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Abstract—The last fifteen years have seen an impressive
amount of work on protocols for Byzantine fault-tolerant (BFT)
state machine replication (SMR). However, there is still a need
for practical and reliable software libraries implementing this
technique. BFT-SMART is an open-source Java-based library
implementing robust BFT state machine replication. Some of
the key features of this library that distinguishes it from
similar works (e.g., PBFT and UpRight) are improved reliabil-
ity, modularity as a first-class property, multicore-awareness,
reconfiguration support and a flexible programming interface.
When compared to other SMR libraries, BFT-SMART achieves
better performance and is able to withstand a number of real-
world faults that previous implementations cannot.

I. INTRODUCTION

The last fifteen years have seen an impressive amount of
papers about Byzantine Fault-Tolerant (BFT) State Machine
Replication (SMR) (e.g., [1]-[7], to cite just a few), but
almost no practical use in real deployments. We believe
this happens because there are no robust-enough imple-
mentations of BFT SMR available — only prototypes used
to validate novel ideas from papers — which makes it
difficult to deploy this kind of technique in practice. The
general perception is that BFT protocols are too complex to
implement, and since non-omission faults are rare, they can
usually be dealt with simple techniques like checksums [8].

To the best of our knowledge, from all “BFT systems”
proposed so far, only the early PBFT [2] and the more
recent UpRight [4] implement a complete replication system.
However, PBFT’s architecture does not fully exploit modern
hardware and UpRight exhibits a performance significantly
lower than other systems. Moreover, both the PBFT and
UpRight software packages are plagued by bugs and are
not maintained anymore. Even considering crash-only fault-
tolerant (CFT) replication libraries — which are usually based
on the many variants of the Paxos algorithm [9] — it seems
that there is still no widely-accepted implementation that can
be used to develop dependable services. As a result, every
organization that requires such services needs to create its
own implementation (e.g., [10]).

In this paper we describe BFT-SMART, a robust Java-
based BFT SMR library which implements a protocol simi-
lar to PBFT. BFT-SMART targets both high-performance in
fault-free executions and correctness if faulty replicas exhibit
arbitrary behavior. Besides its robustness, BFT-SMART is
the first BFT SMR library to support reconfigurations of
the replica set [11] and to provide efficient and transparent
support for durable services [12].
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The main contribution of this paper is to fill a gap in
the BFT literature by documenting the implementation of
this kind of system, including protocols for state transfer
and reconfiguration. Additionally, the paper presents an
evaluation of BFT-SMART, comparing it with previous
systems and shedding light on some performance tradeoffs
related to tolerance of crashes vs. Byzantine faults.

The paper is organized as follows: §II and §III describe
the design of BFT-SMART and its implementation, re-
spectively. §IV presents alternative configurations for BFT-
SMART. §V describes an evaluation of our system. §VI
highlights some lessons learned during the development
and maintenance of the system. Finally, §VII presents our
concluding remarks.

II. BFT-SMART DESIGN

The development of BFT-SMART started at the beginning
of 2007 to implement a BFT total-order multicast proto-
col for the replication layer of the DepSpace coordination
service [13]. In 2009, such implementation was revamped
to create a complete BFT SMR library, including features
such as state transfer and reconfiguration. Nonetheless, only
in 2011 we obtained funding to substantially improve the
system in terms of functionality and robustness.

A. Design Principles

Tunable fault model: By default, BFT-SMART tol-
erates non-malicious Byzantine faults, a realistic (albeit
pessimistic) system model in which (1) messages can be
delayed, dropped or even corrupted, and (2) processes can
execute abnormally and indulge in any spurious action.
All these behaviors have been observed in real systems
and components (see [8] for an overview). Besides that,
BFT-SMART provides both cryptographic signatures (for
improved tolerance to malicious Byzantine faults) and a
simplified SMR protocol similar to Paxos [9] (to tolerate
only crashes and message corruptions').

Simplicity: The emphasis on protocol correctness led
us to avoid optimizations that could bring extra complexity
both in terms of deployment, coding, or even new corner
cases. For this reason, we avoid techniques that, although
promising in terms of performance (e.g., speculation [6]
and pipelining [5]) or resource efficiency (e.g., using trusted
components [7] or IP multicast [2], [6]), would make our

1Unless stated otherwise, we focus on the BFT setup of the system.
Crash fault tolerance is discussed later in §IV.



code more difficult to render correct (due to new corner
cases) or deploy (due to lack of infrastructure support). This
emphasis also made us choose Java instead of C/C++ as the
implementation language. In §V we show that even with
these choices, the performance of BFT-SMART is similar or
better than some of these optimized SMR implementations.

