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Ovutline

« Review of multi-threaded program execution
OnN uniprocessor

 Need for memory consistency models
« Sequential consistency model

« Relaxed memory models

— weak consistency model
— release consistency model

« Conclusions
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Multi-threaded programs on uniprocessor

« Processor executes all the threads
of the program
— unspecified scheduling policy

« QOperations in each thread are
executed in order

« Use of atomic operations: lock/ MEMORY
unlock etc. for synchronization
between threads

« Result is as if instructions from
different threads were interleaved
In some order Thread 1 || Thread 2

« Non-determinacy: program may
produce different outputs
depending on scheduling of
threads (e.g.) >

print(x);

X X
T
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Multi-threaded programs
on multiprocessor

 Each processor executes one
thread

@ @ @ — let's keep it simple

« QOperations in each thread are
executed in order

« One processor at a tfime can
access global memory to perform
MEMORY load/store/atomic operations

« No caching of global data

« One can show that running multi-
threaded program on multiple
processors does not change
possible output(s) of program from
uniprocessor case
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More realistic architecture

« Two key assumptions so far:

1. processors do not cache global data

« iImproving execution efficiency:
— dadllow processors to cache global data

» leads to cache coherence problem, which can be solved using
coherent caches as explained before

2. instructions within each thread are execvuted in order

« improving execution efficiency:

— allow processors to execute instructions out of order subject to data/
control dependences

» surprisingly, this can change the semantics of the program

» preventing this requires aftention to the memory consistency
model of processor
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Recall: uniprocessor execvution

* Processors reorder operations to improve
performance

« Constraint on reordering: must respect

dependences

— data dependences must be respected: in particular,
loads/stores to a given memory address must be executed
in program order

— control dependences must be respected

« Reorderings can be performed either by
compiler or processor



Permitted memory-op reorderings

« Stores o different memory locations
can be performed out of program order

store v, dafa store bl, flag
store b1, flag >< store v1, data

« Loads from different memory locations
can be performed out of program order

load flag, rl load data, r2
load dataq, r2 >< load flag, rl

 Load and store to different memory locations
can also be performed out of program order

sftore b, flag load data, r2
load dataq, r2 >< store bl, flag
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Optimizations Enabled

« W > R : takes writes off the critical path

« W > W: memory parallelism
(lbandwidth utilization)

R 2> WR: non-blocking caches, overlaps
other useful work with a read miss
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Example of hardware reordering

Processor Memory system
Load bypassing

»
P> »

Store buffer

« Store buffer holds store operations that need to be sent to
memory

« Loads are higher priority operations than stores since their

results are needed to keep processor busy, so they bypass
the store buffer

 Load address is checked against addresses in store buffer,
so store buffer saftisfies load if there is an address match

« Result: load can bypass stores to other addresses
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Problem in multiprocessor context

« Canonical model

— operations from given processor are executed in program
order

— memory operations from different processors appear to be
interleaved in some order at the memory

« Question:

— If a processor is allowed to reorder independent operations in
its own instruction stream, will the execution always produce
the same results as the canonical modele

— Answer: no. Let us look at some examples.
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Example (I)

Code:
Initially A = Flag =0
P P2
A = 23: while (Flag = 1) {;}
Flag = 1; L= A
ldea:

— P1 writes data into A and sets Flag to tell P2 that data value
can be read from A.

— P2 waits untfill Flag is set and then reads data from A.
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Execution Sequence for (I)

Code:

Initially A = Flag =0

P1 P2

A =23; while (Flag !=1) {;}
Flag = 1; e = A

Possible execution sequence on each processor:

P P2
Write A 23 Read Flag //getO
Write Flag1, ...

Read Flag //get 1
Read A //what do you get?

