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Abstract

This chapter presents the fundamentals and applications of the State Machine Replication
(SMR) technique for implementing consistent fault-tolerant services. Our focus here is
threefold. First we present some fundamentals about distributed computing and three
“practical” SMR protocols for different fault models. Second, we discuss some recent
work aiming to improve the performance, modularity and robustness of SMR protocols.
Finally, we present some prominent applications for SMR and an example of the real
code needed for implementing a dependable service using the BEFT-SMART replication
library.

4.1. Introduction

Service replication is a technique in which copies of the service are deployed in a set of
servers instead of in just one. This technique is often used with two objectives: increase
the system performance and capacity or provide fault tolerance. Replication can increase
the service’ performance and capacity since the replicas provide more resources to the
service. Fault tolerance can be achieved with several replicas through the use of spatial
redundancy to the system, making it continue to operate despite the failure of a fraction
of these replicas.

Regarding the maintenance of consistent state in replicated systems, there are
two fundamental approaches: primary-backup (or passive) replication (Alseberg and Day
1976) and state machine (or active) replication (Lamport 1978a). In the primary-backup
replication model there is one primary replica that executes all operations issued by the
clients and, periodically, pushes state updates to the backup replicas. Furthermore, these
replicas keep monitoring the primary to ensure that one of them takes over its role in case
it fails. In the state machine replication model clients issue commands to all replicas,
which execute them in a coordinated way and produce a reply. An important advantage



of this model is that no monitoring or synchronization is required (at least at the service
level), since all replicas are kept synchronized.

In this chapter we present a guided tour to the most important results regarding
the theory and practice of State Machine Replication (SMR) for fault tolerance. During
the next sections we discuss some of the core SMR protocols together with more recent
works in the field and present the main applications for this technique.

A bit of history. The classical “logical clocks” paper by Lamport introduced the notion
of state machine replication (Lamport 1978b), however, the algorithm described in that
paper was not fault-tolerant. The first fault-tolerant state machine replication algorithm
was described in the same year (Lamport 1978a). During the eighties and nighties much
effort has been put on broadcast protocols (Schiper et al. 1991; Hadzilacos and Toueg
1994) and group communication systems (Chockler et al. 2001; Powel 1996), which
can also be used to implement replicated state machines. The fundamental text about
state machine replication is a tutorial by Fred Schneider (Schneider 1990), where the ap-
proach is fully specified without the non-fundamental details about the protocols required
for implementing it. The most well-known state machine replication algorithm is the
Paxos protocol (Lamport 1998). This algorithm, devised in 1989, is quite similar to the
Viewstamped Replication protocol, devised approximately at the same time for database
replication (Oki and Liskov 1988).

In 1999 the first practical Byzantine Fault-Tolerant (BFT) protocol was published (Cas-
tro and Liskov 1999; Castro and Liskov 2002). The key innovation of this algorithm is
the avoidance of public key signatures, which leads it to achieve a performance similar to
non-replicated systems. PBFT started a great interested in BFT replication during the fol-
lowing decade (Yin et al. 2003; Abd-El-Malek et al. 2005; Cowling et al. 2006; Kapitza
et al. 2012; Kotla et al. 2009; Guerraoui et al. 2010), but with little practical adoption up
to this point.

In the last years, the rising of internet-scale services requiring fault tolerance at
their core, renewed the interest in state machine replication (Chandra et al. 2007). Mod-
ern datacenter systems are designed for faults, and SMR can be used for implementing
some fault-tolerant core services in which much larger systems can rely upon. For ex-
ample, Paxos and similar algorithms are being extensively used for implementing stor-
age (Bessani et al. 2013; Bolosky et al. 2011) and coordination (Burrows 2006; Hunt
et al. 2010) systems deployed in these infrastructures.

Chapter Organization. This chapter is organized in the following way. Section 4.2
presents the basic concepts about SMR, discussing some fundamental results in dis-
tributed computing. Section 4.3 describes the three most fundamental protocols for im-
plementing SMR under three important fault models. Section 4.4 discusses some recent
work and extensions proposed to the baseline SMR protocols. Section 4.5 shows some
applications for SMR. Section 4.6 describes a practical library for implementing SMR
applications and shows an example of a service developed using it. Section 4.7 presents
our final remarks.



Through this paper we discuss and present the work we consider most relevant for
developers and researchers interested in devising highly-available services. Naturally, this
choice is highly subjective and by no means exhaustive. There are many other interesting
works and systems either directly related with SMR or in related fields, such as agreement
and broadcast algorithms, database replication, weakly consistent replica maintenance or
datacenter infrastructures, that are also relevant for the reader interested in the area.

4.2. Basic Concepts

This section presents the definition of state machine replication, discussing aspects such
as the system model assumptions and some distributed computing fundamental results
that impact the state machine replication protocols.

4.2.1. State Machine Replication: Definition and Properties

State machine replication is usually defined through a set of clients submitting commands
to a set of replicas behaving as a “centralized” service, or a replicated state machine
(RSM). The implementation of such paradigm requires three properties to hold (Schneider
1990):

e Initial state: All correct! replicas start on the same state;

e Determinism: All correct replicas receiving the same input on the same state pro-
duce the same output and resulting state.

e Coordination: All correct replicas process the same sequence of commands;

In principle, one could argue that the first two requirements are trivial and that the
crux of the problem in implementing RSMs is to provide Coordination. This is reflected
by the fact that most works in the field aims to provide efficient replica coordination pro-
tocols. These protocols implement on its core a fotal order multicast and/or a consensus
algorithm (Hadzilacos and Toueg 1994). However, from a more practical point of view,
Initial State and Determinism are not so simple to ensure. The complexity in satisfying
the former appear in the practical scenarios where replicas crash (or are turned off for
maintenance) and later recover, with a state that is (possibly) outdated when compared
with the other replicas. Determinism, on the other hand, can severely constraint the ser-
vice performance, since it complicates the use of multiple threads and cores (Kapritsos
et al. 2012).

Assuming these three requirements are satisfied by a RSM implementation, the
system must satisfy the following safety and liveness properties:

e Safety: all correct replicas execute the same sequence of operations;

e Liveness: all correct clients operations are executed.

ITo be general enough to accommodate BFT protocols, we consider properties ensured only for correct
replicas, since usually nothing can be said about faulty processes under the Byzantine fault model.



The Safety property allows the implementation of strongly consistent services,
satisfying the consistency property known as Linearizability (Herlihy and Wing 1990).
Although there is a vast literature about weakly-consistent replication (e.g., the CAP the-
orem and its tradeoffs), in this tutorial we focus only on traditional SMR, where Consis-
tency (Safety) is always ensured.

4.2.2. Programming a RSM

Conceptually, the basic programming model of a RSM comprises a set of clients invoking
RPC-like operations to a deterministic service implemented by the system, as illustrated
in Figure 4.1.

IF RSM
execute(operation){
> = //change state
“ reply = invoke(operation); return result;

< E )

Figure 4.1. The basic programming model of a replicated state machine.

This simple model hides two fundamental limitations. First, in order to satisfy
the determinism requirement, the service supported by the replicas is, in principle, single
threaded?. This limitation is specially relevant when considering the large number of
cores present in modern servers. Second, the RSM cannot initiate communication with
clients, being thus limited to answer requests. Consequently, clients need to keep polling
the RSM to discover state changes, which can generate additional load and degrade the
system performance. As will be seen in Section 4.5, practical systems usually break the
modularity between the SMR protocol and the service being implemented to cope with
this limitation.

Besides the usual invoke operation, used for submitting commands to the repli-
cated state machine, it is common for replication libraries to support an additional oper-
ation for invoking read-only operations in the RSM. This separation between read-only
and read-write operations is important because in most SMR protocols the former can be
processed (in principle) without coordination, since the state of the service is not changed.

At the server side, the service code should implement at least four callbacks to
(1) execute an operation, (2) execute a read-only operation, (3) serialize a snapshot of the
service state, and (4) deserialize and update the service state.

There are some solutions for running multithread servers in replicated state machines to ensure the
state evolves deterministically (Kapitza et al. 2010; Kapritsos et al. 2012), but they tend to be conceptually
complex when compared with this basic design.



