
DEPSKY: Dependable and Secure Storage in a Cloud-of-Clouds

Alysson Bessani Miguel Correia Bruno Quaresma Fernando André Paulo Sousa ∗

University of Lisbon, Faculty of Sciences, Portugal
{bessani,mpc}@di.fc.ul.pt {bmmrq84,andr3.fm,pjsousa}@gmail.com

Abstract
The increasing popularity of cloud storage services has lead
companies that handle critical data to think about using these
services for their storage needs. Medical record databases,
power system historical information and financial data are
some examples of critical data that could be moved to the
cloud. However, the reliability and security of data stored
in the cloud still remain major concerns. In this paper we
present DEPSKY, a system that improves the availability, in-
tegrity and confidentiality of information stored in the cloud
through the encryption, encoding and replication of the data
on diverse clouds that form a cloud-of-clouds. We deployed
our system using four commercial clouds and used Planet-
Lab to run clients accessing the service from different coun-
tries. We observed that our protocols improved the perceived
availability and, in most cases, the access latency when com-
pared with cloud providers individually. Moreover, the mon-
etary costs of using DEPSKY on this scenario is twice the
cost of using a single cloud, which is optimal and seems to
be a reasonable cost, given the benefits.

Categories and Subject Descriptors D.4.5 [Operating
Systems]: Reliability–Fault-tolerance; C.2.0 [Computer-
Communication Networks]: General–Security and protec-
tion; C.2.4 [Distributed Systems]: Distributed applications

General Terms Algorithms, Measurement, Performance,
Reliability, Security

Keywords Cloud computing, Cloud storage, Byzantine
quorum systems

1. Introduction
The increasing maturity of cloud computing technology is
leading many organizations to migrate their IT infrastructure

∗Now at Maxdata Informática, Portugal.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

and/or adapting their IT solutions to operate completely or
partially in the cloud. Even governments and companies
that maintain critical infrastructures (e.g., healthcare, telcos)
are adopting cloud computing as a way of reducing costs
[Greer 2010]. Nevertheless, cloud computing has limitations
related to security and privacy, which should be accounted
for, especially in the context of critical applications.

This paper presents DEPSKY, a dependable and secure
storage system that leverages the benefits of cloud comput-
ing by using a combination of diverse commercial clouds to
build a cloud-of-clouds. In other words, DEPSKY is a virtual
storage cloud, which is accessed by its users by invoking
operations in several individual clouds. More specifically,
DEPSKY addresses four important limitations of cloud com-
puting for data storage in the following way:
Loss of availability: temporary partial unavailability of the
Internet is a well-known phenomenon. When data is moved
from inside of the company network to an external datacen-
ter, it is inevitable that service unavailability will be experi-
enced. The same problem can be caused by denial-of-service
attacks, like the one that allegedly affected a service hosted
in Amazon EC2 in 2009 [Metz 2009]. DEPSKY deals with
this problem by exploiting replication and diversity to store
the data on several clouds, thus allowing access to the data
as long as a subset of them is reachable.
Loss and corruption of data: there are several cases of
cloud services losing or corrupting customer data. For ex-
ample, in October 2009 a subsidiary of Microsoft, Danger
Inc., lost the contacts, notes, photos, etc. of a large number
of users of the Sidekick service [Sarno 2009]. The data was
recovered several days later, but the users of Ma.gnolia were
not so lucky in February of the same year, when the com-
pany lost half a terabyte of data that it never managed to re-
cover [Naone 2009]. DEPSKY deals with this problem using
Byzantine fault-tolerant replication to store data on several
cloud services, allowing data to be retrieved correctly even
if some of the clouds corrupt or lose data.
Loss of privacy: the cloud provider has access to both the
data stored in the cloud and metadata like access patterns.
The provider may be trustworthy, but malicious insiders are
a wide-spread security problem. This is an especial concern
in applications that involve keeping private data like health
records. An obvious solution is the customer encrypting the

data before storing it, but if the data is accessed by dis-
tributed applications this involves running protocols for key
distribution (processes in different machines need access to
the cryptographic keys). DEPSKY employs a secret sharing
scheme and erasure codes to avoid storing clear data in the
clouds and to improve the storage efficiency, amortizing the
replication factor on the cost of the solution.
Vendor lock-in: there is currently some concern that a
few cloud computing providers become dominant, the so
called vendor lock-in issue [Abu-Libdeh 2010]. This con-
cern is specially prevalent in Europe, as the most conspic-
uous providers are not in the region. Even moving from
one provider to another one may be expensive because the
cost of cloud usage has a component proportional to the
amount of data that is read and written. DEPSKY addresses
this issue in two ways. First, it does not depend on a single
cloud provider, but on a few, so data access can be balanced
among the providers considering their practices (e.g., what
they charge). Second, DEPSKY uses erasure codes to store
only a fraction (typically half) of the total amount of data in
each cloud. In case the need of exchanging one provider by
another arises, the cost of migrating the data will be at most
a fraction of what it would be otherwise.

The way in which DEPSKY solves these limitations does
not come for free. At first sight, using, say, four clouds
instead of one involves costs roughly four times higher. One
of the key objectives of DEPSKY is to reduce this cost, which
in fact it does to about two times the cost of using a single
cloud. This seems to be a reasonable cost, given the benefits.

The key insight of the paper is that these limitations of in-
dividual clouds can be overcome by using a cloud-of-clouds
in which the operations (read, write, etc.) are implemented
using a set of Byzantine quorum systems protocols. The
protocols require diversity of location, administration, de-
sign and implementation, which in this case comes directly
from the use of different commercial clouds [Vukolic 2010].
There are protocols of this kind in the literature, but they
either require that the servers execute some code [Cachin
2006, Goodson 2004, Malkhi 1998a;b, Martin 2002], not
possible in storage clouds, or are sensible to contention (e.g.,
[Abraham 2006]), which makes them difficult to use for ge-
ographically dispersed systems with high and variable ac-
cess latencies. DEPSKY overcomes these limitations by not
requiring code execution in the servers (i.e., storage clouds),
but still being efficient by requiring only two communication
round-trips for each operation. Furthermore, it leverages the
above mentioned mechanisms to deal with data confidential-
ity and reduce the amount of data stored in each cloud.

In summary, the main contributions of the paper are:

1. The DEPSKY system, a storage cloud-of-clouds that
overcomes the limitations of individual clouds by using
an efficient set of Byzantine quorum system protocols,
cryptography, secret sharing, erasure codes and the diver-
sity that comes from using several clouds. The DEPSKY

protocols require at most two communication round-trips
for each operation and store only approximately half of
the data in each cloud for the typical case.

2. A set of experiments showing the costs and benefits (both
monetary and in terms of performance) of storing up-
datable data blocks in more than one cloud. The experi-
ments were made during one month, using four commer-
cial cloud storage services (Amazon S3, Windows Azure,
Nirvanix and Rackspace) and PlanetLab to run clients
that access the service from several places worldwide.

2. Cloud Storage Applications
Examples of applications that can benefit from DEPSKY are
the following:

Critical data storage. Given the overall advantages of us-
ing clouds for running large scale systems, many govern-
ments around the globe are considering the use of this model.
Recently, the US government announced its interest in mov-
ing some of its computational infrastructure to the cloud and
started some efforts in understanding the risks involved in
doing these changes [Greer 2010]. The European Commis-
sion is also investing in the area through FP7 projects like
TCLOUDS [tcl 2010].

In the same line of these efforts, there are many crit-
ical applications managed by companies that have no in-
terest in maintaining a computational infrastructure (i.e., a
datacenter). For these companies, the cloud computing pay-
per-use model is specially appealing. An example would be
power system operators. Considering only the case of stor-
age, power systems have data historian databases that store
events collected from the power grid and other subsystems.
In such a system, the data should be always available for
queries (although the workload is mostly write-dominated)
and access control is mandatory.

Another critical application that could benefit from mov-
ing to the cloud is a unified medical records database, also
known as electronic health record (EHR). In such an appli-
cation, several hospitals, clinics, laboratories and public of-
fices share patient records in order to offer a better service
without the complexities of transferring patient information
between them. A system like this has been being deployed in
the UK for some years [Ehs 2010]. Similarly to our previous
example, availability of data is a fundamental requirement of
a cloud-based EHR system, and privacy concerns are even
more important.

All these applications can benefit from a system like
DEPSKY. First, the fact that the information is replicated
on several clouds would improve the data availability and
integrity. Moreover, the DEPSKY-CA protocol (Section 3)
ensures the confidentiality of stored data and therefore ad-
dresses some of the privacy issues so important for these ap-
plications. Finally, these applications are prime examples of
cases in which the extra costs due to replication are afford-
able for the added quality of service.

Content distribution. One of the most surprising uses of
Amazon S3 is content distribution [Henry 2009]. In this sce-
nario, users use the storage system as distribution points for
their data in such a way that one or more producers store
the content on their account and a set of consumers read this
content. A system like DEPSKY that supports dependable
updatable information storage can help this kind of appli-
cation when the content being distributed is dynamic and
there are security concerns associated. For example, a com-
pany can use the system to give detailed information about
its business (price, available stock, etc.) to its affiliates with
improved availability and security.