Problem: If the two writes on processor P1 can be reordered, it is
possible for processor P2 to read O from variable A.
Can happen on most modern processors.
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Example (ll)

Code: (like Dekker’s algorithm)

Initially Flag1 = Flag2 =0

Pl P2

Flagl = 1; Flag2 = 1;

If (Flag2 == 0) If (Flag1 == 0)
critical section; critical section;

Possible execution sequence on each processor:

P1 P2
Write Flagl, | Write Flag2, 1
Read Flag2 //get 0 Read Flagl //what do you get?
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Execvution sequence for (il)

Code: (like Dekker’s algorithm)

Initially Flag1 = Flag2 = 0
P1 P2
Flagl = 1; Flog2 =1;
If (Flag2 ==0) If (Flag1 ==0)
crifical section; critical section;

Possible execution sequence on each processor:

P1 P2
Write Flag1, 1 / Write Flag2, 1
Read Flag2 //get0 -7 Read Flagl //what do you get?

*  Most people would say that P2 willread 1 as the value of Flagl.
« Since P1 reads 0 as the value of Flag2, P1's read of Flag2 must happen before P2 writes
to Flag2.
« Intuitively, we would expect P1's write of Flag1 to happen before P2's read of Flag].

*  However, this is true only if reads and writes on the same processor to different locations are
not reordered by the compiler or the hardware.
« Unfortunately, this is very common on most processors (store-buffers with
load-bypassing).
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Lessons

Uniprocessors can reorder instructions subject only
to control and data dependence constraints

These constraints are not sufficient in shared-
memory context
— simple parallel programs may produce counter-intuitive results

Question: what constraints must we put on
uniprocessor instruction reordering so that
— shared-memory programming is infuitive

— but we do not lose uniprocessor performance?
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Many answers to this question

— answer is called the memory consistency model supported by
the processor
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Consistency Models

- Consistency models are not about memory
operations from different processors.

- Consistency models are not about dependent
memory operations in a single processor’ s
Instfruction stream (these are respected even by
processors that reorder instructions).

- Consistency models are all about ordering
constraints on independent memory operafions in
a single processor’ s instruction stream that have
some high-level dependence (such as flags
guarding data) that should be respected to
obtain intuitively reasonable results.
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Sequential consistency [Lamport]

* |s the simplest Memory Consistency Model

— our canonical model: processor is not allowed
to reorder reads and writes to global memory

MEMORY
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Sequential Consistency

SC constrains all memory operations:
* Write —/— Read —/—"is not reordered after”
« Write —/— Write
 Read -/— Read, Write

- Simple model for reasoning about parallel programs

- You can verify that the examples considered earlier work
correctly under sequential consistency.

- However, this simplicity comes at the cost of uniprocessor
performance.

- Question: how do we reconcile sequential consistency
model with the demands of performance?
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Weak ordering picture

* Programmer specifies regions within which
global memory operations can be reordered

fence

- Memory operations within these

program
regions may be reordered

execution fence

\

fence
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Relaxed consistency model:
Weak consistency

« Programmer specifies regions within which global memory
operations can be reordered

 Processor has fence instruction:

— all data operations before fence in program order must complete before fence is
executed

— all data operations after fence in program order must wait for fence to complete
— fences are performed in program order

* Implementation of fence:

— processor has counter that is incremented when data op is issued, and decremented
when data op is completed

« Examples:
— PowerPC has SYNC instruction, x8 has mfence
— Language constructs: OpenMP has flush

« All synchronization operations like lock and unlock act like @
fence
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Example (l) revisited

Code:

Initially

A=Flag=0

Pl

A =23;
flush;
Flag =

P2

while (Flag = 1) {;}
1; e = A
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Does P2 need a flush between
the two statementse

Execution:

P1 writes data info A

Flush waits till write to A is completed

P1 then writes data to Flag

Therefore, if P2 sees Flag = 1, it is guaranteed that it will read the
correct value of A even if memory operations in P1 before flush
and memory operations after flush are reordered by the

hardware or compiler.
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The Control Version Analogy (1)

« The source control strategy is very strange.

— As Larry and Sergey modify their working copies of
the repository, their modifications are constantly
Ieokln? in the background, to and from the central
repository, at totally random times.

central
repository

« Once Larry edits the file X, his change wiill
leak to the central repository, but there’s
NO guarantee about when it will happen.