4.2.3. System Models

SMR protocols are usually defined in terms of a fully connected distributed system in
which each pair of processes communicates through bidirectional channels. This model
is complemented by a set of assumptions defining the failures that can happen in the
system, its synchrony and the cryptographic primitives that are available.

4.2.3.1. Fault Models

One of the key objectives in implementing a service as a RSM is to tolerate faults. Nor-
mally, two kinds of faults are considered for the processes (clients and servers) in a SMR-
based system:

e Fail-stop: A faulty (crashed) process halts and does not execute any further opera-
tions during the system execution;

e Byzantine: A faulty process may behave arbitrarily, i.e., deviating from its algo-
rithm and taking any action.

Most practical systems consider extensions of these models in which a faulty pro-
cess can be recovered and resume its normal execution.

It is also important to define which kind of communication channels errors can
affect the system. The main fault models for channels are:

e Reliable: every message sent will be delivered;
e Unreliable: messages can be modified, generated or dropped;
e Lossy: messages may be lost, but not modified;

e Fair: if a message is resent infinitely often, it will arrive infinitely often.

An important implicit assumption in replicated systems is that correlated failures
will not happen, i.e., that the probability of a replica to fail is statistically independent
from the probability of any other replica of the system to fail (Littlewood et al. 2001). In
practice, this property can be enforced by deploying replicas in different platforms and
locations, relying to different power sources and network infrastructures and by design
diversity through the use of N-version programming (Obelheiro et al. 2006). Furthermore,
when malicious Byzantine faults are considered it is important to apply software diversity
for minimizing the chances of a common bug or vulnerability bring the whole system
down (Garcia et al. 2013; Junqueira et al. 2005).



4.2.3.2. Synchrony

Synchrony assumptions are mostly related with the timing aspects of the system. There
are several synchrony models (Attiya and Welch 2004; Lynch 1996), and in this section
we briefly discuss the three of them that are relevant for discussing practical SMR proto-
cols.

The weakest synchrony model is the asynchronous distributed system (Fischer
et al. 1985; Lynch 1996). In this model, processing and communication have no time
bounds, and there are no physical clocks. Therefore, in this model the notion of time does
not even exists.

On the other end of the synchrony spectrum there are the synchronous distributed
systems (Lynch 1996). In these systems, there are known bounds in terms of processing,
communication and clock error in different processes. This model represents a real-time
system.

An intermediate model that is often considered in practical systems is the partially
synchronous system model (Dwork et al. 1988). This model considers that the system be-
haves asynchronously until a certain (unknown) instant GST (Global Stabilization Time),
in which the system becomes synchronous, respecting some (unknown) processing and
communication time bounds. In practice, the system does not need to be synchronous
forever, but only during the execution of the protocol of interest.

The relevance of the partially synchronous model is that it models the expected
behavior of best-effort networks such as the internet. In these systems, the network is
expected to present a stable behavior (i.e., acting as a synchronous system), but sometimes
can be subject to perturbations that make its behavior unpredictable as in an asynchronous
system.

4.2.3.3. Cryptography

Byzantine fault-tolerant SMR protocols usually consider the existence of authenticated
communication channels, which can only be implemented if either a Public-key infras-
tructure is available for supporting the use of asymmetric cryptography for message sig-
natures or the existence of shared secrets between each pair of processes (which can be
supported by a key distribution center like Kerberos) for enabling the use of Message Au-
thentication Codes (MAC) (Bishop 2002). In both cases, it is always assumed that there
exists a collision-resistant hash function for implementing these primitives (e.g., SHA-
1) and, additionally, a symmetric (e.g., AES) or asymmetric (e.g., RSA) cryptographic
algorithm (Goldereich 2001).

4.2.4. Some Fundamental Results in Distributed Computing

In this section we present five fundamental results from distributed computing theory that
constrains the design space of practical state machine replication protocols.



(R1) Impossibility of reliable communication on top of unreliable channels. One
assumption that simplifies the implementation of distributed algorithms in the message
passing model is the existence of reliable channels, as defined in the previous section.
A reliable channel ¢, , allows a process p to put messages (e.g., through the send(m)
primitive) that will eventually be delivered to a destination process g (e.g., through the
receive(m) primitive).

One fundamental question is how to implement reliable channels in a best-effort
network such as the internet. In principle, one may argue that TCP provides such abstrac-
tion. However, the fact that a TCP connection may be broken even if two communicating
processes are correct implies this is not the case. In the end, TCP is built over a best-effort
protocol (IP), which gives no reliability guarantees.

A fundamental result related with the two generals problem (Akkoyunlu et al.
1975) shows that it is impossible to provide reliable communication on top of unreliable
(i.e., lossy) channels. However, a quite weak assumption about the reliability of the chan-
nel (fair link, described in previous section) makes it possible to implement such desired
property.

In a nutshell, a reliable channel can be implemented on top of a fair channel
through the use of retransmissions and confirmations. More precisely, the sender keeps
sending a message m periodically until it receives an ACK from its destination process,
which will send this confirmation every time it receives m (even if the message is deliv-
ered just once to the upper layers). Additionally, authentication and integrity protection
can be implemented through the use of MACs on the exchanged messages.

(R2) Equivalence between total order and consensus. As already discussed, a funda-
mental requirement for implementing SMR is the coordination of replicas, which requires
that all correct replicas receive the same messages in the same order. Conceptually, sat-
isfying this requirement requires the implementation of a total order multicast (or atomic
multicast) protocol. A fundamental result in distributed computing is the equivalence be-
tween the problem of implementing this kind of communication primitive and solving
consensus (Hadzilacos and Toueg 1994). In the consensus problem, processes propose
some value and try to reach agreement about one value to decide, which must be one of
the proposed values.

This equivalence is important because it shows that the implementation of a RSM
is subject to the same constraints and results of the well-studied consensus problem, which
leads us to our next fundamental result.

(R3) Impossibility of fault-tolerant consensus in asynchronous systems. One of the
most well-known results in distributed computing is the impossibility of achieving (deter-
ministic) consensus in an asynchronous system in which a single process can crash (Fis-
cher et al. 1985). This result is sometimes called the FLP impossibility.

Intuitively, this impossibility comes from the difficulty in identifying crashed pro-
cesses (i.e., detecting faults) in asynchronous systems. More precisely, during the exe-
cution of a consensus protocol, if there is a “step” in which a process p is waiting for a



message from process ¢ in order to decide what to do in the next “step” of the protocol, p
does not know if g crashed or is very slow until the message arrives. If the message does
not arrive, p have to decide if it (1) waits more or (2) assumes ¢ is faulty and proceed
without the message. The FLP impossibility shows, using sophisticated proof techniques,
that this problem (1) can make the consensus protocol never terminate or (2) can lead dif-
ferent processes to decide different values. Making thus impossible to devise a consensus
protocol that satisfies both Termination and Agreement (Fischer et al. 1985).

The impossibility of fault-tolerant consensus in asynchronous systems had a huge
impact both in the theory and practice of replication protocols, opening new avenues for
research in ways to circumvent this result in practical system models.

(R4) Minimum synchrony required for fault-tolerant consensus. After the impossi-
bility of fault-tolerant consensus was published, several researchers tried to circumvent
it. In a seminal work by Dwork, Lynch and Stockmeyer (Dwork et al. 1988) the con-
cept of partial synchrony was defined as an intermediate model between synchronous and
asynchronous systems, and devised algorithms with optimal resilience in this model.

One of the fundamental contributions of this work is to show that by separating
the safety and liveness properties of the protocol, it is possible to solve consensus in
a partially synchronous system model as described in Section 4.2.3. The separation of
liveness and safety was later exploited in all practical agreement protocols (e.g., (Lamport
1998; Castro and Liskov 1999)), which ensure that there will be no safety violations (e.g.,
non-unanimous decisions that lead to conflicts in message delivery ordering) during the
asynchrony periods, but can only terminate if the system behaves synchronously.