Future applications. Many applications are moving to the
cloud, so, it is possible to think of new applications that
would use the storage cloud as a back-end storage layer.
Systems like databases, file systems, objects stores and key-
value databases can use the cloud as storage layer as long
as caching and weak consistency models are used to avoid
paying the price of cloud access on every operation.

3. The DEPSKY System
This section presents the DEPSKY system. It starts by pre-
senting the system architecture, then defines the data and
system models, the two main algorithms (DEPSKY-A and
DEPSKY-CA), and a set of auxiliary protocols.

3.1 DEPSKY Architecture
Figure 1 presents the architecture of DEPSKY. As mentioned
before, the clouds are storage clouds without the capacity
of executing users’ code, so they are accessed using their
standard interface without modifications. The DEPSKY al-
gorithms are implemented as a software library in the clients.
This library offers an object store interface [Gibson 1998],
similar to what is used by parallel file systems (e.g., [Ghe-
mawat 2003, Weil 2006]), allowing reads and writes in the
back-end (in this case, the untrusted clouds).

Cloud 1 Cloud 2 Cloud 3 Cloud 4

DepSky cloud-of-clouds

Value
(data)

Value
(data)

DS Client 1 DS Client 2

Figure 1. Architecture of DEPSKY (w/ 4 clouds, 2 clients).

3.2 Data Model
The use of diverse clouds requires the DEPSKY library to
deal with the heterogeneity of the interfaces of each cloud
provider. An aspect that is specially important is the format
of the data accepted by each cloud. The data model allow us
to ignore these details when presenting the algorithms.

Figure 2 presents the DEPSKY data model with its three
abstraction levels. In the first (left), there is the conceptual
data unit, which corresponds to the basic storage object
with which the algorithms work (a register in distributed
computing parlance [Lamport 1986, Malkhi 1998a]). A data
unit has a unique name (X in the figure), a version number
(to support updates on the object), verification data (usually
a cryptographic hash of the data) and the data stored on the
data unit object. In the second level (middle), the conceptual
data unit is implemented as a generic data unit in an abstract
storage cloud. Each generic data unit, or container, contains
two types of files: a signed metadata file and the files that
store the data. Metadata files contain the version number and
the verification data, together with other informations that
applications may demand. Notice that a data unit (conceptual
or generic) can store several versions of the data, i.e., the
container can contain several data files. The name of the
metadata file is simply metadata, while the data files are
called value<Version>, where <Version> is the version
number of the data (e.g., value1, value2, etc.). Finally, in
the third level (right) there is the data unit implementation,
i.e., the container translated into the specific constructions
supported by each cloud provider (Bucket, Folder, etc.).

Conceptual Data Unit Generic Data Unit Data Unit Implementation

 X Container X
Version Number
Verification Data

Data

Metadata
Version Number
Verification Data

Other info

Data

 Amazon S3 Windows Azure

 Bucket X BlobContainer X

Metadata Metadata

Data Data

 Nirvanix SDN Rackspace

 Folder X Container X

Metadata Metadata

Data Data

Figure 2. DEPSKY data unit and the 3 abstraction levels.

The data stored on a data unit can have arbitrary size,
and this size can be different for different versions. Each
data unit object supports the usual object store operations:
creation (create the container and the metadata file with
version 0), destruction (delete or remove access to the data
unit), write and read.

3.3 System Model
We consider an asynchronous distributed system composed
by three types of parties: writers, readers and cloud storage
providers. The latter are the clouds 1-4 in Figure 1, while
writers and readers are roles of the clients, not necessarily
different processes.

Readers and writers. Readers can fail arbitrarily, i.e., they
can crash, fail intermittently and present any behavior. Writ-
ers, on the other hand, are only assumed to fail by crashing.
We do not consider that writers can fail arbitrarily because,
even if the protocol tolerated inconsistent writes in the repli-
cas, faulty writers would still be able to write wrong values
in data units, effectively corrupting the state of the applica-
tion that uses DEPSKY. Moreover, the protocols that toler-
ate malicious writers are much more complex (e.g., [Cachin
2006, Liskov 2006]), with active servers verifying the con-
sistency of writer messages, which cannot be implemented
on general storage clouds (Section 3.4).

All writers of a data unit du share a common private
key Kdu

rw used to sign some of the data written on the data
unit (function sign(DATA,Kdu

rw)), while readers of du have
access to the corresponding public key Kdu

uw to verify these
signatures (function veri f y(DATA,Kdu

uw)). This public key
can be made available to the readers through the storage
clouds themselves. Moreover, we assume also the existence
of a collision-resistant cryptographic hash function H.

Cloud storage providers. Each cloud is modeled as a pas-
sive storage entity that supports five operations: list (lists the
files of a container in the cloud), get (reads a file), create
(creates a container), put (writes or modifies a file in a con-
tainer) and remove (deletes a file). By passive storage entity,
we mean that no protocol code other than what is needed to
support the aforementioned operations is executed. We as-
sume that access control is provided by the system in order
to ensure that readers are only allowed to invoke the list and
get operations.

Since we do not trust clouds individually, we assume they
can fail in a Byzantine way [Lamport 1982]: data stored can
be deleted, corrupted, created or leaked to unauthorized par-
ties. This is the most general fault model and encompasses
both malicious attacks/intrusions on a cloud provider and ar-
bitrary data corruption (e.g., due to accidental events like the
Ma.gnolia case). The protocols require a set of n = 3 f + 1
storage clouds, at most f of which can be faulty. Addition-
ally, the quorums used in the protocols are composed by
any subset of n− f storage clouds. It is worth to notice that
this is the minimum number of replicas to tolerate Byzantine
servers in asynchronous storage systems [Martin 2002].

The register abstraction provided by DEPSKY satisfies
regular semantics: a read operation that happens concur-
rently with a write can return the value being written or the
object’s value before the write [Lamport 1986]. This seman-
tics is both intuitive and stronger than the eventual consis-
tency of some cloud-based services [Vogels 2009]. Never-
theless, if the semantics provided by the underlying storage
clouds is weaker than regular, then DEPSKY’s semantics is
also weaker (Section 3.10).

Notice that our model hides most of the complexity of the
distributed storage system employed by the cloud provider
to manage the data storage service since it just assumes that

the service is an object storage system prone to Byzantine
faults that supports very simple operations. These operations
are accessed through RPCs (Remote Procedure Calls) with
the following failure semantics: the operation keeps being
invoked until an answer is received or the operation is can-
celed (possibly by another thread, using a cancel pending
special operation to stop resending a request). This means
that we have at most once semantics for the operations being
invoked. This is not a problem because all storage cloud op-
erations are idempotent, i.e., the state of the cloud becomes
the same irrespectively of the operation being executed only
once or more times.

3.4 Protocol Design Rationale
Quorum protocols can serve as the backbone of highly avail-
able storage systems [Chockler 2009]. There are many pro-
tocols for implementing Byzantine fault-tolerant (BFT) stor-
age [Cachin 2006, Goodson 2004, Hendricks 2007, Liskov
2006, Malkhi 1998a;b, Martin 2002], but most of them re-
quire that the servers execute some code, a functionality not
available on storage clouds. This leads to a key difference be-
tween the DEPSKY protocols and these classical BFT proto-
cols: metadata and data are written in separate quorum ac-
cesses. Moreover, supporting multiple writers for a register
(a data unit in DEPSKY parlance) can be problematic due to
the lack of server code able to verify the version number of
the data being written. To overcome this limitation we imple-
ment a single-writer multi-reader register, which is sufficient
for many applications, and we provide a lock/lease protocol
to support several concurrent writers for the data unit.

There are also some quorum protocols that consider in-
dividual storage nodes as passive shared memory objects
(or disks) instead of servers [Abraham 2006, Attiya 2003,
Chockler 2002, Gafni 2003, Jayanti 1998]. Unfortunately,
most of these protocols require many steps to access the
shared memory, or are heavily influenced by contention,
which makes them impractical for geographically dispersed
distributed systems such as DEPSKY due to the highly vari-
able latencies involved. The DEPSKY protocols require two
communication round-trips to read or write the metadata and
the data files that are part of the data unit, independently of
the existence of faults and contention.

Furthermore, as will be discussed latter, many clouds
do not provide the expected consistency guarantees of a
disk, something that can affect the correctness of these
protocols. The DEPSKY protocols provide consistency-
proportional semantics, i.e., the semantics of a data unit
is as strong as the underling clouds allow, from eventual
to regular consistency semantics. We do not try to provide
atomic (linearizable) semantics due to the fact that all known
techniques require server-to-server communication [Cachin
2006], servers sending update notifications to clients [Mar-
tin 2002] or write-backs [Goodson 2004, Malkhi 1998b].
None of these mechanisms is implementable using general-
purpose storage clouds.

To ensure confidentiality of stored data on the clouds
without requiring a key distribution service, we employ a se-
cret sharing scheme [Shamir 1979]. In this scheme, a special
party called dealer distributes a secret to n players, but each
player gets only a share of this secret. The main properties
of the scheme is that at least f +1≤ n different shares of the
secret are needed to recover it and that no information about
the secret is disclosed with f or less shares. The scheme is
integrated on the basic replication protocol in such way that
each cloud receives just a share of the data being written,
besides the metadata. This ensures that no individual cloud
will have access to the data being stored, but that clients that
have authorization to access the data will be granted access
to the shares of (at least) f + 1 different clouds and will be
able to rebuild the original data.