— It might happen immediately, or it might happen much, much later.

« He might go on to edit other files, say Y and Z, and those
modifications might leak into the repository before X gets leaked.

— In this manner, stores are effectively reordered on their way to the repository.

« Similarly, on Sergey’s machine, there's no guarantee about the
fiming or the order in which those changes leak back from the
repository into his working copy.

— In this manner, loads are effectively reordered on their way out of the repository.
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The Contirol Version Analogy (2)

23/10/13

 |If Larry and always Sergey work on different

files

— No problem will arise and the model follows
the canonical model

 |f They work on the same parts of the
repository

X Processor 1 Processor 2 v
store to ~— mov [, 1 mov [V], 1 — store to
load from Y —— mov r1, [Y] mov r2, [X] 4— load from X

e Ends with “r1 =r2=0"
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23/10/13

Memory Barriers

* |[n abstract we can define 4 types of memory
barriers

#LoadLoad #LoadStore

CD #StoreLoad #StoreStore

* Processors (and some languages) implement
a subset or variants of these barriers
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#LoadlLoad

* Prevents reordering of loads performed before
the barrier with loads performed after the

barrier.

#LoadLoad

« Equivalent to “git pull” or “svn update”

— There's no guarantee that #LoadLoad will pull the latest, or
head, revision of the entire repository!

— It may pull an older revision than the head, as long as that
revision is af least as new as the newest value which leaked
from the cenftral repository into his local machine.
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if (IsPublished) // Load and check shared flag
{
LOADLOAD_FENCE() ; // Prevent reordering of loads
return Value; // Load published value
}

* This example depends on having the
IsPublished flag leak into Sergey’s working
copy by itself.

— It doesn’t matter exactly when that happens

 Once the leaked flag has been observed, he
Issues a #LoadlLoad fence to prevent reading
some value of Value which is older than the
flag itself.
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#StoreStore

* Prevents reordering of stores performed
oefore the barrier with stores performed after

the barrier.
#StoreStore @

 Performed in a delayed, asynchronous
manner.

— S0, even though Larry executes a #StoreStore, we can’t make
any assumptions about when all his previous stores finally
become visible in the central repository.
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#StoreStore

Value = x; // Publish some data

STORESTORE_FENCE() ;
IsPublished = 1; // Set shared flag to indicate availability of data

 We are counting on the value of IsPublished to
leak from Larry’s working copy over to
Sergey’s, all by itself.

« Once Sergey detects that, he can be
confident he'll see the correct value of Value.

— What's interesting is that, for this pattern to work, Value does
not even need to be an atomic type; it could just as well be @
huge structure with lots of elements..
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#LoadStore

* Imagine Larry has a set of instructions to follow.

— Some instructions make him load data from his private
working copy into a register, and some make him store data
from a register back into the working copy.

« Larry has the abillity to juggle instructions, but

only in specific cases.

— Whenever he encounters a load, he looks ahead at any
stores that are coming up after that; if the AN
stores are completely unrelated to the current ¢ &35 ek,
load, then he's allowed to skip ahead, do the TR AANT
stores first, then come back afterwards to l
finish up the load.

— In such cases, the cardinal rule of memory
ordering — never modify the behavior of a
single-threaded program —is sftill followed.
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#LoadStore

C Il qet back 2
 |tis valid for Larry to perform this Wonnancndd
kind of LoadStore reordering even g -~
when there is a #LoadlLoad or
#StoreStore barrier between the
load and the store.

barrier typically act as at least one of those other two barrier
types.

« On areal CPU, such instruction reordering
might happen on certain processors if, say,
there is a cache miss on the load followed by
a cache hit on the store.
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#StorelLoad

« Could be achieved by

#StoreLoad (
. =
pushing all local 'ﬁ‘
changes to the cenftral |

repository, waiting for that operation to
complete, then pulling the absolute latest
head revision of the repository.

e Different from “#StoreStore” + “#LoadLoad”

— The push operation may be delayed for an arbitrary number
of instructions.

