departamento de informatico
FACULDADE DE CIENCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Concurrency and Parallelism
(Concorréncia e Paralelismo - CP 11158)

Lecture /
— Data Races and Memory Reordering, Deadlock,
Readers/Writer Locks, Condition Variables —

Slides based in material from:
http://www.cs.washington.edu/homes/djg/teachingMaterials/

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Ovutline

* The other basics an informed programmer
needs to know
— Why you must avoid data races (memory reorderings)

e Another common error: Deadlock

« Other common facillities useful for shared-

Memory Concurrency

— Readers/writer locks
— Condition variables, or, more generally, passive waiting

<
Y
o
-
(=}
(o}
-
2
=
[
O
e
©
o
o
=
(V]
L
=2
o
—
=
I
£
D
T
©
S
©
a
©
c
(y]
>
o
c
()
=
S
=2
Q
c
o
O
2

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Ouvutline

* The other basics an informed programmer
needs to know
— Why you must avoid data races (memory reorderings)

e Another common error: Deadlock

« Other common facillities useful for shared-

Memory Concurrency

— Readers/writer locks
— Condition variables, or, more generally, passive waiting

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O
3

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Motivating memory-model issuves

Tricky and surprisingly wrong unsynchronized
concurrent code

iy class C { « First understand why it looks
2 private int x = 0; like the assertion cannot fail:
5 private int y = 0;

% el - Easy case: callto g ends
s void 1() { before any call to f starts
= x = 1;

2 } - Easy case: af least one
g void g() f call to f completes before
2 int a = y; call to g starts

] int b = x;

: SEECTE (io 2= &) s - Ifcallstofandg

4

} interleave...

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Interleavings

There is no interleaving of £ and g where the

asserfion fails

— Proof #1: Exhaustively consider all possible orderings of access
to shared memory (there are 6)

— Proof #2: If ' (b>=a), then a==1 and b==
But if a==1, then y=1 happened before a=y.
Because programs execute in order:
a=y happened before b=x and x=1 happened before y=1.

So by Trcmsmvrri/ b==1. Confradiction.
hread Thread 2: g

Xil; int a¢= V5
y = l;"””;a' int b = x;

assert (b >= a);

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O
5

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Wrong

« However, the code has a data race

— Two actually

— Recall: data race: unsynchronized read/write or write/write of
same location

 |f code has data races, you cannot reason about
It with interleavings!
— Thatis simply the rules of Java (and C, C++, C#, ...)

— (Else would slow down all programs just to “help” programs with
data races, and that was deemed a bad engineering trade-off
when designing the languages/compilers/hardware)

— So the assertion can fail

« A basic guideline: No dafa races
— unless you really know what you are doing

<
by
on
()
(=]
N
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O
6

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Why

For performance reasons, the compiler and the
hardware offen reorder memory operations

Thread 1: £ Thread 2: g
x = 1; int a = y;
v = 1; int b = x;

assert (b >= a);

Of course, you cannot just let them reorder anything they want
 Each thread executes in order after all!
« Consider: x=17; y=x;

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O
7

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA

The grand compromise

The compiler/hardware will never perform a memory
reordering that affects the result of a single-threaded
program

 The compiler/hardware will never perform a memory
reordering that affects the result of a data-race-free multi-
threaded program

« So: If no interleaving of your program has a data race, then
you can forget about all this reordering nonsense: the result
will be equivalent to some interleaving

« Your job: Avoid data races

« Compiler/hardware job: Give illusion of interleaving if you
do your job

<
Y
o
-
(=}
(o}
-
2
=
[
O
e
©
o
o
=
(V]
L
=2
o
—
=
I
£
D
T
©
S
©
a
©
c
(y]
>
o
c
()
=
S
=2
Q
c
o
O
8

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Fixing our example

* Naturally, we can use synchronization to avoid

o dataraces

i class C {

% — Then, private int x = 0;

§ indeed, private int y = 0;

g the . void £ () {

A assertion synchronized(this) { x = 1; }
: cannof synchronized(this) { y = 1;
S fail }

: void g() {

% int a, b;

s synchronized(this) { a = y;
§ synchronized (this) b = x;
5 assert (b >= a);

)

: }

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

A second fix

e Java has volatile fields: accesses do not
count as data races

2 « Implementation: slower class C { | |

2 than regular fields, faster private volatile 1int x = 0;
g than locks private volatile int y = 0;
& void £ () {

§ « Readlly for experts: avoid x = 1;

n them; use standard y = 1;