The use of a secret sharing scheme allows us to integrate
confidentiality guarantees to the stored data without using a
key distribution mechanism to make writers and readers of a
data unit share a secret key. In fact, our mechanism reuses the
access control of the cloud provider to control which readers
are able to access the data stored on a data unit.

If we simply replicate the data on n clouds, the monetary
costs of storing data using DEPSKY would increase by a fac-
tor of n. In order to avoid this, we compose the secret sharing
scheme used on the protocol with an information-optimal
erasure code algorithm, reducing the size of each share by
a factor of n

f+1 of the original data [Rabin 1989]. This com-
position follows the original proposal of [Krawczyk 1993],
where the data is encrypted with a random secret key, the
encrypted data is encoded, the key is divided using secret
sharing and each server receives a block of the encrypted
data and a share of the key.

Common sense says that for critical data it is always a
good practice to not erase old versions of the data, unless we
can be certain that we will not need them anymore [Hamilton
2007]. An additional feature of our protocols is that old
versions of the data are kept in the clouds.

3.5 DEPSKY-A– Available DepSky
The first DEPSKY protocol is called DEPSKY-A, and im-
proves the availability and integrity of cloud-stored data by
replicating it on several providers using quorum techniques.
Algorithm 1 presents this protocol. Due to space constraints
we encapsulate some of the protocol steps in the functions of
the first two rows of Table 1. We use the ‘.’ operator to denote
access to metadata fields, e.g., given a metadata file m, m.ver
and m.digest denote the version number and digest(s) stored
in m. We use the ‘+’ operator to concatenate two items into
a string, e.g., “value”+new ver produces a string that starts
with the string “value” and ends with the value of variable
new ver in string format. Finally, the max function returns
the maximum among a set of numbers.

The key idea of the write algorithm (lines 1-13) is to first
write the value in a quorum of clouds (line 8), then write the

Function Description
queryMetadata(du) obtains the correctly signed file metadata

stored in the container du of n− f out-
of the n clouds used to store the data unit
and returns it in an array.

writeQuorum(du,
name,value)

for every cloud i ∈ {0, ...,n− 1}, writes
the value[i] on a file named name on the
container du in that cloud. Blocks until it
receives write confirmations from n− f
clouds.

H(value) returns the cryptographic hash of value.

Table 1. Functions used in the DEPSKY-A protocols.

Algorithm 1: DEPSKY-A
1 procedure DepSkyAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m←− queryMetadata(du)
5 max verdu←−max({m[i].ver : 0≤ i≤ n−1})
6 new ver←− max verdu +1
7 v[0 .. n−1]←− value
8 writeQuorum(du,“value”+new ver,v)
9 new meta←− 〈new ver,H(value)〉

10 sign(new meta,Krw)

11 v[0 .. n−1]←− new meta
12 writeQuorum(du,“metadata”,v)
13 max verdu←− new ver

14 function DepSkyARead(du)
15 begin
16 m←− queryMetadata(du)
17 max id←− i : m[i].ver = max({m[i].ver : 0≤ i≤ n−1})
18 v[0 .. n−1]←−⊥
19 parallel for 0 ≤ i < n−1 do
20 tmpi←− cloudi.get(du, “value” +m[max id].ver)
21 if H(tmpi) = m[max id].digest then v[i]←− tmpi

22 wait until ∃i : v[i] 6=⊥
23 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
24 return v[i]

corresponding metadata (lines 12). This order of operations
ensures that a reader will only be able to read metadata
for a value already stored in the clouds. Additionally, when
a writer does its first writing in a data unit du (lines 3-5,
max verdu is initialized as 0), it first contacts the clouds to
obtain the metadata with the greatest version number, then
updates the max verdu variable with the current version of
the data unit.

The read algorithm just fetches the metadata files from
a quorum of clouds (line 16), chooses the one with greatest
version number (line 17) and reads the value corresponding
to this version number and the cryptographic hash found
in the chosen metadata (lines 19-22). After receiving the
first reply that satisfies this condition the reader cancels the
pending RPCs and returns the value (lines 22-24).

The rationale of why this protocol provides the desired
properties is the following (proofs on the Appendix). Avail-

ability is guaranteed because the data is stored in a quo-
rum of at least n− f clouds and it is assumed that at most
f clouds can be faulty. The read operation has to retrieve
the value from only one of the clouds (line 22), which is al-
ways available because (n− f)− f > 1 . Together with the
data, signed metadata containing its cryptographic hash is
also stored. Therefore, if a cloud is faulty and corrupts the
data, this is detected when the metadata is retrieved.

3.6 DEPSKY-CA– Confidential & Available DepSky
The DEPSKY-A protocol has two main limitations. First, a
data unit of size S consumes n× S storage capacity of the
system and costs on average n times more than if it was
stored in a single cloud. Second, it stores the data in cleart-
ext, so it does not give confidentiality guarantees. To cope
with these limitations we employ an information-efficient
secret sharing scheme [Krawczyk 1993] that combines sym-
metric encryption with a classical secret sharing scheme and
an optimal erasure code to partition the data in a set of blocks
in such a way that (i.) f +1 blocks are necessary to recover
the original data and (ii.) f or less blocks do not give any
information about the stored data1.

The DEPSKY-CA protocol integrates these techniques
with the DEPSKY-A protocol (Algorithm 2). The additional
cryptographic and coding functions needed are in Table 2.

Function Description
generateSecretKey() generates a random secret key
E(v,k)/D(e,k) encrypts v and decrypts e with key k
encode(d,n, t) encodes d on n blocks in such a way

that t are required to recover it
decode(db,n, t) decodes array db of n blocks, with

at least t valid, to recover d
share(s,n, t) generates n shares in such a way that

at least t of them are required to
obtain any information about s

combine(ss,n, t) combines shares on array ss of size n
containing at least t correct shares to
obtain the secret s

Table 2. Functions used in the DEPSKY-CA protocols.

The DEPSKY-CA protocol is very similar to DEPSKY-
A with the following differences: (1.) the encryption of the
data, the generation of the key shares and the encoding of
the encrypted data on DepSkyCAWrite (lines 7-10) and the
reverse process on DepSkyCARead (lines 30-31); (2.) the
data stored in cloudi is composed by the share of the key s[i]
and the encoded block e[i] (lines 12, 30-31); and (3.) f + 1
replies are necessary to read the data unit’s current value
instead of one on DEPSKY-A (line 28). Additionally, instead
of storing a single digest on the metadata file, the writer
generates and stores n digests, one for each cloud. These
digests are accessed as different positions of the digest field
of a metadata. If a key distribution infrastructure is available,
or if readers and writer share a common key k, the secret

1 Erasure codes alone cannot satisfy this confidentiality guarantee.

sharing scheme can be removed (lines 7, 9 and 31 are not
necessary).

Algorithm 2: DEPSKY-CA
1 procedure DepSkyCAWrite(du,value)
2 begin
3 if max verdu = 0 then
4 m←− queryMetadata(du)
5 max verdu←−max({m[i].version : 0≤ i≤ n−1})
6 new ver←− max verdu +1
7 k←− generateSecretKey()
8 e←− E(value,k)
9 s[0 .. n−1]←− share(k,n, f +1)

10 v[0 .. n−1]←− encode(e,n, f +1)
11 for 0 ≤ i < n−1 do
12 d[i]←− 〈s[i],e[i]〉
13 h[i]←−H(d[i])

14 writeQuorum(du,“value”+new ver,d)
15 new meta←− 〈new ver,h〉
16 sign(new meta,Krw)

17 v[0 .. n−1]←− new meta
18 writeQuorum(du,“metadata”,v)
19 max verdu←− new ver

20 function DepSkyCARead(du)
21 begin
22 m←− queryMetadata(du)
23 max id←− i : m[i].ver = max({m[i].ver : 0≤ i≤ n−1})
24 d[0 .. n−1]←−⊥
25 parallel for 0 ≤ i ≤ n−1 do
26 tmpi←− cloudi.get(du, “value” +m[max id].ver)
27 if H(tmpi) = m[max id].digest[i] then d[i]←− tmpi

28 wait until |{i : d[i] 6=⊥}|> f
29 for 0 ≤ i ≤ n−1 do cloudi.cancel pending()
30 e←− decode(d.e,n, f +1)
31 k←− combine(d.s,n, f +1)
32 return D(e,k)

The rationale of the correctness of the protocol is simi-
lar to the one for DEPSKY-A (proofs also on the Appendix).
The main differences are those already pointed out: encryp-
tion prevents individual clouds from disclosing the data; se-
cret sharing allows storing the encryption key in the cloud
without f faulty clouds being able to reconstruct it; the era-
sure code scheme reduces the size of the data stored in each
cloud.

3.7 Read Optimization
The DEPSKY-A algorithm described in Section 3.5 tries to
read the most recent version of the data unit from all clouds
and waits for the first valid reply to return it. In the pay-
per-use model this is far from ideal: even using just a single
value, the application will be paying for n data accesses.
A lower-cost solution is to use some criteria to sort the
clouds and try to access them sequentially, one at time,
until we obtain the desired value. The sorting criteria can be
based on access monetary cost (cost-optimal), the latency of
queryMetadata on the protocol (latency-optimal), a mix of

the two or any other more complex criteria (e.g., an history
of the latency and faults of the clouds).