Modularity: BFT-SMART implements a modular
SMR protocol that uses a well defined consensus primitive
in its core [14]. On the other hand, systems like PBFT imple-
ment a monolithic protocol where the consensus algorithm
is embedded inside of the SMR, without a clear separation
between them. While both protocols are equivalent at run-
time, modular alternatives tend to be easier to implement
and reason about, when compared to monolithic protocols.
Besides the existence of modules for reliable point-to-point
communication and client requests ordering and consensus,
BFT-SMART also implements state transfer and reconfig-
uration modules, which are completely separated from the
agreement protocol, as show in Figure 1.
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Figure 1. The modularity of BFT-SMART.

Simple and Extensible Application Programming Inter-
face: Our library encapsulates all the complexity of BFT
SMR inside a simple API that can be used by programmers
to implement deterministic services. More precisely, if the
service strictly follows the SMR programming model, clients
can use a simple invoke(command) method to send com-
mands to the replicas, that implement an execute(command)
method to process the command. If the application requires
specialized behaviors not supported by such a basic pro-
gramming model, they can be implemented using a set
of alternative calls, callbacks or plug-ins both at client-
and server-side (e.g., custom voting by the client, reply
management and state management, among others).

Multi-core awareness: BFT-SMART takes advantage
of ubiquitous multicore architecture of servers to improve
some costly processing tasks on the critical path of the
protocol. In particular, we make our system throughput
scale with the number of hardware threads supported by the
replicas, especially when signatures are enabled and more
computing power is needed for their verification.

B. System Model

BFT-SMART assumes the usual system model for BFT
SMR [2], [5], [6]: n > 3f+ 1 replicas to tolerate f Byzantine
faults; an unbounded number of faulty-prone clients and
eventual synchrony to ensure liveness. Moreover, since the
system supports reconfiguration, it is possible to change n
and f at runtime through join and leave operations (see
§1I-C3). Besides that, the system can also be configured
to use only n > 2f + 1 replicas to tolerate f crash faults
(see §1V-A). Independently of the configuration, the system
requires reliable point-to-point links between processes for
communication. These links are implemented using message
authentication codes (MACs) over TCP/IP. The symmetric
keys for the replica-replica channels are generated through
Signed Diffie-Helman using a pair of RSA keys per replica.
The keys for client-replica channels are generated based
on the ids of the endpoints, without the need for clients
to hold key pairs. Although this is in accordance with
our assumption of non-malicious Byzantine faults, strong
authentication of clients is still available if signed requests
are enabled (see §IV-B).

C. Core Protocols

In this section we give a brief overview of the protocols
used by BFT-SMART and refer the interested readers to the
papers describing them in detail [12], [14], [15].

1) Total Order Multicast: Total order multicast is
achieved using Mod-SMaRt [14], a modular protocol which
implements BFT SMR using an underlying consensus prim-
itive. In particular, we use an extension of the leader-driven
Byzantine consensus algorithm described in [15]. During
normal execution, clients send their requests to all replicas
and wait for their replies. Total order is achieved through a
sequence of consensus instances, each of them deciding a
batch of client requests. Each instance is comprised by three
communication steps whose message pattern is illustrated in
Figure 2. The first step requires the consensus’ leader to send
a PROPOSE message to other replicas. This is followed by
two all-to-all communication steps consisting of WRITE and
ACCEPT messages. Whereas PROPOSE messages contain
the batch of requests to be decided, WRITE and ACCEPT
messages only contain the cryptographic hash of such batch.

Figure 2 depicts Mod-SMaRt normal phase execution,
which takes place in the absence of faults and in the presence
of synchrony. When these conditions are not satisfied, Mod-
SMaRt may switch to its synchronization phase. During this
phase, a new leader is elected for the consensus primitive
and replicas are forced to “jump” to the same consensus
instance. This jump might make some replicas trigger the
state transfer protocol, described in the next section.