£ libraries instead b

- void g () {

fg « And why do you need int a = y;

d code like this anyway? int b = x;

5 assert (b >= a);

}

-)

10

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Code that's wrong

« Here Is a more redalistic example of code that

IS wrong

— No guarantee Thread 2 will ever stop
— But honestly it will “likely work in practice”

class C {
boolean stop = false;
Thread 1: £ () void f£() {
while (!stop) {
// draw a monster

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

Thread 2: g ()) }
void g () {
stop = didUserQuit() ;
}

(Y
[y
——

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Ovutline

* The other basics an informed programmer

needs to know
— Why you must avoid data races (memory reorderings)

e Another common error: Deadlock

« Other common facillities useful for shared-

Memory Concurrency

— Readers/writer locks
— Condition variables, or, more generally, passive waiting

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

[y
N

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Motivating Deadlock Issues

Consider a method to transfer money between

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit (int amt) {..}
synchronized void transferTo (int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}
}

Noftice that during call to a.transfer(), thread holds two locks
— We need to investigate when this may be a problem

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O

=
w

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

The Deadlock

Suppose x and y are fields holding accounts

Thread 1: x.transferTo (1, v) Thread 2: y.transferTo (1, x)

acquire lock for x

do withdraw from x
acquire lock for y
do withdraw from y

Time

block on lock for x
block on lock for y

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O

=
=3

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Deadlock, in general

« A deadlock occurs when there are threads T1,

..., In such that:
— Fori=1,..,n-1, Tiis waiting for a resource held by T(i+1)
— Tnis waiting for a resource held by T1

* |[n other words, there is a cycle of waiting
— Can formalize as a graph of dependencies with cycles bad

« Deadlock avoidance in programming
amounts to fechniques to ensure a cycle can
never arise

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

[y
(0}

| informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Back to our example

« Options for deadlock-proof on transfer:

1. Make a smaller critical section: transferTo Nnot
synchronized

— Exposes intermediatfe state after withdraw before deposit
— May be okay, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all
accounts allowing transfers between them
— Works, but sacrifices concurrent deposits/withdrawals

<
Y
o
-
(=}
(o}
-
2
=
-
O
(e
©
o
o
=
()]
L
=]
o
—
=3
I

3. Give every bank-account a unigue number and
always acquire locks in the same order

— Entire program should obey this order to avoid cycles
— Code acquiring only one lock can ignore the order

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Ordering locks

class BankAccount {

private int acctNumber; // must be unique
volid transferTo(int amt, BankAccount a) {
1f(this.acctNumber < a.acctNumber)
synchronized (this) {
synchronized(a) {
this.withdraw (amt) ;
a.deposit (amt) ;
}}
else
synchronized(a) {
synchronized(this) {
this.withdraw (amt) ;
a.deposit (amt) ;

N

<
Y
on
L
(=]
N
-
2
=
[
(O)
(e
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

[y
~N
——)

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Another example

From the Java standard library

class StringBuffer (
private 1nt count;
private char[] value;

synchronized append (StringBuffer sb) {
int len = sb.length();
if(this.count + len > this.value.length)
this.expand(..) ;
sb.getChars (0, len,this.value, this.count);
}
synchronized getChars(int x, int, vy,
char[] a, int z) {
“copy this.value[x..y] into a starting at z”

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

(Y
00
—

| informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Two problems

 Problem #1: Lock for sb is hot held between calls o
sb.length and sb.getChars
— So sb could get longer
— Would cause append 10 throw an ArrayBoundsException

* Problem #2: Deadlock potential if two threads try to
append in opposite directions, just like in the bank-
account first example

<
Y
o
-
(=}
(o}
-
2
=
-
O
(e
©
o
o
=
()]
L
=]
o
—
=3
I

« Not easy to fix both problems without extra copying:

— Do not want unique ids on every StringBuffer
— Do not want one lock for all StringBuffer objects

« Actual Java library: fixed neither (left code as is;
changed javadoc)
— Up to clients to avoid such situations with own protocols

| informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Perspective

« Code like account-transfer and string-buffer
append are difficult to deal with for deadlock

« Easier case: different types of objects

— Can document a fixed order among types

— Example: *When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while
holding the hashtable lock™

<
Y
o
-
(=}
(o}
-
2
=
-
O
(e
©
o
o
=
()]
L
=]
o
—
=3
I

« Easier case: objects are in an acyclic structure

— Can use the data structure to determine a fixed order

— Example: “If holding a tfree node’s lock, do not acquire other
tree nodes’ locks unless they are children in the tree”