This optimization can also be used to decrease the mone-
tary cost of the DEPSKY-CA read operation. The main dif-
ference is that instead of choosing one of the clouds at a time
to read the data, f +1 of them are chosen.

3.8 Supporting Multiple Writers – Locks
The DEPSKY protocols presented do not support concurrent
writes, which is sufficient for many applications where each
process writes on its own data units. However, there are ap-
plications in which this is not the case. An example is a fault-
tolerant storage system that uses DEPSKY as its backend ob-
ject store. This system could have more than one node with
the writer role writing in the same data unit(s) for fault tol-
erance reasons. If the writers are in the same network, a co-
ordination system like Zookeeper [Hunt 2010] or DepSpace
[Bessani 2008] can be used to elect a leader and coordinate
the writes. However, if the writers are scattered through the
Internet this solution is not practical without trusting the site
in which the coordination service is deployed (and even in
this case, the coordination service may be unavailable due to
network issues).

The solution we advocate is a low contention lock mech-
anism that uses the cloud-of-clouds itself to maintain lock
files on a data unit. These files specify which is the writer
and for how much time it has write access to the data unit.
The protocol is the following:

1. A process p that wants to be a writer (and has permission
to be), first lists files on the data unit container on all n
clouds and tries to find a zero-byte file called lock-ID-T.
If such file is found on a quorum of clouds, ID 6= p and
the local time t on the process is smaller than T +∆, being
∆ a safety margin concerning the difference between the
synchronized clocks of all writers, someone else is the
writer and p will wait until T +∆.

2. If the test fails, p can write a lock file called lock-p-T on
all clouds, being T = t +writer lease time.

3. In the last step, p lists again all files in the data unit
container searching for other lock files with t < T + ∆

besides the one it wrote. If such file is found, p removes
the lock file it wrote from the clouds and sleeps for a
small random amount of time before trying to run the
protocol again. Otherwise, p becomes the single-writer
for the data unit until T .

Several remarks can be made about this protocol. First,
the last step is necessary to ensure that two processes trying
to become writers at the same time never succeed. Second,
locks can be renewed periodically to ensure existence of a
single writer at every moment of the execution. Moreover,
unlocking can be easily done through the removal of the lock
files. Third, the protocol requires synchronized clocks in or-
der to employ leases and thus tolerate writer crashes. Finally,

this lock protocol is only obstruction-free [Herlihy 2003]: if
several process try to become writers at the same time, it is
possible that none of them are successful. However, due to
the backoff on step 3, this situation should be very rare on
the envisioned deployments for the systems.

3.9 Additional Protocols
Besides read, write and lock, DEPSKY provides other opera-
tions to manage data units. These operations and underlying
protocols are briefly described in this section.

Creation and destruction. The creation of a data unit can
be easily done through the invocation of the create operation
in each individual cloud. In contention-prone applications,
the creator should execute the locking protocol of the previ-
ous section before executing the first write to ensure it is the
single writer of the data unit.

The destruction of a data unit is done in a similar way: the
writer simply removes all files and the container that stores
the data unit by calling remove in each individual cloud.

Garbage collection. As already discussed in Section 3.4,
we choose to keep old versions of the value of the data unit
on the clouds to improve the dependability of the storage
system. However, after many writes the amount of storage
used by a data unit can become too costly for the organi-
zation and thus some garbage collection is necessary. The
protocol for doing that is very simple: a writer just lists all
files value<Version> in the data unit container and removes
all those with <Version> smaller than the oldest version it
wants to keep in the system.

Cloud reconfiguration. Sometimes one cloud can become
too expensive or too unreliable to be used for storing DEP-
SKY data units. In this case we need a reconfiguration proto-
col to move the blocks from one cloud to another. The pro-
cess is the following: (1.) the writer reads the data (probably
from the other clouds and not from the one being removed);
(2.) it creates the data unit container on the new cloud; (3.)
executes the write protocol on the clouds not removed and
the new cloud; (4.) deletes the data unit from the cloud be-
ing removed. After that, the writer needs to inform the read-
ers that the data unit location was changed. This can be done
writing a special file on the data unit container of the remain-
ing clouds informing the new configuration of the system. A
process will read this file and accept the reconfiguration if
this file is read from at least f +1 clouds.

3.10 Dealing with Weakly Consistent Clouds
Both DEPSKY-A and DEPSKY-CA protocols implement
single-writer multi-reader regular registers if the clouds
being accessed provide regular semantics. However, sev-
eral clouds do not ensure this guarantee, but instead provide
read-after-write or eventual consistency [Vogels 2009] for
the data stored (e.g., Amazon S3 [Ama 2010]).

With a slight modification, our protocols can work with
these weakly consistent clouds. The modification is very

simple: repeat the data file reading from the clouds until
the required condition is satisfied (receiving 1 or f + 1 data
units, respectively in lines 22 and 28 of Algorithms 1 and 2).
This modification ensures the read of a value described on a
read metadata will be repeated until it is available.

This modification makes the DEPSKY protocols be con-
sistency-proportional in the following sense: if the under-
laying clouds provide regular semantics, the protocols pro-
vide regular semantics; if the clouds provide read-after-write
semantics, the protocol satisfies read-after-write semantics;
and finally, if the clouds provide eventually consistency, the
protocols are eventually consistent. Notice that if the under-
lying clouds are heterogeneous in terms of consistency guar-
antees, DEPSKY ensures the weakest consistency among
those provided. This comes from the fact that reading of a
recently write value depends on the reading of the new meta-
data file, which, after a write is complete, will only be avail-
able eventually on weakly consistent clouds.

A problem with not having regular consistent clouds is
that the lock protocol may not work correctly. After listing
the contents of a container and not seeing a file, a process
cannot conclude that it is the only writer. This problem can
be minimized if the process waits a while between steps
2 and 3 of the protocol. However, the mutual exclusion
guarantee will only be satisfied if the wait time is greater
than the time for a data written to be seen by every other
reader. Unfortunately, no eventually consistent cloud of our
knowledge provides this kind of timeliness guarantee, but
we can experimentally discover the amount of time needed
for a read to propagate on a cloud with the desired coverage
and use this value in the aforementioned wait. Moreover, to
ensure some safety even when two writes happen in parallel,
we can include a unique id of the writer (e.g., the hash of
part of its private key) as the decimal part of its timestamps,
just like is done in most Byzantine quorum protocols (e.g.,
[Malkhi 1998a]). This simple measure allows the durability
of data written by concurrent writers (the name of the data
files will be different), even if the metadata file may point to
different versions on different clouds.

4. DEPSKY Implementation
We have implemented a DEPSKY prototype in Java as an
application library that supports the read and write opera-
tions. The code is divided in three main parts: (1) data unit
manager, that stores the definition and information of the
data units that can be accessed; (2) system core, that imple-
ments the DEPSKY-A and DEPSKY-CA protocols; and (3)
cloud providers drivers, which implement the logic for ac-
cessing the different clouds. The current implementation has
5 drivers available (the four clouds used in the evaluation -
see next section - and one for storing data locally), but new
drivers can be easily added. The overall implementation is
about 2910 lines of code, being 1122 lines for the drivers.

The DEPSKY code follows a model of one thread per
cloud per data unit in such a way that the cloud accesses
can be executed in parallel (as described in the algorithms).
All communications between clients and cloud providers are
made over HTTPS (secure and private channels) using the
REST APIs supplied by the storage cloud provider.

Our implementation makes use of several building blocks:
RSA with 1024 bit keys for signatures, SHA-1 for crypto-
graphic hashes, AES for symmetric cryptography, Shoen-
makers’ PVSS scheme [Schoenmakers 1999] for secret shar-
ing with 192 bits secrets and the classic Reed-Solomon for
erasure codes [Plank 2007]. Most of the implementations
used come from the Java 6 API, while Java Secret Shar-
ing [Bessani 2008] and Jerasure [Plank 2007] were used for
secret sharing and erasure code, respectively.

5. Evaluation
In this section we present an evaluation of DEPSKY which
tries to answer three main questions: What is the additional
cost in using replication on storage clouds? What is the
advantage in terms of performance and availability of using
replicated clouds to store data? What are the relative costs
and benefits of the two DEPSKY protocols?

The evaluation focus on the case of n = 4 and f = 1,
which we expect to be the common deployment setup of our
system for two reasons: (1.) f is the maximum number of
faulty cloud storage providers, which are very resilient and
so faults should be rare; (2.) there are currently not many
more than four cloud storage providers that are adequate for
storing critical data. Our evaluation uses the following cloud
storage providers with their default configurations: Amazon
S3, Windows Azure, Nirvanix and Rackspace.

5.1 Economical
Storage cloud providers usually charge their users based on
the amount of data uploaded, downloaded and stored on
them. Table 3 presents the cost in US Dollars of executing
10,000 reads and writes using the DEPSKY data model (with
metadata and supporting many versions of a data unit) con-
sidering three data unit sizes: 100kb, 1Mb and 10Mb. This
table includes only the costs of the operations being exe-
cuted (invocations, upload and download), not the data stor-
age, which will be discussed latter. All estimations presented
on this section were calculated based on the values charged
by the four clouds at September 25th, 2010.