2) State Transfer: In order to implement a practical
state machine replication, the replicas should be able to be
repaired and reintegrated in the system, without restarting
the whole replicated service. Moreover, the possibility of
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Figure 2. BFT-SMART normal phase message pattern.

correlated failures that can bring down more than f replicas
of the system at once requires the use of stable storage
to recover the whole system. BFT-SMART implements the
efficient durability techniques described in [12] to deal with
the recovery of replicas or the whole system. The key ideas
of such techniques are (1) to log batches of operations in
a single disk while these operations are being executed
by the service, (2) take snapshots at different points of
the execution in different replicas to avoid stopping the
system and (3) perform state transfer in a collaborative way,
with each replica sending different parts of the state to the
recovering replica. All these techniques are implemented in
a well-defined layer between the replication protocol and the
application, without influencing the consensus protocol.

3) Reconfiguration: All previous BFT SMR systems as-
sume a static system that cannot grow or shrink over time.
BFT-SMART, on the other hand, provides an additional
protocol that enables replicas to be added or removed from
the system on-the-fly. Such process can only be initiated by
system administrators running a View Manager client.

The reconfiguration protocol follows the ideas of [9], [11],
but adapted to deal with Byzantine faults: the View Manager
issues a special type of operation which is submitted to the
Mod-SMaRt algorithm just like any other client operation.
Through these operations, the View Manager notifies the
system about the replica that it wants to add to (or remove
from) the system. Since these operations are totally ordered
(just like ordinary requests), all correct replicas will adopt
the same view as the system’s current view at any given
point in the execution of client operations. Additionally, this
operation must be signed with a special private key that
guarantees the client is in fact a system administrator with
privileges for reconfiguring the system.

After the View Manager operation is ordered, it is not
delivered to the application like ordinary operations are.
Instead, the request signature is verified to assess if it
was produced using the view manager private key. If this
signature is valid, the system current view is updated in
accordance with the updates requested in the reconfigure

operation. Following this, the replicas reply to the View
Manager informing it about whether or not the view change
succeeded. If it did, the View Manager sends a special
message to the replica that is waiting to be added to (or
removed from) the system, informing that it can either start
or halt its execution. Lastly, if a replica is being added, it
triggers the state transfer protocol to bring itself up to date.

All clients need to store the system’s latest view in order
to support reconfigurations. Therefore, replicas reject any
client request issued in an old view, replying instead with
data about the latest one. The clients then update themselves
and retransmit theirs operation, now in the context of the
latest view. Additionally, before accessing the system, a
client must obtain the system’s current view, which can be
done with the use of a directory service.

III. IMPLEMENTATION

BFT-SMART contains less than 13.5K lines of Java code
distributed in little more than 90 files. This is significantly
less than what was used in similar systems: PBFT [2]
contains 20K lines of C code and UpRight [4] contains 22K
lines of Java code. Even JPaxos [16], the most complete
open-source CFT replication library we are aware of, con-
tains more than 22K lines of Java code.

A key issue when implementing a high-throughput repli-
cation middleware is how to break the several tasks of the
protocol in an architecture that is robust and efficient. In the
case of BFT SMR there are two additional requirements:
the system should deal with hundreds of clients and resist
malicious behaviors from both replicas and clients.

Figure 3 presents the main architecture with the threads
used for staged message processing of the protocol im-
plementation. In this architecture, all threads communicate
through bounded queues. The figure shows which thread
feeds and consumes data from which queues.
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The client requests are received through a thread pool
provided by the Netty communication framework. This de-
sign enables BFT-SMART to manage hundreds of client-
to-replica connections efficiently. Once a client message is
received, it is checked whether it is an ordered or unordered
request. Unordered requests, which are usually employed for
read-only commands [2], are directly delivered to the service
implementation. Otherwise, they are delivered to the client
manager, that verifies the request integrity and adds them
to the respective client’s queue. Notice that since clients’
MAC:s and signatures (optionally supported) are verified by
the Netty threads, multi-core and multi-processor machines
will naturally exploit their power to achieve high throughput
(verifying several client signatures in parallel).

The proposer thread is responsible for assembling a batch
of requests and transmitting the PROPOSE message of
the consensus protocol. BFT-SMART fills the batch with
pending requests until: (a) its size either reaches a limit
defined in a configuration file; or (b) it has no requests left
to add. This thread is only active at the leader replica.

Every message m to be sent by one replica to another is
put on the out queue from which a sender thread will get m,
serialize it, produce a MAC to be attached to the message
and send it using TCP sockets. At the receiver replica, a
receiver thread for this sender will read m, authenticate it
(i.e., validate its MAC), deserialize it and put it on the in
queue, where all messages received from other replicas are
stored in order to be processed.