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Ovutline

* The other basics an informed programmer

needs to know
— Why you must avoid data races (memory reorderings)

e Another common error: Deadlock

« Other common facillities useful for shared-

Memory Concurrency

— Readers/writer locks
— Condition variables, or, more generally, passive waiting

<
Y
o
-
(=}
(o}
-
2
=
[
O
e
©
o
o
=
(V]
L
=2
o
—
=
I
£
D
T
©
S
©
a
©
c
(y]
>
o
c
()
=
S
=2
Q
c
o
O

N
=

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Reading vs. writing

« Recall:
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

e So far:

— |If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

« Buft this is unnecessarily conservative:
— Could still allow multiple simultaneous readers!

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
N

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Example

« Consider a hashtable with one coarse-grained

lock
— So only one thread can perform operations at a time

* But suppose:
— There are many simultaneous lookup operations
— insert operations are very rare

« Nofte: Important that lookup does not actually
mutate shared memory, like a move-to-front
list operation would

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
w

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Readers/writer locks

* A new synchronization ADT: The readers/writer lock

° 1
A lock’s states fall into three categories: 0 < writers < 1
“not held” 0 < d
— “held for writing” by one thread - reelelErs
— “held for reading” by one or more threads writers*readers==

* new: make a new lock, initially “not held”

* acquire write: blockif currently “held for reading” or “held for
writing”, else make “held for writing”

* release write: make “nof held”

 acquire read: block if currently “held for writing”, else make/
keep “held for reading” and increment readers count

* release read: decrementreaders count, if 0, make “not held”

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
Sy

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Pseudocode example (not Java)

class Hashtable<K,V> {

// coarse-grained, one lock for table

RWLock 1k = new RWLock () ;

V lookup (K key) {
int bucket = hasher (key) ;
lk.acquire read();
. read array[bucket]
lk.release read();

}

void insert (K key, V val) {
int bucket = hasher (key);
lk.acquire write();
. write array/[bucket]
lk.release write();

}

<t
o
()
-
=]
N
-
2
=
|—
O
L
©
o
(S J
c
)
S
=
o
-
-0
£
4
]
©
S
@©
o
©
c
©
>
Q
c
)
.
S
]
o
c
o
O

N
(]
——

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Readers/writer lock details

« A readers/writer lock implementation usually
gives priority 1o writers:

— Once a writer blocks, no readers arriving later will get the lock
before the writer

— Otherwise an insert could starve

e Re-entrante

— Mostly an orthogonal issue
— But some libraries support upgrading from reader to writer

 Why not use readers/writer locks with more

fine-grained locking, like on each bucket?
— Not wrong, but likely not worth it due to low contention

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
(<)]

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

In Java

« Java's synchronized statement does not
support readers/writer

* Instead, library

— java.util.concurrent.locks.ReentrantReadWriteLock

e Different interface

— methods readLock and writeLock return objects that themselves
have 1lock and unlock methods

* Does not have writer priority or reader-to-writer
upgrading

— Always read the documentation

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
~N

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Ovutline

* The other basics an informed programmer

needs to know
— Why you must avoid data races (memory reorderings)

e Another common error: Deadlock

« Other common facillities useful for shared-

Memory Concurrency

— Readers/writer locks
— Condition variables, or, more generally, passive waiting

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
-]

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Motivating Condition Variables

« To motivate condition variables, consider the
canonical example of a bounded buffer for
sharing work among threads

producer(s) buffer flejd]|c consumer(s)
engueue “‘7 back frontT '~.,. dequeue
@ @ =\ /=

| I— | I—

| I— | I—

| I— | I—

— Bounded buffer: A queue with a fixed size
« (Unbounded still needs a condition variable, but 1 instead of 2)
— For sharing work — think an assembly line:
« Producer thread(s) do some work and enqueue result objects
« Consumer thread(s) dequeue objects and do next stage
« Must synchronize access to the queue

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

N
(C-]

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Code, attempt 1

class Buffer<g> {
E[] array = (E[])new Object[SIZE];
.. // front, back fields, isEmpty, isFull methods
synchronized void enqueue(E elt) {
1if (isFull())
227
else
. add to array and adjust back ..
}
synchronized E dequeue ()
1f (1sEmpty())
227
else
take from array and adjust front ..