In the table, the columns “DEPSKY-A”, “DEPSKY-A
opt”, “DEPSKY-CA” e “DEPSKY-CA opt” present the costs
of using the DEPSKY protocols with the read optimiza-
tion respectively disabled and enabled. The other columns
present the costs for storing the data unit (DU) in a single
cloud.

The table shows that the cost of DEPSKY-A with n = 4 is
roughly the sum of the costs of using the four clouds, as ex-
pected. However, if the read optimization is employed, the

Operation DU Size DEPSKY-A DEPSKY-A opt DEPSKY-CA DEPSKY-CA opt Amazon S3 Rackspace Azure Nirvanix
100kb 0.64 0.14 0.32 0.14 0.14 0.21 0.14 0.14

10K Reads 1Mb 6.55 1.47 3.26 1.47 1.46 2.15 1.46 1.46
10Mb 65.5 14.6 32.0 14.6 14.6 21.5 14.6 14.6
100kb 0.60 0.60 0.30 0.30 0.14 0.08 0.09 0.29

10K Writes 1Mb 6.16 6.16 3.08 3.08 1.46 0.78 0.98 2.93
10Mb 61.5 61.5 30.8 30.8 14.6 7.81 9.77 29.3

Table 3. Estimated costs per 10000 operations (in US Dollars). DEPSKY-A and DEPSKY-CA costs are computed for the realistic case of
4 clouds (f = 1). The “DEPSKY-A opt” and “DEPSKY-CA opt” setups consider the cost-optimal version of the protocols with no failures.

less expensive cloud cost dominates the cost of executing
reads (only one out-of four clouds is accessed in fault-free
executions). For DEPSKY-CA, the cost of reading and writ-
ing is approximately 50% of DEPSKY-A’s due to the use of
information-optimal erasure codes that make the data stored
on each cloud roughly 50% of the size of the original data.
The optimized version of DEPSKY-CA read also reduces
this cost to half of the sum of the two less costly clouds due
to its access to only f +1 clouds in the best case. Recall that
the costs for the optimized versions of the protocol account
only for the best case in terms of monetary costs: reads are
executed on the required less expensive clouds. In the worst
case, the more expensive clouds will be used instead.

The storage costs of a 1Mb data unit for different numbers
of stored versions is presented in Figure 3. We present the
curves only for one data unit size because other size costs
are directly proportional.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10 20 30 40 50 60 70 80 90 100

C
os

t (
$U

S
D

/1
M

b
da

ta
 u

ni
t)

Number of Versions

DepSky−A
DepSky−CA
Amazon S3

Nirvanix
Rackspace

Windows Azure

Figure 3. Storage costs of a 1Mb data unit for different numbers
of stored versions.

The results depicted in the figure show that the cost
of DEPSKY-CA storage is roughly half the cost of using
DEPSKY-A and twice the cost of using a single cloud. This
is no surprise since the storage costs are directly proportional
to the amount of data stored on the cloud, and DEPSKY-
A stores 4 times the data size, while DEPSKY-CA stores
2 times the data size and an individual cloud just stores a
single copy of the data. Notice that the metadata costs are
almost irrelevant when compared with the data size since its
size is less than 500 bytes.

5.2 PlanetLab deployment
In order to understand the performance of DEPSKY in a
real deployment, we used PlanetLab to run several clients
accessing a cloud-of-clouds composed of popular storage
cloud providers. This section explains our methodology and
then presents the obtained results in terms of read and write
latency, throughput and availability.

Methodology. The latency measurements were obtained
using a logger application that tries to read a data unit from
six different clouds: the four storage clouds individually and
the two clouds-of-clouds implemented with DEPSKY-A and
DEPSKY-CA.

The logger application executes periodically a measure-
ment epoch, which comprises: read the data unit (DU) from
each of the clouds individually, one after another; read the
DU using DEPSKY-A; read the DU using DEPSKY-CA;
sleep until the next epoch. The goal is to read the data
through different setups within a time period as small as pos-
sible in order to minimize Internet performance variations.

We deployed the logger on eight PlanetLab machines
across the Internet, on four continents. In each of these ma-
chines three instances of the logger were started for different
DU sizes: 100kb (a measurement every 5 minutes), 1Mb (a
measurement every 10 minutes) and 10Mb (a measurement
every 30 minutes). These experiments took place during two
months, but the values reported correspond to measurements
done between September 10, 2010 and October 7, 2010.

In the experiments, the local costs, in which the protocols
incur due to the use of cryptography and erasure codes, are
negligible for DEPSKY-A and account for at most 5% of the
read and 10% of the write latencies on DEPSKY-CA.

Reads. Figure 4 presents the 50% and 90% percentile of
all observed latencies of the reads executed (i.e., the values
below which 50% and 90% of the observations fell). The
number of reads executed on each site is presented on the
second column of Table 5.

Based on the results presented in the figure, several points
can be highlighted. First, DEPSKY-A presents the best la-
tency of all but one setups. This is explained by the fact that
it waits for 3 out-of 4 copies of the metadata but only one of
the data, and it usually obtains it from the best cloud avail-
able during the execution. Second, DEPSKY-CA latency is
closely related with the second best cloud storage provider,

 0

 2

 4

 6

 8

 10

 12

Brazil US−PA US−CA New Zealand Japan China Spain UK

R
ea

d
La

te
nc

y
(s

ec
on

ds
)

Client Locations and Setups

90% value
50% value

S3

WA NX

RS
A

CA
S3 WA

NX

RS A
CA

S3

WA

NX

RS A
CA

S3

WA

NX RS
A

CA

S3

WA

NX

RS
A

CA

S3

WA

NX

RS

A

CA

S3
WA

NX

RS

A
CA

S3 WA

NX
RS

A
CA

(a) 100kb DU.

 0

 10

 20

 30

 40

 50

 60

 70

Brazil US−PA US−CA New Zealand Japan China Spain UK

R
ea

d
La

te
nc

y
(s

ec
on

ds
)

Client Locations and Setups

90% value
50% value

S3
WA

NX

RS A
CA

S3

WA

NX

RS A CA
S3

WA NX
RS A CA

S3

WA

NX RS A CA

S3
WA

NX RS A
CA

S3

WA

NX

RS A

CA S3
WA

NX RS
A CA S3 WA NX RS

A CA

(b) 1Mb DU.

 0

 100

 200

 300

 400

 500

 600

 700

Brazil US−PA US−CA New Zealand Japan China Spain UK

R
ea

d
La

te
nc

y
(s

ec
on

ds
)

Client Locations and Setups

90% value
50% value

S3

WA

NX

RS A

CA

S3

WA
NX

RS A CA S3
WA NX

RS A CA

S3

WA NX RS A CA

S3

WA
NX

RS A
CA

S3

WA

NX

RS A

CA

S3 WA
NX RS A

CA S3 WA NX RS A CA

(c) 10Mb DU.

Figure 4. 50th/90th-percentile latency (in seconds) for 100kb, 1Mb and 10Mb DU read operations with PlanetLab clients located on
different parts of the globe. The bar names are S3 for Amazon S3, WA for Windows Azure, NX for Nirvanix, RS for Rackspace, A for
DEPSKY-A and CA for DEPSKY-CA. DEPSKY-CA and DEPSKY-A are configured with n = 4 and f = 1.

since it waits for at least 2 out-of 4 data blocks. Finally, no-
tice that there is a huge variance between the performance
of the cloud providers when accessed from different parts of
the world. This means that no provider covers all areas in the
same way, and highlight another advantage of the cloud-of-
clouds: we can adapt our accesses to use the best cloud for a
certain location.

The effect of optimizations. An interesting observation of
our DEPSKY-A (resp. DEPSKY-CA) read experiments is
that in a significant percentage of the reads the cloud that
replied metadata faster (resp. the two faster in replying meta-
data) is not the first to reply the data (resp. the two first
in replying the data). More precisely, in 17% of the 60768
DEPSKY-A reads and 32% of the 60444 DEPSKY-CA reads
we observed this behavior. A possible explanation for that
could be that some clouds are better serving small files
(DEPSKY metadata is around 500 bytes) and not so good
on serving large files (like the 10Mb data unit of some ex-

periments). This means that the read optimizations of Sec-
tion 3.7 will make the protocol latency worse in these cases.
Nonetheless we think this optimization is valuable since the
rationale behind it worked for more than 4/5 (DEPSKY-A)
and 2/3 (DEPSKY-CA) of the reads in our experiments, and
its use can decrease the monetary costs of executing a read
by a quarter and half, respectively.

Writes. We modified our logger application to execute
writes instead of reads and deployed it on the same machines
we executed the reads. We run it for two days in October and
collected the logs, with at least 500 measurements for each
location and data size. Due to space constraints, we do not
present all these results, but illustrate the costs of write op-
erations for different data sizes discussing only the observed
results for an UK client. The 50% and 90% percentile of the
latencies observed are presented in Figure 5.

The latencies in the figure consider the time of writing the
data on all four clouds (file sent to 4 clouds, wait for only 3

Operation DU Size UK US-CA
DEPSKY-A DEPSKY-CA Amazon S3 DEPSKY-A DEPSKY-CA Amazon S3

100kb 189 135 59.3 129 64.9 31.5
Read 1Mb 808 568 321 544 306 104

10Mb 1479 756 559 780 320 147
100kb 3.53 4.26 5.43 2.91 3.55 5.06

Write 1Mb 14.9 26.2 53.1 13.6 19.9 25.5
10Mb 64.9 107 84.1 96.6 108 34.4

Table 4. Throughput observed in kb/s on all reads and writes executed for the case of 4 clouds (f = 1).