The message processor thread is responsible for process-
ing messages from the BFT SMR protocol. This thread
fetches messages from the in queue and processes them if
they belong to the consensus currently being executed. If
messages belong to a consensus ahead of the current one,
they are processed later, when such consensus is triggered.
Otherwise, the messages are discarded.

When a consensus is finished on a replica, the decided
batch is put on the decided queue. The delivery thread is
responsible for getting batches from this queue, deserialize
all requests from the batch, remove them from the respective
client queues and mark the current consensus as finalized.
After that, the delivery thread invokes the service replica to
execute the requests and generate the corresponding replies.
After generating the reply, the service replica adds it into
the reply queue. The reply thread fetches replies from this
queue and sends them to the respective clients.

The request timer thread is periodically activated to verify
if some request remained more than a pre-defined timeout on
the pending requests queue. The first time this timer expires
for some request, it causes this request to be forwarded to the
current known leader. The second time this timer expires for
some request, the current instance of the consensus protocol
is stopped and the synchronization phase is triggered (see
§II-C1). The rationale for these timers is the following: in
normal network conditions, a timeout may be caused either

by a client that did not send the request to the leader or by a
leader that did not ordered the client request. Since typically
there are many clients and few servers, we expect to have
many more faults among clients, so we first assume there
was a problem with the client and the leader is suspected
only if the problem persists (see [14] for details).

IV. ALTERNATIVE CONFIGURATIONS

As mentioned in previous sections, by default BFT-
SMART tolerates non-malicious Byzantine faults, as most
works on BFT replication do (e.g., [5], [6]). However, the
system can be configured to support two other fault models.

A. Crash Fault Tolerance

BFT-SMART supports a configuration parameter that,
if activated, makes the system strictly crash fault-tolerant
(CFT). When this feature is active, the system tolerates
f < n/2 (simple minority), which implies changes in all
required quorums of the protocols, and bypasses the WRITE
step during the consensus execution. Other than that, the
protocol is the same as in the BFT case.

B. Malicious Byzantine Faults

Previous works showed that the use of public-key sig-
natures on requests makes it impossible for clients to forge
MAC vectors and force leader changes (making the protocol
much more resilient against malicious faults) [1], [3]. By
default, BFT-SMART does not use public-key signatures
other than for establishing shared symmetric keys between
replicas and during leader change. However the system
optionally supports usage of signed requests to avoid this
problem.

These same works also showed that a malicious leader
can launch undetectable performance degradation attacks,
making the throughput of the system drop dramatically.
Currently, BFT-SMART does not provide defenses against
such attacks. However, the system can be easily extended to
support periodic leader changes to limit such damage [3].

Finally, the fact that we developed BFT-SMART in Java
makes it easily deployable in different platforms.> This
choice lets us avoid some single-mode failures caused by
accidental events (e.g., a bug or infrastructure problems) or
malicious attacks exploiting common vulnerabilities.

V. EVALUATION

In this section we present results from BFT-SMART’s
performance evaluation. These experiments consist of: (1)
some micro-benchmarks designed to evaluate the library’s
raw throughput and latency; (2) a performance comparison
with some competing systems; and (3) an experiment show-
ing the performance of a BFT-SMART-based service when
withstanding faults and reconfigurations.

2Although we did not support N-versions of the system codebase,
we believe supporting the deployment in several platforms is a good
compromise solution.



Experimental Setup: Unless stated otherwise, all ex-
periments ran with three (CFT) and four (BFT) replicas
hosted in separate machines. Up to 1600 client processes
were distributed uniformly across another four machines.

Clients and replicas were deployed in JRE 1.7.0_21
on Ubuntu Linux 10.04, hosted in Dell PowerEdge R410
servers. Each machine has 32 GB of memory and two quad-
core 2.27 GHz Intel Xeon E5520 processor with hyper-
threading, i.e., supporting 16 hardware threads. All machines
communicate through an isolated gigabit Ethernet network.

Micro-benchmarks: We start by reporting the results of
a set of micro-benchmarks commonly used to evaluate state
machine replication systems. Such benchmarks consist of an
“empty” service implemented with BFT-SMART to perform
raw throughput calculations at the server side and latency
measurements at the client side. Throughput measurements
were gathered from the leader replica, while latency results
from one of the clients (always the same).