(RS) Fault thresholds. Different system models require a different number of processes
to implement consensus and total order broadcast tolerating up to f failures. Table 4.1
presents some results adapted from (Dwork et al. 1988) showing the minimal number of
processors for which a f-resilient consensus protocol exists. In the table we consider the
synchronous and partially synchronous system models for crash, Byzantine and authenti-
cated Byzantine failures®. These results reflect the exact number of replicas a f-resilient
RSM must contain in order to implement replica coordination. We complement these
results with the minimal number of replicas required to execute commands after it is de-
livered in total order, i.e., the number of replicas that are required to execute a command
to enable the client to receive a correct result despite the occurrence of up to f failures.

As can be seen in the table, when considering the practical partially synchronous
system model, the number of replicas required for ordering messages is 2f + 1 in a crash-
prone system (as used, for example, in the Paxos protocol (Lamport 1998)), while 3 f + 1
replicas are required for tolerating Byzantine faults. However, once the total order is
established, f less replicas are required to execute the operations in both fault models. In
Section 4.4.2 we show how this result was used in practical SMR architectures.

3In the authenticated Byzantine model replicas can suffer Byzantine faults but messages are signed and
thus impersonations can be easily detected (Lamport et al. 1982).



Failure type H Synchronous ‘ Partially synchronous ‘ Replicated Execution

Fail-stop f+1 2f+1 f+1
Authenticated Byzantine f+1 3f+1 2f+1
Byzantine 3f+1 3f+1 2f+1

Table 4.1. Fault thresholds considering consensus in two system models and
replicated execution of operations.

4.3. Baseline Protocols

In this section we describe three core protocols for implementing RSM in different fault
models. These protocols were chosen because they work under practical assumptions and
are optimal in terms of number of replicas and number of communication steps without
weakening the safety and liveness properties of SMR.

As described before, the main challenge in implementing RSMs is to ensure that
the operations requested by clients are executed in the same order at all replicas in spite of
concurrency and failures (Section 4.2.1). All the protocols described in this section solve
this problem by relying on a leader replica (sometimes called sequencer or primary*) to
assign the order for client requests while the other replicas verify and accept the order
defined by the leader. This approach has been proved to be the most interesting in prac-
tical scenarios, since it results in a simple ordering protocol for cases when the leader is
correct and the system is under a period of synchrony (this is the expected normal case).
However, if the leader is faulty (or suspected to be faulty), these protocols allow a differ-
ent replica to become the leader, which is chosen through a view change protocol. The
election is based on the number of the view, which starts in 0 and is increment during
each view change (the leader of view v is the replica v%n). Moreover, a faulty replica that
recovers is reintegrated in the system through a recovery protocol. All protocols are ex-
plained considering these three subprotocols, together with some specific optimizations.
We conclude this section with some general optimizations and extensions that can be
applied to more than one of these protocols.

System Model. All protocols assume a partially synchronous system model in which all
replicas communicate through fair channels. There are is unbounded number of clients
and n replicas with unique identifiers. A unknown number of clients and up to f replicas
may be faulty. Furthermore, faulty replicas can recover and resume processing in the
system.

4.3.1. Paxos and Viewstamped Replication

Most practical crash fault-tolerant replicated state machines are built around the Paxos
agreement algorithm (Lamport 1998). Since the original Paxos describes only a consen-
sus protocol (Synod) and an algorithmic framework for maintaining synchronized repli-
cas with minimal assumptions (called Multi-Paxos), we focus here on the description of

“Not to be confused with the primary replica in a primary-backup system. In this case the primary is
used only for ordering requests, which are executed by all replicas.



Viewstamped Replication (VR), a similar (but more concrete) protocol devised indepen-
dently at the same time by Oki and Liskov (Oki and Liskov 1988; Liskov and Cowling
2012).

The relevance of Paxos/VR comes from the fact this algorithm has served as the
foundation for many recent replicated (consistent and fault-tolerant) data stores, coor-
dination and configuration management systems (e.g., Apache’ Zookeeper (Hunt et al.
2010)), experimental block-based data stores or virtual discs (Lee and Thekkath 1996;
Rao et al. 2011; Bolosky et al. 2011; Bessani et al. 2013), and even wide-area replicated
databases, such as Google Spanner (Corbett et al. 2012). Many of these applications will
be discussed later in Section 4.5. As a consequence, this protocol is considered a de-facto
standard for implementing strongly consistent crash fault-tolerant services.

Fault Model. Paxos/VR requires n = 2f + 1 replicas, in which up to f can be subject to
crash faults. The rationale for this threshold is the following. The system has to be able
to execute a request without waiting for f replicas, since these replicas may be crashed
and do not send responses. However, the f replies that are not considered might merely
be from processes that are slow (e.g., due to a network congestion), and f processes that
replied may subsequently fail. In order to ensure safety, the protocol must ensure that,
even if these f replicas fail, there will be at least one replica that processed the request
and that will participate in other protocol executions. This implies that any two quo-
rums of replicas accessed in the protocol must intersect in at least in one correct replica.
Consequently, each step of the protocol must be processed by a quorum of at least f+ 1
replicas that, together with the other f replicas that may not reply, compose then =2 f + 1
requirement.

Normal Case. Figure 4.2 illustrates the messages exchanged in Paxos/VR for an update
operation (a client request that modifies the application state) when the leader is correct
and the system is in a synchrony period. The protocol works as follows:

1. The client sends a Request with the operation to be executed to the leader replica;

2. The leader chooses a sequence number i for the received request, writes it to its
log, and disseminates the request and its sequence number to all other replicas in a
PREPARE message;

3. If the replicas did not assign any other request to sequence number i, they accept
the leader proposal and write the update (request plus sequence number) to their
log, replying with a PREPARE-OK message to the leader;

4. The leader waits for f confirmations from other replicas and then executes the re-
quest and sends the Reply to the client. This ensures that a majority of the replicas
have the request in their logs and, consequently, the request will be visible even if
the leader fails;



5. Normally, the leader informs the other replicas about this request execution in the
next PREPARE message, making them also execute the client request for updating
their states, without sending a reply to the client.

Request Reply

c —>
leader \ PREPARE PREPARE- OK /

O \ // )
1 \ / ]

2

y

Figure 4.2. Viewstamped Replication normal case protocol.

If a client does not receive a reply for a request within a given time period, it re-
sends the request to all replicas, ensuring that it reaches a possible new leader (see below).
Client requests are ignored by non-leader replicas.

When compared with the original Paxos for implementing RSMs (Multi-Paxos) (Lam-
port 1998), VR presents two subtle “improvements”. First, in Paxos the leader sends an
explicit COMMIT message to make the other replicas learn that the request can be ex-
ecuted. Second, since Paxos explicitly considers the durability of the service (see Sec-
tion 4.4.2), all accepted PREPARE messages are logged in stable storage. Figure 4.3
illustrates these two differences.

Request Reply

c —>
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Figure 4.3. (Multi-)Paxos normal case protocol.

Optimizations. Read-only operations can be executed directly by the leader without
contacting the other replicas. Furthermore, if the replicas need to learn that the client
request was executed, instead of having the explicit COMMIT message as in classical
Paxos, they can send the PREPARE-OK messages to all other replicas, and each replica
can execute the request if it receives f of these messages (and the PREPARE from the
leader). Figure 4.4 illustrates this version of the protocol.

View Change. If the leader fails, messages will not be ordered and the system will stop
executing client requests. To recover from this situation, non-leader replicas monitor the
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Figure 4.4. Fast execution in Viewstamped Replication.

leader and if they suspect® that it is faulty, a new leader is elected to ensure the algorithm
makes progress. Figure 4.5 shows the messages exchanged to choose and initialize a new
leader:

1. A replica that suspects the leader is faulty sends a START-VIEW-CHANGE mes-
sage to all other replicas asking for a view change;

2. Each replica that receives this message sends a DO-VIEW-CHANGE message with
its log to the new leader;

3. The new leader waits for f + 1 of these messages, updates its log with the requests
in all received logs, sends a START-VIEW message with its log to other replicas
and starts to accept new client requests;

4. All replicas that receive the START-VIEW message synchronize their logs with
the new leader and, if there exists some non-prepared request in the log, send a
PREPARE-OK message to it ensuring that pendent requests will be executed.

crashed
leader START-VIEW-CHANGE START-VIEW

 — P e e e - >
new )
leader timeput // . 3 /
1 * DO-VIEW-CHANGE >
2 w S N

Figure 4.5. Viewstamped Replication view change protocol.