 0

 10

 20

 30

 40

 50

 60

 70

 80

100kb 1Mb 10Mb

W
rit

e
La

te
nc

y
(s

ec
on

ds
)

Data Unit Sizes and Setups

90% value
50% value

S3
WA

NX

RS

A

CA
S3

WA

NX
RS

A CA

S3

WA NX
RS

A

CA

Figure 5. 50th/90th-percentile latency (in seconds) for 100kb,
1Mb and 10Mb DU write operation for a PlanetLab client at the
UK. The bar names are the same as in Figure 4. DEPSKY-A and
DEPSKY-CA are configured with n = 4 and f = 1.

confirmations) and the time of writing the new metadata. As
can be observed in the figure, the latency of a write is of
the same order of magnitude of a read of a DU of the same
size (this was observed on all locations). It is interesting to
observe that, while DEPSKY’s read latency is close to the
cloud with best latency, the write latency is close to the worst
cloud. This comes from the fact that in a write DEPSKY
needs to upload data blocks on all clouds, which consumes
more bandwidth at the client side and requires replies from
at least three clouds.

Secret sharing overhead. As discussed in Section 3.6, if a
key distribution mechanism is available, secret sharing could
be removed from DEPSKY-CA. However, the effect of this
on read and write latencies would be negligible since share
and combine (lines 9 and 31 of Algorithm 2) account for less
than 3 and 0.5 ms, respectively. It means that secret sharing
is responsible for less than 0.1% of the protocols latency in
the worst case2.

Throughput. Table 4 shows the throughput in the exper-
iments for two locations: UK and US-CA. The values are
of the throughput observed by a single client, not by mul-
tiple clients as done in some throughput experiments. The
table shows read and write throughput for both DEPSKY-A
and DEPSKY-CA, together with the values observed from
Amazon S3, just to give a baseline. The results from other
locations and clouds follow the same trends discussed here.

2 For a more compreensive discussion about the overhead imposed by Java
secret sharing see [Bessani 2008].

By the table it is possible to observe that the read through-
put decreases from DEPSKY-A to DEPSKY-CA and then
to S3, at the same time that write throughput increases for
this same sequence. The higher read throughput of DEPSKY
when compared with S3 is due to the fact that it fetches the
data from all clouds on the same time, trying to obtain the
data from the fastest cloud available. The price to pay for
this benefit is the lower write throughput since data should
be written at least on a quorum of clouds in order to complete
a write. This trade off appears to be a good compromise since
reads tend to dominate most workloads of storage systems.

The table also shows that increasing the size of the data
unit improves throughput. Increasing the data unit size from
100kb to 1Mb improves the throughput by an average fac-
tor of 5 in both reads and writes. By the other hand, in-
creasing the size from 1Mb to 10Mb shows less benefits:
read throughput is increased only by an average factor of
1.5 while write throughput increases by an average factor of
3.3. These results show that cloud storage services should
be used for storing large chunks of data. However, increas-
ing the size of these chunks brings less benefit after a certain
size (1Mb).

Notice that the observed throughputs are at least an order
of magnitude lower than the throughput of disk access or
replicated storage in a LAN [Hendricks 2007], but the elas-
ticity of the cloud allows the throughput to grow indefinitely
with the number of clients accessing the system (according
to the cloud providers). This is actually the main reason that
lead us to not trying to measure the peak throughput of ser-
vices built on top of clouds. Another reason is that the In-
ternet bandwidth would probably be the bottleneck of the
throughput, not the clouds.

Faults and availability. During our experiments we ob-
served a significant number of read operations on individual
clouds that could not be completed due to some error. Table
5 presents the perceived availability of all setups calculated
as reads completed

reads tried from different locations.
The first thing that can be observed from the table is that

the number of measurements taken from each location is not
the same. This happens due to the natural unreliability of
PlanetLab nodes, that crash and restart with some regularity.

There are two key observations that can be taken from Ta-
ble 5. First, DEPSKY-A and DEPSKY-CA are the two single
setups that presented an availability of 1.0000 in almost all

Location Reads Tried DEPSKY-A DEPSKY-CA Amazon S3 Rackspace Azure Nirvanix
Brazil 8428 1.0000 0.9998 1.0000 0.9997 0.9793 0.9986
US-PA 5113 1.0000 1.0000 0.9998 1.0000 1.0000 0.9880
US-CA 8084 1.0000 1.0000 0.9998 1.0000 1.0000 0.9996

New Zealand 8545 1.0000 1.0000 0.9998 1.0000 0.9542 0.9996
Japan 8392 1.0000 1.0000 0.9997 0.9998 0.9996 0.9997
China 8594 1.0000 1.0000 0.9997 1.0000 0.9994 1.0000
Spain 6550 1.0000 1.0000 1.0000 1.0000 0.9796 0.9995
UK 7069 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000

Table 5. The perceived availability of all setups evaluated from different points of the Internet.

locations3. Second, despite the fact that most cloud providers
advertise providing 5 or 6 nines of availability, the perceived
availability in our experiments was lower. The main prob-
lem is that outsourcing storage makes a company not only
dependent on the provider’s availability, but also on the net-
work availability. This is a fact that companies moving criti-
cal applications to the cloud have to be fully aware.

6. Related Work
DEPSKY provides a single-writer multi-reader read/write
register abstraction built on a set of untrusted storage clouds
that can fail in an arbitrary way. This type of abstraction
supports an updatable data model, requiring protocols that
can handle multiple versions of stored data (which is sub-
stantially different than providing write-once, read-maybe
archival storages such as the one described in [Storer 2007]).

There are many protocols for Byzantine quorums sys-
tems for register implementation (e.g., [Goodson 2004, Hen-
dricks 2007, Malkhi 1998a, Martin 2002]), however, few of
them address the model in which servers are passive enti-
ties that do not run protocol code [Abraham 2006, Attiya
2003, Jayanti 1998]. DEPSKY differentiates from them in
the following aspects: (1.) it decouples the write of times-
tamp and verification data from the write of the new value;
(2.) it has optimal resiliency (3 f +1 servers [Martin 2002])
and employs read and write protocols requiring two commu-
nication round-trips independently of the existence of con-
tention, faults and weakly consistent clouds; finally, (3.) it
is the first single-writer multi-reader register implementa-
tion supporting efficient encoding and confidentiality. Re-
garding (2.), our protocols are similar to others for fail-prone
shared memory (or “disk quorums”), where servers are pas-
sive disks that may crash or corrupt stored data. In particu-
lar, Byzantine disk Paxos [Abraham 2006] presents a single-
writer multi-reader regular register construction that requires
two communication round-trips both for reading and writing
in absence of contention. There is a fundamental difference
between this construction and DEPSKY: it provides a weak
liveness condition for the read protocol (termination only
when there is a finite number of contending writes) while our
protocol satisfies wait-freedom. An important consequence

3 This is somewhat surprising since we were expecting to have at least some
faults on the client network that would disallow it to access any cloud.

of this limitation is that reads may require several commu-
nication steps when contending writes are being executed.
This same limitation appears on [Attiya 2003] that, addition-
ally, does not tolerate writer faults. Regarding point (3.), it
is worth to notice that several Byzantine storage protocols
support efficient storage using erasure codes [Cachin 2006,
Goodson 2004, Hendricks 2007], but none of them mention
the use of secret sharing or the provision of confidentiality.
However, it is not clear if information-efficient secret shar-
ing [Krawczyk 1993] or some variant of this technique could
substitute the erasure codes employed on these protocols.

Cloud storage is a hot topic with several papers appear-
ing recently. However, most of these papers deal with the
intricacies of implementing a storage infrastructure inside
a cloud provider (e.g., [McCullough 2010]). Our work is
closer to others that explore the use of existing cloud storage
services to implement enriched storage applications. There
are papers showing how to efficiently use storage clouds
for backup [Vrable 2009], implement a database [Brantner
2008] or add provenance to the stored data [Muniswamy-
Reddy 2010]. However none of these works provide guaran-
tees like confidentiality and availability and do not consider
a cloud-of-clouds.

Some works on this trend deal with the high-availability
of stored data through the replication of this data on sev-
eral cloud providers, and thus are closely related with DEP-
SKY. The HAIL (High-Availability Integrity Layer) pro-
tocol set [Bowers 2009] aggregates cryptographic proto-
cols for proof of recoveries with erasure codes to provide
a software layer to protect the integrity and availability of
the stored data, even if the individual clouds are compro-
mised by a malicious and mobile adversary. HAIL has at
least three limitations when compared with DEPSKY: it
only deals with static data (i.e., it is not possible to man-
age multiple versions of data), it requires that the servers
run some code (opposite to DEPSKY, that uses the stor-
age clouds as they are), and does not provide guarantee of
confidentiality of the stored data. The RACS (Redundant Ar-
ray of Cloud Storage) system [Abu-Libdeh 2010] employs
RAID5-like techniques (mainly erasure codes) to implement
high-available and storage-efficient data replication on di-
verse clouds. Differently from DEPSKY, the RACS system
does not try to solve security problems of cloud storage, but
instead deals with “economic failures” and vendor lock-in.

