

— Reduce access to shared bus or interconnect

*Automatic migration of data e ——
*Data is moved closer to processor ;' ; '

*Automatic replication of data)
*Shared data is replicated upon need e | | =

*Processors can share data efficiently

*But private caches create a problem

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Q)\ Memory

5

\u:5/

/O devices

* Processors see different values for u after event 3

* With write back caches ...

— Processes accessing main memory may see stale (old

Incorrect) value

- Value written back to memory depends on sequence of

cache flushes

* Unacceptable to programs, and frequent!

informatica

c FACULDADE DE CIENCIAS E TECNOLOGIA
||||||||||||||||||||||||

Caches and Cache Coherence

* Private processor caches create a problem
- Copies of a variable can be present in multiple caches
- A write by one processor may not become visible to others
» They’ll keep accessing stale value in their caches
-> Cache coherence problem
* What do we do about it?
- Organize the memory hierarchy to make it go away
- Detect and take actions to eliminate the problem

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

What to do about Cache Coherence?

* Organize the memory hierarchy to make it go away
- Remove private caches and use a shared cache
* A switch is needed = added cost and latency
* Not practical for a large number of processors
* Mark segments of memory as uncacheable
- Shared data or segments used for I/O are not cached
- Private data is cached only

- We loose performance

* Detect and take actions to eliminate the problem
— Can be addressed as a basic hardware design issue

- Techniques solve both multiprocessor as well as 1/0 cache
coherence

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Intuitive Coherent Memory Model

e Caches are supposed to be transparent
* What would happen if there were no caches?
- All reads and writes would go to main memory
- Reading a location should return last value written by any processor
* What does last value written mean in a multiprocessor?
- All operations on a particular location would be serialized
— All processors would see the same access order to a particular location
* If they bother to read that location
* Interleaving among memory accesses from different processors
— Within a processor = program order on a given memory location

— Across processors = only constrained by explicit synchronization

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Formal Definition of Memory Coherence

/

** A memory system is coherent if there exists a serial order of memory
operations on each memory location X, such that ...

1. Aread by any processor P to location X that follows a write by
processor Q (or P) to X returns the last written value if no other
writes to X occur between the two accesses

2. Writes to the same location X are serialized; two writes to same

location X by any two processors are seen in the same order by
all processors

\/

** Two properties
* Write propagation: writes become visible to other processors

* Write serialization: writes are seen in the same order by all
Processors

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Hardware Coherency Solutions

* Bus Snooping Solution
- Send all requests for data to all processors

- Processors snoop to see if they have a copy and respond
accordingly

- Requires broadcast, since caching information is in processors

- Works well with bus (natural broadcast medium)

- Dominates for small scale multiprocessors (most of the market)
* Directory-Based Schemes

- Keep track of what is being shared in one logical place

— Distributed memory = distributed directory

- Send point-to-point requests to processors via network

— Scales better than Snooping and avoids bottlenecks

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

lardware Coherency Solutions

« Write-through: the data is written both into the cache and passed on to the
next lower level in the memory hierarchy

« Write-back: the data is written only into the first level cache. Only when the
line is replaced, the data is transferred to the next level in memory hierarchy

Write-through VS Write-back
* Write-through protocol is simple
— Every write is observable
* However, every write goes on the bus
— Only one write can take place at a time in any processor
* Uses a lot of bandwidth!
* Write-back caches absorb most writes as cache hits

— But write hits don’t go on bus — need more sophisticated
protocols

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Hardware Coherency Solutions

« Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» \Write-update: when a processor writes, it updates
other shared copies of that block

Invalidate VS Update

* Basic question of program behavior:

- Is a block written by one processor later read by others before it is
overwritten?