The rationale behind this protocol is that in order for a request to be executed,
it must be in the log of at least f 4 1 replicas. Consequently, the order assigned for a
request is preserved by the view change protocol since the new leader collects f + 1 logs
(by quorum intersection properties, at least one log contains the request).

>There might be false suspicious due to the asynchrony of the system.



Recovery. When a replica restarts after a crash, it cannot participate in request process-
ing and view changes until it has a state at least as recent as when it failed. For example, if
a replica forgets that it prepared some request, this information might be known to fewer
than f 4 1 replicas and, consequently, this request could be lost in a view change even if
it was executed.

A simple implementation of recovery is by storing the request log in the disk
before sending messages in a way that it could retrieve its state from it (the replica will
not forget anything that was done before). However, this approach (which is used in
Paxos) may add a non-negligible overhead in the normal case execution due to the high
latency of stable storage access. VR uses the following recovery protocol that does not
need disk accesses:

1. The recovering replica sends a message to all other replicas asking for the current
state;

2. Each replica sends a reply with its log, among other information (Liskov and Cowl-
ing 2012);

3. The recovering replica waits for f + 1 of such messages,® including one from the
current leader it discovered from the received messages. Then, it updates its state
from the received leader log. At this point the replica is recovered and can resume
execution.

4.3.2. PBFT and Byzantine Paxos

PBFT (Castro and Liskov 1999; Castro and Liskov 2002) is the first BFT protocol that
achieved a performance similar to its crash fault-tolerant counterparts. Like Paxos and
VR, it uses a combination of primary and backup replicas to order and execute requests:
the primary (also called leader) assigns sequence numbers to requests, while the backups
check these numbers for consistency and monitor the primary to detect when it stops or
misbehaves.

Fault Model. PBFT requires n = 3f 4 1 replicas, in which up to f can be subject to
Byzantine faults. The rationale for this threshold is similar to VR, but adapted for Byzan-
tine failures. The system has to be able to execute a request without waiting for f replicas,
since these replicas may be faulty and do not send responses. However, the f replies that
are not considered in the execution might merely be from processes that are slow (e.g.,
because of network congestion), and f processes that replied may be malicious (we can
not trust on their responses). In order to ensure safety, the protocol must be executed in
a way that these f responses from malicious replicas are masked. Furthermore, to ensure
a processed request will be seen in case of failures, it is required that each two quorums
intersect in at least f + 1 replicas, i.e., with at least one correct replica. Consequently,
each step of the protocol must be processed by at least 2f + 1 replicas. These 2f + 1
replicas together with the f that may not respond define the 3f 41 threshold.

®The recovering replica is considered faulty until it finishes the recovery protocol.



Normal Case. Figure 4.6 shows the messages exchanged in PBFT for executing a
client-issued operation when the leader is correct and the system is under a synchrony
period.

A key feature of PBFT is the use of MAC vectors instead of digital signatures for
achieving message authentication’ (Castro and Liskov 2002). This enables the protocol to
achieve a performance comparable to crash fault-tolerant protocols. The protocol works
as follows:

1. The protocol begins with a client sending a request m to all replicas;

2. The leader replica then sends a PRE-PREPARE message to all replicas assigning a
sequence number i to m;

3. Areplica accepts a PRE-PREPARE message if the leader proposal is good, i.e., the
authenticity of m is verified® and no other PRE-PREPARE message was accepted
for the sequence number i;

4. When a replica accepts a PRE-PREPARE message, it sends a PREPARE message
with m and i to all servers;

5. When a server receives (%} PREPARE messages with the same m and i, it marks

m as prepared and sends a COMMIT message with m and i to all servers;

6. When a server receives [#1 COMMIT messages with the same m and i, it com-

mits m, i.e., accepts that request m is the i-th request to be executed;

7. Once a server executed all requests with lower sequence number, it executes m and
sends a reply to the client;

8. The client waits for f 4 1 matching replies for the request and completes the oper-
ation.
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Figure 4.6. PBFT normal case protocol.
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7If a message is sent only to one destination, it uses only one MAC instead of a vector of MACs.
8A replica i can authenticate m if the MAC for i in the vector of MACsS of m is correct, or i has received
f+ 1 PRE-PREPARE or PREPARE messages for m.



When comparing PBFT with VR/Paxos it is possible to see that besides using f
additional replicas, it also requires one extra communication step. In fact, the PREPARE
phase is employed for the non-leader replicas to verify if the leader made a consistent
proposal in its PRE-PREPARE message. Furthermore, just like in VR/Paxos, while the
PREPARE phase of the protocol ensures that there cannot be two prepared messages for
the same sequence number i (two quorums of 2 f + 1 replicas will intersect in at least one
correct replica), the COMMIT phase ensures that a message committed with sequence
number i in a correct replica will keep this sequence number even if the normal phase is
interrupted by a view change.

Optimizations. Besides the use of MAC vectors instead of digital signatures, the PBFT
protocol can also be made even more efficient under the assumption that failures, concur-
rency and asynchrony are rare in the system.

e Read-only requests: these requests generally do not require ordering because they
do not change the replica state. All replicas can immediately reply to the client, that
completes the read if it receives 2 f + 1 matching replies (instead of f + 1 - even for
the ordering protocol) to ensure linearizability (Herlihy and Wing 1990). Otherwise
(due to faulty replicas or concurrency), the client retransmit the request using the
normal protocol.

e Tentative execution: replicas can tentatively execute a request when it is prepared
and they have committed all requests with lower sequence number, reducing the
protocol latency from 5 to 4 communication steps. The client needs to wait for
2f + 1 matching replies from different replicas to be sure that the execution order
will eventually commit. If the client does not receive these replies and a timer
expires, it resends the request without asking for tentative execution.

View Change. When the leader is suspected to be faulty, a new leader must be elected
through the view change protocol. When a new leader is elected, it collects the protocol
state from (#1 replicas and propagates this information to the new view. The proto-
col state comprises information about accepted, prepared and committed requests. This
information allows the new leader to verify if some request was already committed with
some sequence number. Then, the new leader continues to order requests ensuring that
if a request m was already committed with sequence number i by some correct replica
in the previous view, it must propose i as the sequence number for m in the new view.

Consequently, even with leader failures, the safety of the protocol will still hold.

View changes are triggered by a timeout: when a non-leader replica receives a
client request, it starts a timer. When the request is committed, the timer is stopped. If
the timer expires before this, the replica suspects that the leader is faulty and starts a
view change. The messages exchanged in PBFT for a view change, described below and
represented in Figure 4.7, also use vectors of MACs for authentication”.

They correspond to the signature-free protocol from (Castro and Liskov 2002), not the original one
which requires signatures on view changes (Castro and Liskov 1999).



1. When a replica suspects that the leader is faulty, it sends a VIEW-CHANGE mes-
sage to all replicas. This message contains information about accepted, prepared
and committed requests;

2. When a replica receives a VIEW-CHANGE message, it sends to the leader of the
next view a VIEW-CHANGE-ACK message containing a digest of the received
VIEW-CHANGE message;

3. The new leader only considers a VIEW-CHANGE message if it receives 2f — 1
VIEW-CHANGE-ACK messages for it. These VIEW-CHANGE-ACK messages
are used for building a certificate that proves the VIEW-CHANGE message au-
thenticity;

4. After receiving enough information to start a new view (it may be necessary to wait
VIEW-CHANGE messages from all correct replicas), the new leader starts a new
view and sends a NEW-VIEW message to all other replicas. This message contains
all the information necessary to start the next view;

5. Once areplica receives the NEW-VIEW message, it starts the next view if the infor-
mation on the message is correct (Castro and Liskov 2002). Otherwise, the replica
starts another view change.
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Figure 4.7. PBFT view change protocol.
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Recovery. The PBFT recovery protocol comprises several steps, some of them related
with the execution of proactive recovery for bounding the effect of malicious faults in the
system (Castro and Liskov 2002). In this section we present a simple adaptation of this
protocol for the case when a replica crashes and recovers and then tries to integrate itself
back in the system.