In consequence, the system does not provide any mechanism
to detect and recover from data corruption or confidential-
ity violations. Moreover, it does not provide updates of the
stored data. Finally, it is worth to mention that none of these
cloud replication works present an experimental evaluation
with diverse clouds as it is presented in this paper.

There are several works about obtaining trustworthiness
from untrusted clouds. Depot improves the resilience of
cloud storage making similar assumptions to DEPSKY, that
storage clouds are fault-prone black boxes [Mahajan 2010].
However, it uses a single cloud, so it provides a solution that
is cheaper but does not tolerate total data losses and the avail-
ability is constrained by the availability of the cloud on top
of which it is implemented. Works like SPORC [Feldman
2010] and Venus [Shraer 2010] make similar assumptions
to implement services on top of untrusted clouds. All these
works consider a single cloud (not a cloud-of-clouds), re-
quire a cloud with the ability to run code, and have limited
support for cloud unavailability, which makes them different
from DEPSKY.

7. Conclusion
This paper presents the design and evaluation of DEPSKY,
a storage service that improves the availability and confi-
dentiality provided by commercial storage cloud services.
The system achieves these objectives by building a cloud-of-
clouds on top of a set of storage clouds, combining Byzan-
tine quorum system protocols, cryptographic secret sharing,
erasure codes and the diversity provided by the use of sev-
eral cloud providers. We believe DEPSKY protocols are in an
unexplored region of the quorum systems design space and
can enable applications sharing critical data (e.g., financial,
medical) to benefit from clouds.

The paper also presents an extensive evaluation of the
system. The key conclusion is that it provides confidentiality
and improved availability at a cost roughly double of using
a single cloud for a practical scenario, which seems to be a
good compromise for critical applications.

Acknowledgments
We warmly thank our shepherd Scott Brandt and the Eu-
roSys’11 reviewers for their comments on earlier versions
of this paper. This work was partially supported by the EC
through project TCLOUDS (FP7/2007-2013, ICT-257243),
and by the FCT through the ReD (PTDC/EIA-EIA/109044/2008),
RC-Clouds (PCT/EIA-EIA/115211/2009) and the Multian-
nual and CMU-Portugal Programmes.

References
[Ama 2010] Amazon S3 FAQ: What data consistency model

does amazon S3 employ? http://aws.amazon.com/s3/
faqs/, 2010.

[tcl 2010] Project TCLOUDS – trustworthy clouds - privacy and
resilience for Internet-scale critical infrastructure. http://
www.tclouds-project.eu/, 2010.

[Ehs 2010] UK NHS Systems and Services. http://www.
connectingforhealth.nhs.uk/, 2010.

[Abraham 2006] Ittai Abraham, Gregory Chockler, Idit Keidar, and
Dahlia Malkhi. Byzantine disk Paxos: optimal resilience with
Byzantine shared memory. Distributed Computing, 18(5):387–
408, April 2006.

[Abu-Libdeh 2010] Hussam Abu-Libdeh, Lonnie Princehouse, and
Hakim Weatherspoon. RACS: A case for cloud storage diversity.
Proc. of the 1st ACM Symposium on Cloud Computing, pages
229–240, June 2010.

[Attiya 2003] Hagit Attiya and Amir Bar-Or. Sharing memory with
semi-Byzantine clients and faulty storage servers. In Proc. of the
22rd IEEE Symposium on Reliable Distributed Systems - SRDS
2003, pages 174–183, October 2003.

[Bessani 2008] Alysson N. Bessani, Eduardo P. Alchieri, Miguel
Correia, and Joni S. Fraga. DepSpace: a Byzantine fault-tolerant
coordination service. In Proc. of the 3rd ACM European Systems
Conference – EuroSys’08, pages 163–176, April 2008.

[Bowers 2009] Kevin D. Bowers, Ari Juels, and Alina Oprea.
HAIL: a high-availability and integrity layer for cloud storage.
In Proc. of the 16th ACM Conference on Computer and Commu-
nications Security - CCS’09, pages 187–198, 2009.

[Brantner 2008] Matthias Brantner, Daniela Florescu, David Graf,
Donald Kossmann, and Tim Kraska. Building a database on S3.
In Proc. of the 2008 ACM SIGMOD International Conference
on Management of Data, pages 251–264, 2008.

[Cachin 2006] Christian Cachin and Stefano Tessaro. Optimal
resilience for erasure-coded Byzantine distributed storage. In
Proc. of the Int. Conference on Dependable Systems and Net-
works - DSN 2006, pages 115–124, June 2006.

[Chockler 2009] Gregory Chockler, Rachid Guerraoui, Idit Keidar,
and Marko Vukolić. Reliable distributed storage. IEEE Com-
puter, 42(4):60–67, 2009.

[Chockler 2002] Gregory Chockler and Dahlia Malkhi. Active disk
Paxos with infinitely many processes. In Proc. of the 21st Sym-
posium on Principles of Distributed Computing – PODC’02,
pages 78–87, 2002.

[Feldman 2010] Ariel J. Feldman, William P. Zeller, Michael J.
Freedman, and Edward W. Felten. SPORC: Group collaboration
using untrusted cloud resources. In Proc. of the 9th USENIX
Symposium on Operating Systems Design and Implementation –
OSDI’10, pages 337–350, October 2010.

[Gafni 2003] Eli Gafni and Leslie Lamport. Disk Paxos. Dis-
tributed Computing, 16(1):1–20, 2003.

[Ghemawat 2003] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google file system. In Proc. of the 19th ACM
Symposium on Operating Systems Principles – SOSP’03, pages
29–43, 2003.

[Gibson 1998] Garth Gibson, David Nagle, Khalil Amiri, Jeff But-
ler, Fay Chang, Howard Gobioff, Charles Hardin, Erik Riedel,
David Rochberg, and Jim Zelenka. A cost-effective, high-
bandwidth storage architecture. In Proc. of the 8th Int. Con-

http://aws.amazon.com/s3/faqs/
http://aws.amazon.com/s3/faqs/
http://www.tclouds-project.eu/
http://www.tclouds-project.eu/
http://www.connectingforhealth.nhs.uk/
http://www.connectingforhealth.nhs.uk/

ference on Architectural Support for Programming Languages
and Operating Systems - ASPLOS’98, pages 92–103, 1998.

[Goodson 2004] Garth Goodson, Jay Wylie, Gregory Ganger, and
Micheal Reiter. Efficient Byzantine-tolerant erasure-coded stor-
age. In Proc. of the Int. Conference on Dependable Systems and
Networks - DSN’04, pages 135–144, June 2004.

[Greer 2010] Melvin Greer. Survivability and information assur-
ance in the cloud. In Proc. of the 4th Workshop on Recent Ad-
vances in Intrusion-Tolerant Systems – WRAITS’10, 2010.

[Hamilton 2007] James Hamilton. On designing and deploying
Internet-scale services. In Proc. of the 21st Large Installation
System Administration Conference – LISA’07, pages 231–242,
2007.

[Hendricks 2007] James Hendricks, Gregory Ganger, and Michael
Reiter. Low-overhead byzantine fault-tolerant storage. In Proc.
of the 21st ACM Symposium on Operating Systems Principles –
SOSP’07, pages 73–86, 2007.

[Henry 2009] Alyssa Henry. Cloud storage FUD (failure, uncer-
tainty, and durability). Keynote Address at the 7th USENIX
Conference on File and Storage Technologies, February 2009.

[Herlihy 2003] Maurice Herlihy, Victor Lucangco, and Mark Moir.
Obstruction-free syncronization: double-ended queues as an ex-
ample. In Proc. of the 23th IEEE Int. Conference on Distributed
Computing Systems - ICDCS 2003, pages 522–529, July 2003.

[Hunt 2010] Patrick Hunt, Mahadev Konar, Flavio Junqueira, and
Benjamin Reed. Zookeeper: Wait-free coordination for Internet-
scale services. In Proc. of the USENIX Annual Technical Con-
ference – ATC 2010, pages 145–158, June 2010.

[Jayanti 1998] Prasad Jayanti, Tushar Deepak Chandra, and Sam
Toueg. Fault-tolerant wait-free shared objects. Journal of the
ACM, 45(3):451–500, May 1998.

[Krawczyk 1993] Hugo Krawczyk. Secret sharing made short.
In Proc. of the 13th Int. Cryptology Conference – CRYPTO’93,
pages 136–146, August 1993.

[Lamport 1986] Leslie Lamport. On interprocess communication
(part II). Distributed Computing, 1(1):203–213, January 1986.

[Lamport 1982] Leslie Lamport, Robert Shostak, and Marshall
Pease. The Byzantine generals problem. ACM Transactions on
Programing Languages and Systems, 4(3):382–401, July 1982.

[Liskov 2006] Barbara Liskov and Rodrigo Rodrigues. Tolerating
Byzantine faulty clients in a quorum system. In Proc. of the
26th IEEE Int. Conference on Distributed Computing Systems -
ICDCS’06, July 2006.

[Mahajan 2010] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen
Clement, Lorenzo Alvisi, Mike Dahlin, and Michael Walfish.
Depot: Cloud storage with minimal trust. In Proc. of the 9th
USENIX Symposium on Operating Systems Design and Imple-
mentation – OSDI 2010, pages 307–322, October 2010.