Figure 4 presents results for both BFT and CFT setups
of BFT-SMART considering different request/reply sizes:
0/0, 100/100, 1024/1024 and 4096/4096 bytes. In the figure
it is possible to see that the CFT protocol consistently
outperforms its BFT counterpart. This happens due to the
smaller number of messages exchanged in the CFT setup,
which results in less work per client request for the replicas.
Furthermore, as expected, as the payload size increases,
BFT-SMART overall performance decreases.
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Figure 4. Latency vs. throughput configured for f = 1.

Fault-scalability: Our next experiment considers the
impact of the number of replicas on the throughput of the
system with different payloads. Figure 5 reports the results.

For all configurations, the results show that the perfor-
mance of BFT-SMART degrades graciously as f increases,
both for CFT and BFT setups. This happens because: (1) it
exploits the many cores of the replicas (which our machines
have plenty) to calculate MACs; (2) only the n — 1 PRO-
POSE messages of the consensus protocol contain batches
of messages (the other 2n(n— 1) messages exchanged during
consensus only contain the hash of the batches); and (3)

we avoid the use of IP multicast, which is know to cause
problems with many senders (e.g., multicast storms) [17].
It is also interesting to see that, with relatively big requests
(1024 bytes), the difference between BFT and CFT tends to
be very small, regardless of the number of tolerated faults.
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Figure 5. Throughput of BFT-SMART (Kops/s) for CFT (n =
2f+1) and BFT (n =3+ 1) for different workloads and f =1...3.

Signatures and Multi-core Awareness: Our next exper-
iment considers the performance of the system when client
signatures are enabled. In this setup, the clients sign every
request to the replicas that first verify its authenticity before
ordering it. There are two fundamental service-throughput
overheads associated with 1024-bit RSA signatures. First,
the messages are 112 bytes bigger than when SHA-1 MACs
are used. Second, the replicas need to verify the signatures,
which is a relatively costly computational operation.

Figure 6 shows the throughput of BFT-SMART with
different number of hardware threads being used to verify
signatures. As the results show, the architecture of BFT-
SMART exploits the existence of multiple cores with hyper-
threading. This happens because the signatures are verified
by the Netty thread pool, which uses a number of threads
proportional to the number of hardware threads in the
machine (see Figure 3).
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Figure 6. Throughput of BFT-SMART (in Kops/sec) using 1024-
bit RSA signatures for 0/0 payload and n = 4.

Comparison with others: We compared BFT-SMART
against some representative SMR systems considering the
0/0 benchmark. More precisely, we compared BFT-SMART
(both in BFT and CFT setups) with PBFT [2], UpRight [4]
and JPaxos [16] (a modern multi-core CFT replication
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library). All systems were downloaded from the internet® in
October 2013, installed and configured to mimic the setup
used in their respective papers. In the case of UpRight, we
used three machines, each with a replica and an ordering
server, plus another machine with just an ordering server.
Table I shows the peak sustained throughput obtained for all
these systems and the associated number of clients required
to achieve this throughput in our environment.

The results presented in Table I show that BEFT-SMART
achieves a peak sustained throughput higher than both PBFT
and JPaxos in our environment. Even though PBFT reaches
its peak throughput with only 10% of clients required by
BFT-SMART, it did not display higher throughput with
more than 100 clients. We hypothesize that this happens
because PBFT is single-threaded, which makes it very effi-
cient with few clients but limits its scalability. Nonetheless,
this result is consistent with recent reports about PBFT
performance (e.g., [8]). JPaxos displayed a performance
lower than what is reported in [16] (around 100 Kops/sec).
Since we are using the same type of network, the only reason
for that is their use of machines with more hardware threads
than ours (24 vs. 16). The performance numbers obtained
with UpRight were an order of magnitude lower than the
others, which is consistent with the values presented in [4].

The table also presents the throughput of the systems
using the same number of clients*. BET-SMART displayed
again the highest throughput under these conditions.

System | Throughput  Clients | Throughput 200

BFT-SMART 83801 1000 66665

PBFT 78765 100 65603

UpRight 5160 600 3355

CFT-SMART 90909 600 83834

JPaxos 62847 800 45407
Table I

SUSTAINED THROUGHPUT (AND NUMBER OF CLIENTS USED
FOR REACHING THIS VALUE) OF DIFFERENT REPLICATION
LIBRARIES FOR THE 0/0 BENCHMARK AND f = 1. Throughput
200 REPORTS THE THROUGHPUT WITH 200 CLIENTS.