— The pull operation might not pull from the head revision.
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#StorelLoad

 Ensures that...

— all stores performed before the barrier are visible to other
processors; and

— all loads performed after the barrier receive the latest value
that is visible at the time of the barrier.

|t effectively prevents reordering of all stores
before the barrier against all loads after the

barrier

— Respecting the way a sequentially consistent multiprocessor
would perform those operations.

— Isis the only type of memory barrier that will prevent the result
“r1 =r2=0" from the example before
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#StorelLoad

* On most processors, instructions that act as a
#StoreLoad barrier tend to be more expensive
than instructions acting as the other barrier

types.

 Followed by a "#LoadStore” barrier makes o
full memory fence.
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Example (weak consistency)

CPU 1 CPU 2
A=3; X=A;
B=4; Y =B;

Accesses as seen by the memory

Possible results!

X=1 Yy=2
X=1 Y=4
x=3 y=2
X=3 Y=4

STORE A=3 STORE B=4 x=LOAD A->3 | y=LOAD B->4
STORE A=3 STORE B=4 y=LOAD B->4 | x=LOAD A->3
STORE A=3 x=LOAD A->3 | STORE B=4 y=LOAD B->4
STORE A=3 x=LOAD A->3 | y=LOAD B->2 | STORE B=4
STORE A=3 y=LOAD B->2 | STORE B=4 x=LOAD A->3
STORE A=3 y=LOAD B->2 | x=LOAD A->3 | STORE B=4
STORE B=4 STORE A=3 x=LOAD A->3 | y=LOAD B->4
STORE B=4
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23/10/13

Example (Reordering)

« Imagine an ethernet card with a set of internal registers that are
accessed through an address port register (A) and a data port
reqister (D).

« Toread internal register 5, the following code might be used:

Reordering...

CPU 1
*A = 5 STORE *A=5 | x=LOAD *D
X =*D;
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Guarantees (1)

 On any given CPU, dependent memory
accesses will be issued in order, with respect
to itself. This means that for:

Q=P;, D=*Q;

the CPU will issue the following memory
operations:

Q=LOAD P, D=LOAD *Q

and always in that order.
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Guarantees (2)

« Overlapping loads and stores within a particular CPU will appear to be
ordered within that CPU. This means that for:

a=*X; *X=Db;

the CPU will only issue the following sequence of memory operations:
a=LOAD *X, STORE*X=Db

and for:
*X=c;, d=*X;

the CPU will only issue:

STORE *X'=c, d=LOAD *X

(Loads and stores overlap if they are targeted at overlapping pieces
of memory).
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Must not be assumed

* Independent loads and stores will be issued in
the order given. This means that for:

X=*A: Y=*B;, *D=1;

we may get any of the following sequences:

X=LOAD *A | Y=LOAD *B |STORE *D =27
X =LOAD *A | STORE*D=2Z|Y=LOAD *B
Y =LOAD *B | X=LOAD *A | STORE *D =27
Y =LOAD *B | STORE *D=Z | X =LOAD *A
STORE *D =27 | X=LOAD *A |Y=LOAD *B
STORE *D=27|Y=LOAD *B | X=LOAD *A
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Must be assumed

« Overlapping memory accesses may be

! merged or discarded.

% For this:

. a) X="A; Y=%A+4); b) *A=X; *A+4)=Y;

g we may get any of this:

- o) b)

I

5 X = LOAD *A Y = LOAD *(A + 4) STORE *A = X STORE *(A +4) =Y
? Y =LOAD *(A+4) | X=LOAD *A STORE *(A +4) =Y | STORE *A = X

H {X, Y} = LOAD {*A, *(A +4) } STORE {*A, *(A +4) } = {X, Y}

39
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Memory barriers (1)

* Write (or store) memory barrier [wience@x86]

Gives a guarantee that all the STORE operations specified
before the barrier will appear to happen before all the STORE
operations specified after the barrier with respect to the other
components of the system.