<
Y
on
L
(=]
N
-
2
=
[
(O)
(e
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

w
(=}

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Waiting

* enqueue 0 a full buffer should nof raise an exception
— Wait until there is room

* dequeue from an empty buffer should nof raise an

exception
— Wait until there is data

vold enqueue(E elt) {
while (true) {
synchronized(this) {
if(1isFull()) continue;
. add to array and adjust back ..
return;

b1}

// dequeue similar

<
by
on
()
(=]
N
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O

« Bad approach is to spin (wasted work and keep grabbing lock)

w
=

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

What we want

Better would be for a thread to wait until it can
proceed
— Be notified when it should try again

— In the meantime, let other threads run

« Like locks, not something you can implement on your

own

— Language or library gives it to you, typically implemented with
operating-system support

« An ADT that supports this: condition variable

— Informs waiter(s) when the condition that causes it/them to wait has
varied

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

« Terminology not completely standard; will mostly stick with Java

w
N

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Java approach: not quite right

class Buffer<i> {

synchronized void enqueue (E elt) {
1f (isFull())
this.wait(); // releases lock and waits
add to array and adjust back
1f (buffer was empty)
this.notify(); // wake somebody up
}
synchronized E dequeue () {
1f (1sEmpty ())
this.wait(); // releases lock and waits
take from array and adjust front
1f(buffer was full)
this.notify(); // wake somebody up

<
Y
on
L
(=]
N
-
2
=
[
(O)
(e
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

w
w
——

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Key ideas

« Java weirdness: every object “is” a condition

variable (and a lock)
— other languages/libraries often make them separate

* wait:
— “register” running thread as interested in being woken up
— then atomically: release the lock and block
— when execution resumes, thread again holds the lock

* notify:
— pick one waiting thread and wake it up

— No guarantee woken up thread runs next, just that it is no
longer blocked on the condition — now waiting for the lock

— if no thread is waiting, then do nothing

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

w
'

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NI OVA DE LISB OA

Bug #1

« Between the time a thread is noftified and it

re—acquires The. . synchronized void enqueue(E elt) {
lock, the condition if(isFull ())
can become false this.wait();

<chﬂnl add to array and adjust back

}

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)
1f(isFull())
this.wait () ;
take from array

1if(was full)
this.notify ()

Time

make full again

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

A add to array

w
(%]

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnn

Bug fix #1

« Guideline: Always re-check the condition
after re-gaining the lock

— In fact, for obscure reasons, Java is technically allowed to
notify a thread spuriously (i.e., for no reason)

synchronized void enqueue(E elt) {
while (isFull ())
this.wait () ;

}

synchronized E dequeue () {
while (1sEmpty ())
this.wait ()

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O

w
(<)]

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Bug #2

 |f mulfiple threads are waiting, we wake up

only one
— Sure only one can do work now, but can’t forget the others!

Thread 1 (enqueue) Thread 2 (enqueue) Thread 3 (dequeues)
while(isFull()) while (isFull{())
this.wait () ; this.wait () ;

// dequeue #1
1f(buffer was full)
this.notify () ;

Time

// dequeue #2
1f (buffer was full)
this.notify (),

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

w
~N

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Bug fix #2

 notifyAll wakes up all current waiters on the condition variable
synchronized void enqueue(E elt) {

1f (buffer was empty)
this.notifyAll(); // wake everybody up
}

synchronized E dequeue () {

1f(buffer was full)
this.notifyAll(); // wake everybody up
}

« Guideline: If in any doubt, use notifyAll
— Wasteful waking is better than never waking up

« So why does notify existe
— Well, it is faster when correct...

<
Y
on
()
(=]
N
-
4
=
[
(O)
(il
©
o
O
c
()
S
=]
o
-
-
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
=
()]
=
S
=
Q
c
o}
O

w
(o]

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
AAAAAAAAAAAAAAAAAAAAAAAA

Alternate approach

An alternative is to call notify (not notifyAllE on
every enqueue / dequeue, NOT just when the butfer
was empty / full

— Easy: just remove the if statement

 Alas, makes our code subtly wrong since it is
technically possible that an enqueue and a dequeue
are both waiting

« Details for the curious:
— Bufferis full and then > SIZE enqueue calls wait

— SO0 each dequeue wakes up one enqueue, but maybe so many dequeue
calls happen so fast that the buffer is empty and a dequeue call waits

-]Ihen O dequeue May wake a dequeue, but now everybody will wait
orever

« Works fine if buffer is unbounded since then only
dequeuers wait

<
by
on
()
(=]
N
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
4
T
©
S
(C
a.
T
c
(y]
>
Q
c
()]
=
S
=)
Q
c
o
O

w
(-]

| informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA

Alternate approach fixed

* The alternate approach works if the enqueuers and
dequeuers wait on different condition variables