The recovery is done in two steps. The recovering replica first tries to discover
which is the most recent sequence number i committed in the system. This can be done by
listening to the messages exchanged in the system or actively probing the other replicas.
When this number is discovered, the replica disseminates a FETCH request asking for the
log of processed requests up to i. When a replica receives this message, it replies with the
requested state. The recovery replica installs the new state and resumes operation only
when it receives f + 1 matching states from other replicas. For a more in depth discussion
of this kind of state transfer protocol, please refer to (Bessani et al. 2013).



4.3.3. MinBFT and the use of Trusted Components

MinBFT (Veronese et al. 2013) is a BFT SMR protocol that requires the same number of
replicas and communication steps as VR/Paxos (Section 4.3.1). This is achieved through
the use of small trusted components in a replica, under a hybrid fault model (Verissimo
et al. 2003). By employing fewer replicas, MinBFT reduces the costs in hardware, soft-
ware and administration. Reducing the communication steps makes the system perform
better, especially in wide-area networks, where latencies are significantly higher.

Fault model. MinBFT requires n = 2f 4+ 1 replicas, in which up to f can be subject to
Byzantine faults. However, each replica is equipped with a small trusted component that
cannot be compromised, even in faulty replicas, being thus subject only to crash faults.
This component, called USIG (Unique Signed Identifier Generator), implements a trusted
counter that can be used to ensure that malicious replicas do not send conflicting mes-
sages. The USIG provides the following interface to the replica (Veronese et al. 2013):

e createUI(m) —returns a USIG certificate that contains a unique identifier UI and
certifies that this Ul was created by this tamperproof component for message m.
The unique identifier is essentially a reading of the USIG monotonic counter, which
is incremented whenever createUT is called.

e verifyUI(PK,Ul,m) — verifies if the unique identifier UI is valid for message m,
i.e., if the USIG certificate matches the message and the rest of the data in Ul.

In the MinBFT paper this component is implemented in two ways: (1) using an
isolated virtual machine in each physical replica and (2) using a Trusted Platform Module
(TPM) chip. (1) provides better performance but requires trust in the VM software stack,
while (2) presents a sufferable performance, but is based on a secure chip that is com-
monly available in modern machines. Solution (2) is considered more secure because the
keys and the security functionality are stored in a dedicated co-processor, separated from
the main system, with hardware-enforced isolation. More recently, a FPGA-based im-
plementation of a trusted component similar to the USIG was shown to achieve excellent
performance (Kapitza et al. 2012) without sacrificing strong security.

Normal Case. MinBFT has only two communication steps, not three like PBFT (Sec-
tion 4.3.2), with a message pattern (illustrated in Figure 4.8) very similar to VR with fast
execution (see Figure 4.4). The following steps are executed in the normal case of the
protocol:

1. The client sends a signed request to all replicas;

2. The leader assigns a sequence number (execution order number) to the request and
sends it to all replicas in a PREPARE message. The assigned sequence number is
the counter value in an U/ returned by the USIG service (through the createUI op-
eration), thus the leader can not repeat or assign arbitrarily higher sequence number
to a request;



3. Upon the reception of a PREPARE message from the leader, other replicas verify
the associated U/ (using the verifyUI operation) and sends a COMMIT message
to all other replicas. In order to constraint the actions of malicious replicas, these
messages also carry a unique identifier returned by the USIG service to ensure
malicious replicas are not allowed to send conflicting COMMIT messages;

4. When a replica receives f + 1 COMMIT messages for a request, it executes the
request and sends a reply to the client;

5. The client waits for f + 1 matching replies for the request to completes the opera-
tion.

Notice that during the normal execution of the protocol, each correct replica needs
to create exactly U/, but only the Ul created by the leader defines the order of the re-
quest (Veronese et al. 2013).
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Figure 4.8. MinBFT normal case execution. The “chip” symbol represents the
creation of an UI by the USIG.
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View Change. When f + 1 replicas suspect that the leader is faulty, a view change
protocol is executed in order to select a new leader. As with previous protocols, view
changes are triggered by a timeout: when a non-leader replica receives a client request,
it starts a timer. When the request is executed, the timer is stopped. If the timer expires
before this, a backup replica suspects that the leader is faulty and starts a view change,
which works in the following way (illustrated in Figure 4.9):

1. When the timer for a request expires in some replica, it asks for a view change by
sending a REQ-VIEW-CHANGE message to all other replicas;

2. When a replica receives f + 1 of such messages, it moves to the next view and
sends a VIEW-CHANGE message to all other replicas, informing the last request
executed in the previous view. To prevent faulty replicas from sending different
VIEW-CHANGE messages to different replicas, these messages also carries an
unique identifier returned by the USIG service;

3. When the new leader receives f+ 1 VIEW-CHANGE messages, it defines the initial
state for the next view from the information received and sends a NEW-VIEW
message to all other replicas (this message carry a certificate generated from the
VIEW-CHANGE messages received and an unique identifier returned by the USIG
service);



4. When a replica receives a NEW-VIEW message with a valid certificate it starts the
next view.
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Figure 4.9. MinBFT view change protocol.

A4 >

Recovery. The original MinBFT protocol does not assume replicas can recover. In prin-
ciple, it is possible to apply the same ideas as in the PBFT recovery protocol, however,
additional care must be taken to ensure that the recovered replica discovers the next ex-
pected U counter value for each other replica before resuming the normal case operation.

4.3.4. Optimizations and Extensions

In the following we briefly describe two general optimizations and an additional protocol
that can be integrated to any of the baseline protocols presented in this section.

Batching. In order to amortize the cost of executing the ordering protocol for each op-
eration requested by clients, the protocols can be used to order batches of requests that,
once ordered, are delivered in a deterministic order in each replica. This optimization can
be applied in all three protocols and may lead to significant performance improvements
when there are many clients and requests are small.

Digest replies. This optimization makes sense only for BFT protocols, in which clients
need to receive multiple matching replies for tolerating faulty replicas. The key idea here
1s, instead of all replicas sending the reply for a request, the client can choose just one of
the replicas to send the reply while the others send only a digest of the reply for voting
the result. If the received reply is wrong, the client can ask for a (full) reply from other
replicas (Castro and Liskov 1999).

Reconfiguration. Reconfiguration is the process of changing the set of replicas that
comprise the SMR system. This kind of protocol is important to ensure failed replicas
can be replaced at runtime. Through reconfigurations, the system moves from some con-
figuration (a set of replicas) to another updated configuration. Although the original paper
on the Paxos protocol already defined a method for reconfiguring a replicated state ma-
chine (Lamport 1998), only recently this kind of protocol gained more attention (Lee and
Thekkath 1996; Lorch et al. 2006; Lamport et al. 2010; Liskov and Cowling 2012).



The simplest way to implement reconfigurations is by using the replicated state
machine itself (running an old configuration) to specify the new configuration, making all
replicas agree about what to change (Lamport 1998; Lamport et al. 2010). Following this
approach, when a reconfiguration is required, a special reconfiguration request is issued
to the RSM . This request goes through the ordering protocol as a normal client request,
in a way that every replica will execute it in the same order. A replica that executes the
reconfiguration request does not change the application state, instead it goes to the next
configuration. Consequently, the reconfigurable system can be seem as a sequence of
replicated state machines (RSMy,RSM1,...RSM,,), where both the configuration and the
initial state of RSM;, | is defined by RSM,;.

4.4. Extensions and Recent Work

This section presents some extensions proposed to the SMR baseline protocols. Beyond
trying to optimize the latency of replication allowing its execution in a wide-area, these
extensions aim to improve performance, modularity and robustness of SMR protocols.

4.4.1. Improving Performance

The many flavors of Paxos. There are many extensions and optimizations proposed to
the Paxos/VR algorithm. Here we cite two examples. Fast Paxos (Lamport 2006) is a
version of Paxos in which commands can be committed in two communication steps if
there are no concurrent updates being executed. Ring Paxos (Marandi et al. 2010) is a
recent protocol that exploits the characteristics of IP multicast networks for implementing
efficient replica coordination (i.e., total order multicast) in this environment.

Beyond PBFT. After the publication of PBFT, several other works devised new pro-
tocols (Abd-El-Malek et al. 2005; Cowling et al. 2006; Kotla et al. 2009) that present
improved performance under certain conditions. Although these protocols were designed
for tolerating Byzantine faults, the ideas employed here can be easily adapted for algo-
rithms tolerating only crashes.