[Malkhi 1998a] Dahlia Malkhi and Michael Reiter. Byzantine
quorum systems. Distributed Computing, 11(4):203–213, 1998.

[Malkhi 1998b] Dahlia Malkhi and Michael Reiter. Secure and
scalable replication in Phalanx. In Proc. of the 17th IEEE
Symposium on Reliable Distributed Systems - SRDS’98, pages
51–60, October 1998.

[Martin 2002] Jean-Philippe Martin, Lorenzo Alvisi, and Mike
Dahlin. Minimal Byzantine storage. In Proc. of the 16th Int.
Symposium on Distributed Computing – DISC 2002, pages 311–
325, 2002.

[McCullough 2010] John C. McCullough, JohnDunagan, Alec
Wolman, and Alex C. Snoeren. Stout: An adaptive interface to
scalable cloud storage. In Proc. of the USENIX Annual Technical
Conference – ATC 2010, pages 47–60, June 2010.

[Metz 2009] Cade Metz. DDoS attack rains down
on Amazon cloud. The Register, October 2009.
http://www.theregister.co.uk/2009/10/05/
amazon_bitbucket_outage/.

[Muniswamy-Reddy 2010] Kiran-Kumar Muniswamy-Reddy, Pe-
ter Macko, and Margo Seltzer. Provenance for the cloud. In
Proc. of the 8th USENIX Conference on File and Storage Tech-
nologies – FAST’10, pages 197–210, 2010.

[Naone 2009] Erica Naone. Are we safeguarding social data?
Technology Review published by MIT Review, http://www.
technologyreview.com/blog/editors/22924/,
February 2009.

[Plank 2007] James S. Plank. Jerasure: A library in C/C++ facili-
tating erasure coding for storage applications. Technical Report
CS-07-603, University of Tennessee, September 2007.

[Rabin 1989] Michael Rabin. Efficient dispersal of information
for security, load balancing, and fault tolerance. Journal of the
ACM, 36(2):335–348, February 1989.

[Sarno 2009] David Sarno. Microsoft says lost sidekick data will
be restored to users. Los Angeles Times, Oct. 15th 2009.

[Schoenmakers 1999] Berry Schoenmakers. A simple publicly ver-
ifiable secret sharing scheme and its application to electronic
voting. In Proc. of the 19th Int. Cryptology Conference –
CRYPTO’99, pages 148–164, August 1999.

[Shamir 1979] Adi Shamir. How to share a secret. Communications
of ACM, 22(11):612–613, November 1979.

[Shraer 2010] Alexander Shraer, Christian Cachin, Asaf Cidon, Idit
Keidar, Yan Michalevsky, and Dani Shaket. Venus: Verification
for untrusted cloud storage. In Proc. of the ACM Cloud Comput-
ing Security Workshop – CCSW’10, 2010.

[Storer 2007] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller,
and Kaladhar Voruganti. Potshards: Secure long-term storage
without encryption. In Proc. of the USENIX Annual Technical
Conference – ATC 2007, pages 143–156, June 2007.

[Vogels 2009] Werner Vogels. Eventually consistent. Communica-
tions of the ACM, 52(1):40–44, 2009.

[Vrable 2009] Michael Vrable, Stefan Savage, and Geoffrey M.
Voelker. Cumulus: Filesystem backup to the cloud. ACM
Transactions on Storage, 5(4):1–28, 2009.

[Vukolic 2010] Marko Vukolic. The Byzantine empire in the
intercloud. ACM SIGACT News, 41(3):105–111, 2010.

[Weil 2006] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proc. of the 7th USENIX
Symposium on Operating Systems Design and Implementation –
OSDI 2006, pages 307–320, 2006.

http://www.theregister.co.uk/2009/10/05/amazon_bitbucket_outage/
http://www.theregister.co.uk/2009/10/05/amazon_bitbucket_outage/
http://www.technologyreview.com/blog/editors/22924/
http://www.technologyreview.com/blog/editors/22924/

Protocols Correctness Proofs
This section presents correctness proofs of the DEPSKY-A
and DEPSKY-CA protocols. The first lemma states that the
auxiliary functions presented in Table 1 are wait-free.

Lemma 1 A correct process will not block executing write-
Quorum or queryMetadata.

Proof: Both operations require n− f clouds to answer the
put and get requests. For writeQuorum, these replies are
just acks and they will always be received since at most f
clouds are faulty. For the queryMetadata, the operation is
finished only if one metadata file is available. Since we are
considering only non-malicious writers, a metadata written
in a cloud is always valid and thus correctly signed using
Kdu

rw . It means that a valid metadata file will be read from at
least n− f clouds and the process will choose one of these
files and finish the algorithm. �

The next two lemmas state that if a correctly signed
metadata is obtained from the cloud providers (using query-
Metadata) the corresponding data can also be retrieved and
that the metadata stored on DEPSKY-A and DEPSKY-CA
satisfy the properties of a regular register [Lamport 1986] (if
the clouds provide this consistency semantics).

Lemma 2 The value associated with the metadata with
greatest version number returned by queryMetadata, from
now on called outstanding metadata, is available on at least
f +1 non-faulty clouds.

Proof: Recall that only valid metadata files will be returned
by queryMetadata. These metadata will be written only by a
non-malicious writer that follows the DepSkyAWrite (resp.
DepSkyCAWrite) protocol. In this protocol, the data value
is written on a quorum of clouds on line 8 (resp. line 14) of
Algorithm 1 (resp. Algorithm 2), and then the metadata is
generated and written on a quorum of clouds on lines 9-12
(resp. lines 15-18). Consequently, a metadata is only put on
a cloud if its associated value was already put on a quorum
of clouds. It implies that if a metadata is read, its associated
value was already written on n− f clouds, from which at
least n− f − f ≥ f +1 are correct. �

Lemma 3 The outstanding metadata obtained on an Dep-
SkyARead (resp. DepSkyCARead) concurrent with zero or
more DepSkyAWrites (resp. DepSkyCAWrites) is the meta-
data written on the last complete write or being written by
one of the concurrent writes.

Proof: Assuming that a client reads an outstanding metadata
m, we have to show that m was written on the last complete
write or is being written concurrently with the read. This
proof can easily be obtained by contradiction. Suppose m
was written before the start of the last complete write be-
fore the read and that it was the metadata with greatest ver-
sion number returned from queryMetadata. This is clearly

impossible because m was overwritten by the last complete
write (which has a greater version number) and thus will
never be selected as the outstanding metadata. It means that
m can only correspond to the last complete write or to a write
being executed concurrently with the read. �

With the previous lemmas we can prove the wait-freedom
of the DEPSKY-A and DEPSKY-CA registers, showing that
their operations will never block.

Theorem 1 All DEPSKY read and write operations are
wait-free operations.

Proof: Both Algorithms 1 and 2 use functions queryMetadata
and writeQuorum. As show in Lemma 1, these operations
can not block. Besides that, read operations make processes
wait for the value associated with the outstanding metadata.
Lemma 2 states that there are at least f + 1 correct clouds
with this data, and thus at least one of them will answer the
RPC of lines 20 and 27 of Algorithms 1 and 2, respectively,
with values that matches the digest contained on the meta-
data (or the different block digests in the case of DEPSKY-
CA) and make d[i] 6=⊥, releasing itself from the barrier and
completing the algorithm. �

The last two theorems show that DEPSKY-A and DEPSKY-
CA implement single-writer multi-reader regular registers.

Theorem 2 A client reading a DEPSKY-A register in paral-
lel with zero or more writes (by the same writer) will read
the last complete write or one of the values being written.

Proof: Lemma 3 states that the outstanding metadata ob-
tained on line lines 16-17 of Algorithm 1 corresponds to
the last write executed or one of the writes being executed.
Lemma 2 states that the value associated with this metadata
is available from at least f +1 correct clouds, and thus it can
be obtained by the client on lines 19-22: just a single valid
reply will suffice for releasing the barrier of line 22 and re-
turn the value. �

Theorem 3 A client reading a DEPSKY-CA register in par-
allel with zero or more writes (by the same writer) will read
the last complete write or one of the values being written.

Proof: This proof is similar with the one for DEPSKY-A.
Lemma 3 states that the outstanding metadata obtained on
lines 22-23 of Algorithm 2 corresponds to the last write
executed or one of the writes being executed concurrently.
Lemma 2 states that the values associated with this metadata
are stored on at least f + 1 non-faulty clouds, and thus a
reader can obtain them through the execution of lines 25-28:
all non-faulty clouds will return their values corresponding
to the outstanding metadata allowing the reader to decode
the encrypted value, combine the key shares and decrypt the
read data (lines 30-32), inverting the processing done by the
writer on DepSkyCAWrite (lines 7-10). �

	Introduction
	Cloud Storage Applications
	The DepSky System
	DepSky Architecture
	Data Model
	System Model
	Protocol Design Rationale
	DepSky-A– Available DepSky
	DepSky-CA– Confidential & Available DepSky
	Read Optimization
	Supporting Multiple Writers – Locks
	Additional Protocols
	Dealing with Weakly Consistent Clouds

	DepSky Implementation
	Evaluation
	Economical
	PlanetLab deployment

	Related Work
	Conclusion