* Invalidate.
- yes: readers will take a miss
- no: multiple writes without addition traffic
* also clears out copies that will never be used again

* Update.
— yes: avoids misses on later references
— no: multiple useless updates

= Need to look at program reference patterns and hardware complexity

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Example of Write-through Invalidate

N A L

' u=7

Memory

* At step 4, an attempt to read u by P1 will result in a cache miss
* Correct value of u is fetched from memory

* Similarly, correct value of u is fetched at step 5 by P2

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

MESI (write-invalidate, write-back)

L)

*

M: Modified
— Only this cache has copy and is modified
- Main memory copy is stale
E: Exclusive or exclusive-clean
— Only this cache has copy which is not modified
- Main memory is up-to-date
S: Shared
- More than one cache may have copies, which are not modified
- Main memory is up-to-date
I: Invalid
* Know also as lllinois protocol
— First published at University of lllinois at Urbana-Champaign

- Variants of MESI protocol are used in many modern
Mmicroprocessors

)

L)

*

L)

*

)

*

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

MESI lllustrated (step 1)

CPU 1 CPU 2 CPU 3
Memory
A
Exclusive /
Cache Bus

When the multiprocessor is turned on, all cache lines are
marked invalid.

CPU 1 requests block A from the shared memory.
It issues a BR (Bus Read) for the block and gets its copy.
The cache line containing block A is marked Exclusive.

Subsequent reads to this block access the cached entry
and not the shared memory.

Neither CPU 2 nor CPU 3 respond to the BR.

17

MESI lllustrated (step 2)

CPU 1

Shared

CPU 2

Shared

CPU 3

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
ssssssssssssssssssssss

Memory

Bus

CPU 2 requests the same block. The snoop cache on CPU
1 notes the request and CPU 1 broadcasts “Shared”,
announcing that it has a copy of the block.

Both copies of the block are marked as shared.

This indicates that the block is in two or more caches for
reading and that the copy in the shared primary memory

is up to date.

CPU 3 does not respond to the BR.

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

MESI lllustrated (step 3)

CPU 1 CPU 2 CPU 3
Memory

A

| | Modified | |

« Suppose that CPU 2 writes to the cache line it is holding in its cache. It issues a BU (Bus
Upgrade) broadcast, marks the cache line as Modified, and writes the data to the line.

* CPU 1 responds to the BU by marking the copy in its cache line as Invalid.
* CPU 3 does not respond to the BU.

* Informally, CPU 2 can be said to “own the cache line”.

MESI lllustrated (step 4)

CPU 1 CPU 2

A

Shared

CPU 3

A

Shared

| informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Memory

Now suppose that CPU 3 attempts to read block A .

For CPU 1, the cache line holding that block is marked as
Invalid. CPU 1 does not respond to the BR (Bus Read).

CPU 2 has the cache line marked as Modified. It asserts the
signal “Dirty” on the bus, writes the data in the cache line back
to the shared memory, and marks the line “Shared”.

Informally, CPU 2 asks CPU 3 to wait while it writes back the
contents of its modified cache line to the shared primary
memory. CPU 3 waits and then gets a correct copy. The cache

1 e 1 f A1 1 A 1 ~m™~a1 1

-~

~I1 1

| informatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

MESI State Transition Diagram

PrRd
Prwr/—

“*Processor Read
* Causes a BusRd on a read miss
* BusRd(S) => shared line asserted
 Valid copy in another cache
* Goto state S
* BusRd(~S) => shared line not asserted
* No cache has this block PrWr/
« Goto state E e
* No bus transaction on a read hit
“*Processor Write
* Promotes block to state M
* Causes BusRdX / BusUpgr for states I/ S
* To invalidate other copies
* No bus transaction for states E and M

PrRd/
BusRd(~S)

PrRd/—

BusRd/—
PrRd/

BusRd(S)

informatica

c FACULDADE DE CIENCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

MESI State Transition Diagram — cont’d

PrRd
Prwr/—

“*Observing a BusRd
* Demotes a block from E to S state
* Since another cached copy exists

*

 Demotes a block from M to S state PrWr/— BusRd/

Flush

* Will cause modified block to be
flushed
* Block is picked up by requesting "
cache and main memory BusRdX
“*Observing a BusRdX or BusUpgr
* Will invalidate block
* Will cause a modified block to be flushe
“*Cache-to-Cache (C2C) Sharing
* Supported by original lllinois version
* Cache rather than memory supplies data

Prwr/
BusUpgr

BusRd/ %,
cac
PrRd/— ;

PrRd/

BusRd(~S) ; \RdX/
us —

PrRd/— Replace/— /
BusRd/C2C | /
PrRd/

BusRd(S)

BusRdX/
Flu§h

Replace/
BuswB

4 Busrdx/C2C |
Replace/—

BusUpgr/—