The first of these algorithms is Q/U (Abd-El-Malek et al. 2005), a pure quorum-
based protocol which executes updates in one roundtrip under certain conditions and
achieves better scalability with big replica groups. Since this cannot be done ensuring
wait-freedom, the approach sacrifices liveness: an operation is guaranteed to terminate
only if there is no other operation executing concurrently on the same object. The main
benefit of Q/U is its fault-scalability: it attains high throughput even when the number of
faults tolerated is high. Moreover, since only basic quorum protocols are employed, the
Q/U protocol has linear message complexity and small expected latency (two communi-
cation steps) when there is no contention or failures. The drawback of this approach is
that it requires n > 5f + 1 replicas and provides only Obstruction-freedom (Herlihy et al.
2003), a weaker termination condition than wait freedom (Herlihy 1991).

HQ-Replication was the first known protocol to integrate pure read/write quo-

190nly a subset of clients might be authorized to ask for reconfigurations, separating this interface from
the one used for normal client requests.



rum protocols with total-order broadcast for implementing efficient state machine repli-
cation (Cowling et al. 2006). The basic idea is to use only quorum protocols when there
is no contention in an object access and agreement protocols to resolve situations of con-
tention. In HQ, a process reads and updates, respectively, in two (four when write-back is
needed) and four communication steps in contention-free executions. When contention is
detected (in reads too, due to the write-back), the system uses the PBFT protocol to order
contending requests. This contentious resolution protocol adds great latency to the pro-
tocol, reaching more than ten communication steps even in synchronous and failure-free
executions.

Kotla et al proposed Zyzzyva, a speculative BFT state machine replication that
can order requests in only three communication steps (Kotla et al. 2009). This protocol
uses the result from Martin and Alvisi (Martin and Alvisi 2006) in the following way:
after receiving a proposal from the leader, the replicas speculatively execute the client
request and send the response to the client, which act as a learner. The client receives
responses from the servers and knows if the result was correct, but a server does not
known if its update is in accordance with other servers until a explicit commit is received.
Such commit is exchanged by the replicas periodically. If the received replies match, the
operation is concluded, otherwise a recovery procedure (that may lead to a view change)
is triggered by the client.

The server state is called speculative since they do not know if the other servers
are processing the same operation in the same order. Consequently, they need to store the
previous state to be rolled back if some inconsistencies are found during the speculative
execution. The resulting protocol executes very efficiently in synchronous environments
when there are no faults, requiring only three communication steps with linear message
complexity. However, there are two fundamental drawbacks in the approach. First, specu-
lation may be difficult to implement in some systems in which executed commands cannot
be undone. Second, a client needs to wait for n = 3f 4 1 speculative replies, instead of
the f+ 1 or 2f + 1 replies waited in PBFT. This can be a problem in wide area networks.

4.4.2. Modularity

Protocol Composition. Guerraoui et al. (Guerraoui et al. 2010) proposed ABSTRACT,
a composable subprotocol abstraction that allows the integration of optimizations, such
as the ones introduced in HQ, Q/U and Zyzzyva, in a modular way in a conservative pro-
tocol such as PBFT. More precisely, ABSTRACT allows the composition of abortable
subprotocols that execute successfully only if some optimistic properties are satisfied in
the execution, aborting otherwise. For example, a Zyzzyva-like subprotocol would suc-
ceed only if there are no faults in the system and if the execution is synchronous. If some
of these conditions are not satisfied the protocol aborts and gives to the client a proof that
something went wrong. This proof can potentially be used to initiate another subprotocol
that deals with faults or asynchronous executions.

Using this abstraction, a novel BFT SMR protocol called Aleph was proposed.
Aleph is composed of three subprotocols, as described in Figure 4.10. Clients start using
a Quorum subprotocol that is latency-optimal and works only if there is no contention.
When contention is detected, Quorum aborts and a new subprotocol called Chain enters in



operation. Chain is ring-like protocol that is throughput-optimal as long as the execution
is synchronous and there are no faults. If one of these conditions is not satisfied, Chain
aborts and the non-abortable Backup subprotocol is used. Backup implements PBFT with
some minor additions for compatibility with other protocols.
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Figure 4.10. Aleph in action.

The notion of integrating subprotocols devised in this work is quite powerful and,
although proposed in the context of general Byzantine fault tolerance, can be used in
other fault models as well. For example, Kapitza et al (Kapitza et al. 2012) introduced the
CheapBFT protocol for efficiently tolerating Byzantine faults in systems in which replicas
are equipped with a trusted component. This protocol requires only f + 1 active replicas
in synchronous and faulty-free executions plus f passive replicas. However, this protocol
may abort and the system uses the full set of 2 f + 1 replicas to run the MinBFT protocol,
in the same way as Aleph uses PBFT as Backup.

A similar approach to Aleph or CheapBFT could also be applied to crash fault-
tolerant protocols, using Paxos/VR as a non-abortable Backup protocol.

Separating Agreement from Execution. In a classical RSM, a client application in-
vokes an operation that is sent to one or more replicas that (1) reach agreement about the
ordering of the operation and (2) execute the command, sending the reply to the client.

The last row of Table 4.1 shows that in a partially synchronous distributed systems
with Byzantine faults, 3 f 4 1 replicas are required to implement replica coordination, but
only 2f + 1 replicas are needed to execute the requests!'. Yin et al (Yin et al. 2003)
exploited this idea and proposed the separation of the system in two different layers of
servers: agreement and execution. The agreement layer, with 3 f 4 1 servers, is responsi-
ble for ordering requests and send them to the execution layer in total order, with 2 f + 1
servers, that execute the request and send back a reply to the agreement layer that relay it
to the clients that invoked the operations. This architecture is illustrated in Figure 4.11.

This methodology has two main benefits. First, it reduces the amount of resources
required for implementing application servers (disk, memory and CPU), since now the
service code needs to be deployed in 2f + 1 servers. Second, it allows the use of the same
ordering layer as an ordering service (Kapritsos and Junqueira 2010), which can be used
by many replicated applications.

1A similar observation can be made about crash faults on the first row of the table, and thus similar
optimizations can be implemented in this fault model.
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Figure 4.11. The separation of agreement and execution in different server layers.

Two more recent works extended the separation in different directions. Wood et al
proposed a system called ZZ which exploits hypervisor technology for using only f+ 1
execution replicas synchronous and fault-free executions (Wood et al. 2011). When such
conditions do not hold, f extra replicas are started as virtual machines and used just like in
(Yin et al. 2003). Notice this approach works very well in modern cloud settings (where
VMs are the norm) under the assumption that the cloud manager is trusted, i.e., under the
assumption that it is possible to start non-compromised correct VMs when needed.

Another work that refines the separation of layers in RSMs was done within the
context of the UpRight replication library (Clement et al. 2009a). This work proposes the
division of agreement layer in two layers: request quorum and order. The request quorum
layer (or stage, as it is called in the paper), which requires 2 f 4- 1 servers and is responsible
to (1) validate client requests and (2) separate the data path from the control path. The
benefit of (1) is to avoid corner cases related with the presence of Byzantine clients while
the big advantage of (2) is to avoid sending (big) requests to the ordering layer. (2) is of
particular importance since agreement protocols are quite sensitive to request size. For
instance, BFT-SMaRt (which will be described in Section 4.6) can order almost 79000
100B-requests/sec, but less than 17000 1kB-requests/sec (Bessani et al. 2014).

Durability. One feature commonly required in practical SMR-based systems is the
Durability of replicated services. Durability is defined as the capability of a SMR system
to survive the crash or shutdown of all its replicas, without losing any operation acknowl-
edged to the clients. Its relevance is justified by the need for planned maintenance actions
and also by the many examples of significant failures that occur in data centers making
many servers to crash simultaneously (e.g., (Ford et al. 2010; Miller 2008)).