3Projects home pages: http://www.pmg.csail.mit.edu/bft/, https://code.
google.com/p/upright/ and https://github.com/JPaxos/JPaxos.

4The choice of 200 clients was not arbitrary; this is the maximum number
of clients supported by PBFT without crashing.

Throughput evolution across time and events, for n =4 and f = 1.

Faults, Reconfigurations, etc.: Our final experiment
considers the behavior of an application implemented using
BFT-SMART, and how it fares against replica’s failures, re-
coveries, and reconfigurations. For this test we implemented
a BFT-SMART service supporting an in-memory hashtable
whose elements are linked-lists comprised by text strings
(similar to the data structures used in social networks). The
service was deployed in four replicas with ids from O to 3.

We observed the throughput of the service (measured at
replica 1) evolve over several events within the system when
a demanding workload is applied. We use 30 BFT-SMART
clients that keep inserting, reading and deleting strings of
100 bytes in such lists over the course of 10 minutes. The
result is presented in Figure 7.

As the clients started their execution, the service’s
throughput increased until all clients were operational
around second 10. At second 120 we inserted replica 4 into
the system. With five replicas there is a throughput drop,
since more replicas demand larger quorums in the consensus
protocol and more messages are processed in each replica.

At second 240, we crashed replica O (the leader) and
the throughput dropped to zero until the remaining replicas
trigger Mod-SMaRt’s synchronization phase (which takes
20 seconds). After the new leader takes over, the system
resumes execution with a throughput only slightly smaller
than in the initial configuration.

At second 370, we restarted replica 0, which resumes
normal operation after executing a (very fast) state transfer.
Upon its recovery, the system goes back to the throughput
exhibited before replica 0 had crashed. Finally, at second
510, we return the system to four replicas through the
removal of replica 3. Since there is one less replica to handle
messages from, we are able to observe the system’s original
throughput again until the end of the experiment.

VI. LESSONS LEARNED

More than five years of development and three generations
of BFT-SMART gave us important insights about how
to implement and maintain high-performance fault-tolerant
protocols in Java. In this section we discuss some of the
knowledge we acquired during this period.



A. Java as a BFT programming language

Even though Java technology is used in most application
servers and backend services deployed in enterprises, it is
common belief that a high-throughput implementation of
a SMR protocol could not be possible in Java [4]. We
consider that one of the key aspects to take into account
when designing a replication library is the usage of a type-
safe language. Additionally, such language must have several
features that makes the implementation of secure software
more feasible (e.g., large utility API, no direct memory
access, security manager). For this reason, and because of
its portability, we chose Java to implement BFT-SMART.
However, our experience shows that these features, when
not used carefully, can cripple the performance of a protocol
implementation. As an example, we will discuss how object
serialization can be a problem.

One of the key optimizations that made our implementa-
tion efficient was to avoid Java default serialization in the
critical path of the protocol. This was done in two ways: (1)
we defined the client-issued commands as byte arrays in-
stead of generic objects, thus removing the serialization and
deserialization of this field from all message transmissions;
and (2) we avoid using standard object serialization on client
requests, implementing instead a customized method (using
data streams rather than object streams). This removed the
serialization header from the messages and was fundamental
to reduce the size of batches decided by a consensus.

B. How to test BFT systems?

Although distributed systems tracing, debugging and ver-
ification is a lively research area (e.g., [18], [19]), there
are still no tools mature enough to be used. Our approach
for testing BFT-SMART is based on JUnit, a popular unit
testing tool. In our case we use it in the final automated test
of our build script to run test scripts that: (1) setup replicas;
(2) run some client accessing the replicated service under
test and verify if the results are correct; and (3) kill the
replicas in the end. This approach can be automated with
the use of fault-injection frameworks and, in fact, one of
such tools was recently used to test our system [19]. Similar
approaches are being used in other distributed computing
open-source projects like Apache Zookeeper.