— But for mutual exclusion both condition variables must be associated
with the same lock

« Java’'s Yeverything is a lock / condition variable” does
not support this: each condition variable is associated
with itself

<
Y
o
-
(=}
(o}
-
2
=
-
O
(e
©
o
o
=
()]
L
=]
o
—
=3
I

« Instead, Java has classes in
java.util.concurrent. locks for when you want
multiple conditions with one lock

— class ReentrantLock has d method newCondition that refurns a new
Condition object associate with the lock

— See the documentation if curious

| informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Last condition-variable comments

notify/notifyAll often called signal/
broadcast, also called pulse/pulseAll

« Condition variables are subtle and harder to use
than locks

 But when you need them, you need them
— Spinning and other work-arounds do not work well

<
Y
o
-
(=}
(o}
-
2
=
-
O
(e
©
o
o
=
()]
L
=]
o
—
=3
I

« Fortunately, like most things in a data-structures
course, the common use-cases are provided in
libraries written by experts

— Example: java.util.concurrent.ArrayBlockingQueue<E>

— All uses of condition variables hidden in the library; client just calls
put and take

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

Concurrency summary

Access to shared resources intfroduces new kinds of
bugs

— Dataraces

— Ciritical sections too small

— Ciritical sections use wrong locks

— Deadlocks

Requires synchronization
— Locks for mutual exclusion (common, various flavors)
— Condition variables for signaling others (less common)

Guidelines for correct use help avoild common pitfalls

Is shared-memory worth the paine
— Other models (e.g., message passing) are not a panaceal

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

=Y
N

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA
nnnnnnnnnnnnnnnnnnnnnnnn

The Java Memory Model

 The memory model semantics create a partial
ordering on
— memory operations: read field, write field, lock, unlock

— other thread operations: start and join
where some actions are said to happen
before other operations.

« When one action happens before another,
the first Is guaranteed to be ordered before
and visible to the second.

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

H
[V§)

FIOE Geisurs e
The Java Memory Model
1. Acquiring a lock and entering a synchronized

block forces the thread to refresh data from
memory.

ngo © FCT-UNL 2013-14

2. Upon exiting the synchronized block, data
written is flushed to memory.

* This ensures that values written by a thread in
a synchronized block are visible to other
threads in synchronized blocks.

(V]
=
=2
o
—
-
£
D
T
©
=
[
a.
©
=
(y]
>
Q
c
()]
-
=

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

The Java Memory Model

1. Every action in a thread happens before every other action that
comes after it in the thread.

2. Anunlock on a monitor happens before a subsequent lock on the
same monitor.

3. A volatile write on a variable happens before a subsequent volatile
read on the same variable.

4. A callto Thread.start() happens before any other statement in that
thread.

5. All actions in thread happen before any other thread returns from a
join() on that thread.

« The term “action” is defined in section 17.4.2 of the Java language specification
as statements that can be detected or influenced by other threads. Normal
read/write, volatile read/write, lock/unlock are some actions.

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

)
(%]

departamento de informdtica
FACULDADE DE CIENCIAS E TECNOLOGIA

The Java Memory Model

« Rules 1,4 and 5 guarantee that within a single thread, all actions will
execute in the order in which they appear in the authored program.

« Rules 2 and 4 guarantee that between multiple threads working on
shared dataq, the relative ordering of synchronized blocks and the order
of read/writes on volatile variables is preserved.

« Rules 2 and 4 makes volatile very similar to a synchronized block.

— Prior to JSR 133, volatile still meant that a write to volatile variable is written directly fo memory
and a read is read from memory.

— But a compiler could reorder volatile read/writes with non volatile read/writes causing incorrect
results. Not possible after JSR 133.

« One additional notable point related to final members that are
initialized in the constructor of a class. As long as the constructor
completes execution properly, the final members are visible to other
threads without synchronization. If you however share the reference to
the object from within the constructor, then all bets are off.

<
by
on
i
(=]
(o]
-
2
=
[
(O)
(il
©
o
O
c
()
L
=]
o
i
=3
I
£
&
9
©
S
(C
a.
T
=
©
>
Q
c
()]
=
S
=)
Q
c
o
O

)
(<)]

departamento de informdatica
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

2013-10-30

The End

<
Y
on
-
(=]
N
-
2
=
[
O
(e
©
o
O
c
()
S
=2
o
-
-
£
4
E
©
S
(C
a.
©
c
(y]
>
Q
=
()
=
S
=
Q
c
o}
O

H
~N