The integration of durability techniques such as logging, checkpointing, and state
transfer with the SMR approach can drastically decrease the performance of a service. In
particular, synchronous logging can make the system throughput as low as the number
of appends that can be performed on the disk per second, typically just a few hundreds.
Additionally, checkpointing requires stopping the service during this operation, unless
non-trivial optimizations are used at the application layer, such as copy-on-write (Clement
et al. 2009a; Hunt et al. 2010). Finally, recovering faulty replicas involves running a state
transfer protocol, which can degrade the performance of the system as correct replicas
need to transmit their state.



A recent work proposed the introduction of a layer between the replication pro-
tocol and the service code to implement the durability techniques (Bessani et al. 2013).
This durability layer implements efficient techniques for logging, checkpoints and state
transfer. These techniques allow the implementation of synchronous disk logging with
the same throughput of a pure in-memory system (for 4kB-requests) with minimal per-
formance perturbations caused by checkpoints and state transfers.

Even more importantly, the durability techniques are confined inside this new
layer, making the service code completely oblivious to the durability implementation as
long as the service state fits in the replica memory. The key takeaway from this is that it
is possible to integrate durability to a SMR-based system without application code with
proper support from the system.

4.4.3. Improving Robustness of BFT State Machine Replication

Dealing with Malicious Byzantine faults. In order to tolerate Byzantine faults caused
by a malicious and intelligent adversary controlling the faulty machines, at least three
extensions can be made to a BFT SMR protocol (Bessani 2011). First, the replicas need
to be deployed in a diverse environment to ensure that a single vulnerability does not
lead to more than one replica being compromised (as discussed in Section 4.2.3.1). Sec-
ond, the replica coordination protocol need to be resilient to certain known performance
degradation attacks (see bellow). Finally, the system needs to be augmented with means
to recover faulty replicas to enable the system to tolerate an unbounded number of faults
during its lifetime.

Proactive recovery (Castro and Liskov 2002) aims to periodically and proactively
rejuvenate replicas even if they are correct to clean potential undetected intrusions. The
main advantage of these systems is that the adversary can stay in control of some replicas
only during a window of vulnerability, even if its perpetrating a stealth intrusion and could
not be detected.

Recent works showed that many proactive recovery systems can be attacked and
delayed, giving time for an intelligent adversary to compromise more than f machines and
takeover the system (Sousa et al. 2007). To deal with these vulnerabilities it is necessary
to increment the replicated system with a synchronous subsystem capable of triggering
timely recoveries without interference of attackers (Sousa et al. 2010).

Robust replica coordination. Amir et al (Amir et al. 2008) showed that PBFT and
other leader-based BFT replication systems are vulnerable to two attacks that can seri-
ously degrade the performance of the replicated system, even if less than f replicas are
compromised. The first attack, called Pre-Prepare delay, exploits the fact that non-leader
replicas only start the view change protocol if a timeout is triggered. This timeout is
usually defined in a conservative way, with a value of tens of seconds, while a request
ordering takes few milliseconds (or even less). This means that a malicious primary can
consistently delay the ordering of messages more than an order of magnitude without
being detected. This attack can be made even more devastating when coordinated with a
second attack, dubbed timeout manipulation, which exploits the fact that malicious clients
can force a leader change in PBFT. Furthermore, after each view change the timeout value



is doubled. This means that a malicious client can increase a timeout value as much as
it wishes and only stops when a faulty replica is the leader, forcing the system to have a
malicious leader.

As far as we know, these attacks can be mitigated in three possible ways. Prime
is the protocol proposed in the same paper the attacks were identified (Amir et al. 2008).
This replication algorithm introduces an additional pre-order phase with three commu-
nication steps before the request ordering (which are based on PBFT) that, together with
the constant monitoring of the performance of the primary, make the system able to detect
several performance attacks and change the leader when it degrades the performance of
the system.

The second solution is Aardvark (Clement et al. 2009b), a BFT library in which a
set of engineering principles are applied to PBFT to make it more resilient against several
kinds of attacks from clients and servers. One of the attacks addressed by Aardvark is
the pre-prepare delay injected by a malicious primary. This attack is mitigated through
constant monitoring of the throughput sustained during a view plus the periodic change
of primary through the execution of PBFT’s view change operation. Furthermore, clients
cannot force a leader change (and an increase in timeout values) since replicas only accept
requests signed by clients. This means that a request is valid or invalid in all correct
replicas, and thus no correct replica will suspect a correct leader that discarded an invalid
request.

The third and last solution is based in distributing the burden of leadership among
the replicas in such way that a malicious replica can delay requests in only % of the agree-
ment executions. The Spinning protocol (Veronese et al. 2009) exploits this idea through
the use of a rotating coordinator. To avoid malicious replicas periodically imposing out-
rageous delays to the protocol, the protocol uses a monitoring strategy and a blacklisting
mechanism.

Overall, independently on the strategy adopted for avoiding pre-prepare delays, it
is advisable to request clients to sign requests if malicious behavior is anticipated.

4.4.4. Wide-area Replication

There are some recent works that try to optimize the latency of the replication in geo-
replicated state machines (e.g., (Mao et al. 2008; Moraru et al. 2013; Veronese et al.
2010)). One of the most important differences between these protocols and the protocols
of Section 4.3, is that they do not use a single stable leader, that is changed only in case
of problems, and instead, allow every replica to act as a leader for the clients that are
close to them. This brings two advantages. First, the load of being a leader is distributed
among the replicas and their sites, avoiding having the leader as a bottleneck in the system.
Second, if the client submits its commands (and get the reply) to a replica that is close to
itself, it avoids at least one wide-area communication step.

Mencius (Mao et al. 2008) extends Paxos through the division of the sequence
number space between the set of replicas, allowing each replica to propose commands to
be executed in its slots. In this way, in a system with 3 replicas, replica 1 can propose
commands for sequences 1, 4, 7, etc. while replica 2 can use slots 2, 5 and so on. To deal



with the cases in which a replica does not have anything to propose in its next slot, Men-
cius introduces a new Skip message, which is disseminated by a replica in this situation.
EBAWA (Veronese et al. 2010) extends MinBFT in a similar way that Mencius extends
Paxos for performing better on WANs. More recently, Moraru et al proposed Egalitar-
ian Paxos (EPaxos) (Moraru et al. 2013), a crash fault-tolerant leaderless state machine
replication algorithm in which only dependent commands are executed in total order.

4.5. SMR Applications

In this section we discuss some recent papers that describe the use of different SMR
algorithms for implementing dependable services. Some of these papers report on real
systems that are used in production, while others are based on proposals for innovative
systems to be deployed in the future.

4.5.1. Dependable Storage Systems

The most direct application of RSMs is in the implementation of dependable storage
systems. Such systems can be as simple as main-memory key-value stores or as complex
as full-fledge file systems and transactional relational databases.

4.5.1.1. Key-Value Stores

Several basic data store systems, supporting a simple key-value store (KV-Store) interface
were described in recent literature (Bessani et al. 2013; Bolosky et al. 2011; Rao et al.
2011; Wang et al. 2012). There are many variants and capabilities associated with KV-
Stores, which are usually related with the NoSQL model. However, the simplest variant
assumes a simple data model in which a table is used to map keys to binary values. This
table supports operations such as put (K, V') (stores value V associated with key K), get(K)
(gets the value associated with K), remove(K) (remove K and its associated value from
the store) and /ist() (lists all stored keys). In the following we discuss the implementation
of these operations under different assumptions.

Given a SMR protocol and programming library, a trivial implementation for a
dependable KV-Store can be achieved using a main-memory deterministic data structure
in each replica. Assuming all replicas start the system with the same values stored in
such data structure, the updates can be applied in total order (as provided by the SMR
protocol) to ensure all replicas have the same state. In Section 4.6 we show how to
implement a service like this in Java using the BFT-SMART replication library and a
java.util.TreeMap data structure.

In terms of dependability, this kind of system works under two assumptions:

e DS1: the stored data fits on a replica main memory;

e DS2: at any given time, there is at most f faulty replicas.

These two assumptions are a direct consequence of the fact that our implementa-
tion is completely based on main memory, with no use of stable storage.



A more evolved implementation would use stable memory for ensuring data dura-
bility, i.e., to guarantee that the stored data is recovered even if more than f faults happens
in the system. In practice this property is quite important since sometimes the system can
be shut down for maintenance reasons or the replicas can suffer correlated failures. Con-
sequently, restarts and full-system recoveries are needed (Bessani et al. 2013).