Our JUnit-based test framework allows us to easily inject
crash-faults on the replicas. However, testing the system
against malicious behaviors is much trickier. The first chal-
lenge is to identify the critical malicious behaviors that
should be injected on up to f replicas. The second challenge
is how to inject code for malicious behaviors on these
replicas. The first challenge can only be addressed with
careful analysis of the protocol being implemented. Dis-
ruptive code can be injected using patches, aspect-oriented
programming (through crosscutting concerns that can be

SA serialized 0-byte operation request requires 134 bytes with Java
default serialization and 22 bytes in our custom serialization.

activated on certain replicas) or simple commented code
(which we currently use). Our pragmatic test approach can
be complemented with other methods such as the Netflix
chaos monkey [20] to test the system on site.

Notice that most faulty behaviors can cause bugs that
affect the liveness of the protocol, since basic invariants
implemented in key parts of the code can ensure safety
(e.g., a leader proposing different values to different replicas
should cause a leader change, not a disagreement). This
means that several recent efforts in verification of safety
properties in distributed systems through model checking
(e.g., [18]) do not solve liveness bugs, which is the most
difficult problem in our experience.

Moreover, the fact that the system tolerates arbitrary faults
makes it mask some non-deterministic bugs, or Heisenbugs,
turning the whole test process even more difficult. For ex-
ample, an older version of the BFT-SMART communication
system lost some messages sporadically when under heavy
load. The effect of this was that in certain rare conditions
(e.g., when the bug happens in more than f replicas during
the same protocol phase) a leader change occured, but the
system blocks. We call these bugs Byzenbugs, since they are
a specific kind of Heisenbugs that happen in BFT systems
and that only manifest themselves if they occur in more than
f replicas at once. Consequently, these bugs are orders of
magnitude more difficult to discover (they are masked) and
very complex to reproduce (they very seldom happen).

C. Dealing with heavy loads

When testing BET-SMART under heavy loads, we found
several interesting behaviors that appear when a replication
protocol is put under stress. The first one is that there are
always f replicas that stay late in message processing. The
reason is that only n— f replicas are needed for the protocol
to make progress and naturally f replicas will stay behind.

Another interesting observation is that, in a switched
network under heavy load in which clients communicate
with replicas using TCP, spontaneous total order (i.e., client
requests reaching all replicas in the same order with high
probability) almost never happens. This means that the syn-
chronized communication pattern described in Figure 2 does
not happen in practice. This same behavior is expected in
wide-area networks. The main point here is that developers
should not assume that client request queues on different
replicas will be similar.

The third behavior that commonly happens in several
distributed systems is that their throughput tends to drop
after some time under heavy load. This behavior is called
thrashing and can be avoided through a careful selection of
the data structures® used on the protocol implementation and
bounding the queues used for threads communication.

®For example, data structures that tend to grow with the number of
requests being received should process searches in logn (e.g., using AVL
trees) to avoid losing too much performance under heavy load.



D. Maintenance & Robustness

Our experience with BFT-SMART showed us that imple-
menting a robust BFT system is indeed hard. Several experi-
enced developers that worked in our system mentioned that it
was potentially the most complex codebase they had worked
on, despite its reasonably modest size. The main observation
of these developers was that, at first glance, many parts of
the code appear to be unnecessary. The need for these parts
was not obvious at first, but they were introduced to deal
with bugs that appeared as BFT-SMART was used in more
and more projects. This is a consequence of the well-known
gap between protocol specifications and the code required
to implement them efficiently and robustly [10].

We believe BFT-SMART is arguably more robust and
performs better than other complete BFT systems (PBFT
or UpRight) for a single reason: it is being maintained
and constantly improved. Our view is that it is too hard
to implement a BFT replication library at once. A more
sound strategy is to keep building and improving the system,
finding application scenarios and, in the case of academia,
looking for opportunities for funding, publication and stu-
dent projects as the software evolves.

Since 2007, BFT-SMART was used to implement proto-
types of coordination services, key-value stores, a metadata
service for a distributed file system, a transaction processing
engine for replicated databases, an application-level firewall,
a publish-subscribe middleware and a RADIUS-based au-
thentication service. The fact that most of these use cases
were developed by different programmers provided a lot of
feedback for evolving the system along the years.

VII. CONCLUSIONS

This paper reported our effort in building the BFT-
SMART state machine replication library. Our contribution
with this work is to fill a gap in SMR/BFT literature
describing how this kind of protocol can be implemented in a
safe and efficient way. Our experiments show that the current
implementation already provides a very good throughput for
both small- and medium-size messages.

The BFT-SMART system described here is available as
open-source software in the project homepage [21] and, at
the time of this writing, there are several groups around the
world using or modifying the system for their needs.
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