Imposes a partial ordering on stores only; it is not required to
have any effect on loads.

A CPU can be viewed as committing a sequence of store
operations to the memory system as time progresses. All stores
before a write barrier will occur in the sequence before all the
stores after the write barrier.

[!] Note that write barriers should normally be paired with read
barriers.
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Memory barriers (2)

 Read (or load) memory barriers [[fence@x86]

— Gives a guarantee that all the LOAD operations specified
before the barrier will appear to happen before all the LOAD
operations specified after the barrier with respect to the other
components of the system.

— Imposes a partial ordering on loads only; it is not required to
have any effect on stores.

— This makes program state exposed from other CPUs visible to
this CPU before making further progress.

— A CPU can be viewed as updating a sequence of values from
the memory system as fime progresses. All loads before a
load barrier will occur in the sequence before all the loads
after the write barrier.

— [!] Note that read barriers should normally be paired with write
barriers.
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Memory barriers (3)

« General memory barrier [ mfence@x86]

— Gives a guarantee that all the LOAD and STORE operations
specified before the barrier will appear to happen before all
the LOAD and STORE operations specified after the barrier
with respect to the other components of the system.

— Imposes a a partial ordering over both loads and stores.

— Imply both read and write memory barriers, and so can
substitute for either (but is slower).

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

=Y
N




departamento de informdatica
FACULDADEDECENOASETECNOLOGA
ssssssssssssssssssss

22/10/13

Another relaxed model:
release consistency

« Further relaxation of weak consistency

« Synchronization accesses are divided into
— Acquires: operations like lock
— Release: operations like unlock

« Semantics of acquire:
— Acquire must complete before all following memory accesses

« Semantics of release:
— All memory operations before release are complete

« However,
— Acquire does not wait for accesses preceding it
— Accesses after release in program order do not have to wait for release

— Operations which follow release and which need to wait must be
protected by an acquire
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Example

L/S
ACQ
L/S

REL

L/S
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Which operations can be overlapped?

X

»
>

Y

“X" must precede *Y”
“Y" must succeed “X"

Semantics of acquire:
Acquire must complete before all
following memory accesses
Semantics of release:
All memory operations before release
are complete
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Some Current System-Centric Models

different,mem. loc. same;mem. loc.

Relaxation | W—=R |W—-=W |R— R |R— W | Read Safety Net
Order | Order | Order
Write Early | Write Early
v

(90
—l
\
(@)
—l
S~
N
(o]

<
i
g IBM 370 Serialization of
S instructions
2
-}
4| SparcTsSO v v RMW
% Sparc PSO v v v RMW, STBAR
c
g Sparc RMO v v v v v various
S MEMBARSs
| |A-32 (x86) v v ? ? rfence, wfence,
E, mfence
% IA-64 v v v v ? ? rfence, wfence,
a mfence
©
E AMD64 v v ? ? rfence, wfence,
§ mfence
E Alpha v 4 v v v MB, WMB
(]
(@)
PowerPC v v v v v v SYNC

Y
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« Memory models are
platform dependent

« We may use a
conservative
approximation
“Relaxed” to capture
common effects

e Once code is correct
for "Relaxed”, it is
correct for many

Relaxed mOde|S
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Comments

* In the literature, there are a large number of other
consistency models
— processor consistency
— total store order (TSO)

« [tisimportant to remember that these are concerned with
reordering of independent memory operations within a
Processor.

« Easy to come up with shared-memory programs that
behave differently for each consistency model.

« Emerging consensus that weak/release consistency is
adequate.
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Summary

« Two problems: memory consistency and memory
coherence

« Memory consistency model

— what instructions is compiler or hardware allowed to reordere

— nothing really fo do with memory operations from different processors/
threads

— sequential consistency: perform global memory operations in program
order
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— relaxed consistency models: all of them rely on some notion of a fence
operation that demarcates regions within which reordering is permissible

« Memory coherence

— preserve the illusion that there is a single logical memory location
corresponding to each program variable even though there may be lots
of physical memory locations where the variable is stored
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The End
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