In a durable system, every operation that updates the state (e.g., put and remove
for a KV-Store) of the system is logged in stable memory!? before a client is notified
about its result. To limit the size of this log, periodically the system takes a snapshot of its
state and store it in stable memory, deleting the log. The period of checkpoint is usually
based on the log size or the number of operations processed, not the time elapsed. In this
sense, the replica stable state comprises the log and snapshot, which can be recovered
after a crash.

Notice that if these techniques are employed, the data still needs to fit in memory
(property DS1, above), since the stable storage is used only for recovery. However the
system now can offer better guarantees than what was provided by DS2:

e DS2+: the system is live (i.e., satisfy liveness) as long as there is at most f faulty
replicas.

Notice DS2+ is now a direct consequence of the requirements for executing the
agreement protocol of the system, i.e., if there are more than f faulty replicas, it is im-
possible to order requests and thus the RSM cannot execute operations. Furthermore, if
Byzantine faults are considered, this guarantee is ensured only if the faulty replicas suffer
a crash, and not a state corruption. A BFT system that implements this kind of design is
the SCKV-Store (Bessani et al. 2013).

If we want to remove the limitation of having the whole state in main memory, and
thus improve the system for storing large amounts of data, one needs to employ secondary
storage data structures, as used in database manage systems (Garcia-Molina et al. 2009).
One possible implementation of such system is the one used in the Paxos-based Gaios
data store (Bolosky et al. 2011). This system still uses the log as described before, and
uses the main-memory data structure as a cache in which operations are executed. Later
on, in background, the updates are pushed to the disk in batches. Notice that updating the
storage in background is not a problem since the durability is ensured by the logging.

An interesting innovation of Gaios is how it uses the VR/Paxos leader for dis-
tributing read requests among replicas. This technique is important specially in disk-
based systems, where the latency of disk readings can be an order of magnitude bigger
than running the agreement protocol (e.g., 5 vs. 0.5 milliseconds). The basic idea is to
use the disk of a single replica for serving a read-only request. The protocol requires a
client to send the read request to the leader, that choses one of the replicas for answering
and forwards the request to it. The choice of the read-serving replica is based on a load
balancing policy (e.g., round robin) and also in trying to avoid assigning requests to repli-

12Such 10 operation must be done in a synchronous way to ensure the write will be on stable storage
when the system call returns.



cas flushing writes to disk. Importantly, this algorithm ensures no read returns stale data,
since even read operations are ordered by the leader (Bolosky et al. 2011).

There are also complex, scalable distributed data stores that use state machine
replication protocols for ensuring strong consistency for the stored data (Baker et al. 2011;
Calder et al. 2011; Corbett et al. 2012). Although the details about the design of these
systems are out of the scope of this chapter, it is interesting to understand how SMR
protocols are used in their core.

The key idea that makes these systems scalable is the partition of the key space
in different RSMs (i.e., Paxos group (Corbett et al. 2012)) and deploy and operate these
sub-systems as independently as possible. An important issue that needs to be dealt with
in this design is how to implement operations that affect more than one key space. The
standard approach, employed for instance in Google’s Spanner (Corbett et al. 2012),
is to execute a transaction between the several Paxos groups involved in the operation.
Naturally, running this transaction requires coordination between the different groups. In
the case of Spanner, the leaders of each Paxos group involved in the transaction participate
in a two-phase commit protocol execution to decide the outcome of the transaction.

4.5.1.2. File Systems

The same kind of techniques used for implementing KV-Stores can also be used for im-
plementing SMR-based file system, such as Harp (Liskov et al. 1991), which is based on
viewstamped replication, and BFS (Castro and Liskov 2002), based on the PBFT.

Ignoring some implementation details, conceptually, implementing a file system
service requires implementing the metadata store and the data store. The metadata store is
where file names together with access times, file size and access control information are
stored together with the ids of the blocks corresponding to the file content. The file content
is stored in a data store, having the block’ id as a key and its contents as the associated
value. The data blocks usually have fixed size (e.g., 4kB (Liskov et al. 1991; Castro and
Liskov 2002)), that can only be read or write in indivisible blocks. The RSM implements
the metadata and data stores together, as a service, to offer a NFS-like interface for its
clients, which provides a transparent remote file access.

A more scalable approach for serving files is the one employed in systems like
FARSITE (Adya et. al 2002) and UR-HDEFS (Clement et al. 2009a). In a nutshell, the
key idea of these scalable systems is to separate the metadata store from the data store,
as done in parallel file systems (Gibson et al. 1998). This separation allows the use of
RSM for implementing the metadata service, which stores only file names and associated
metadata, and thus can be kept even in main memory as discussed for KV-Stores. The file
contents, which can comprise a huge amount of storage space, are stored in a potentially
large amount of machines (or even network attached disks) that are accessed directly upon
reading and writing.

Figure 4.12 shows the architecture of these systems. In the figure, a client reading
a file (left) first goes to the metadata service and read the location of the block(s) of the
file. This location includes the storage node, the id of the block and the hash of the block



contents. With this information the client can fetch the contents of the file from one (or
more) storage nodes in which the data is stored. After reading the contents of a block,
the client verifies its integrity with the hash obtained from the metadata store. To write
a file, the client first obtains the locations of the free blocks in the storage nodes from
the metadata store and then writes the file contents in these locations. After completing
the write, the data nodes send a hash of the written data to the metadata store. To avoid
concurrency problems, when the metadata service allocates these blocks to the client,
they are locked until the data node informs the hash of the write to the system or a timer
expires.

Metadata store
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Figure 4.12. Scalable file system design based on state machine replication.
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4.5.1.3. Transactional Storage

One limitation of the state machine replication model is that it ensures strong consistency
(i.e., linearizability (Herlihy and Wing 1990)) only considering single operations. How-
ever, popular storage systems provide the capacity of running atomic transactions (Garcia-
Molina et al. 2009). Transactions are sequences of operations that are either executed in
totality or not executed at all. Another important property of transactions is the isolation:
two transactions executed concurrently generate the same result as if they are executed
serially, one after another. A problem in implementing such property with SMR is that it
requires locking the state touched by a transaction, and it may cause the system to block.
More specifically, a deadlock may be caused by two concurrent transactions accessing the
the same data objects in the RSM in different order.

There are some solutions for this problem, but in general, the best compromise is
achieved when one restrains to provide strict serializability and offer instead a property
called snapshot isolation (Berenson et al. 1995). According to the definition of snap-
shot isolation, reads on multiple versions of a database are admitted and two concurrent
transactions will commit if there are no write-write conflicts. There are algorithm for
SMR-based database replication satisfying snapshot isolation for tolerating both crashes
(e.g., (Elnikety et al. 2005)) and Byzantine failures (Garcia et al. 2011). In the follow-
ing we describe the Byzantium algorithm (Garcia et al. 2011), which tolerates Byzantine
faults using normal off-the-shelf databases at each replica.

The key idea of the algorithm is to invoke SMR ordered operation only at the



borders of a transaction and accessing a single replica during the operations within the
transaction. The algorithm works as follow:

1. When a transaction starts, the client issues a SMR invocation for the replicas to
mark a snapshot of the database. The transaction operations will be executed in this
snapshot;

2. During the transaction, the client executes the operation only in one of the replicas,
the master (but not necessarily the leader of the SMR protocol);

3. For committing the transaction, the client issues an SMR operation to the replicas
passing the operations executed and a hash of the obtained results. The replicas then
verify if the operations were correctly executed by the master and try to commit the
transaction in the database, considering the snapshot marked at the beginning of the
transaction.

If for some reason the transaction aborts due to malicious behavior of the master,
the transaction aborts and the client asks the replicas to elect a new master (Garcia et al.
2011).

It is worth to remark that a similar (albeit simpler) algorithm exists for tolerating
only crashes (Elnikety et al. 2005). Furthermore, the approach sketched here can be
applied for supporting transactions in general SMR-based services, not only relational
databases.

4.5.2. Coordination Services

Coordination services (also called lock services or configuration managers) are small
databases that offer support for the coordination of other applications on an infrastructure.
Such services are used for storing configuration data and to implement resource locking,
leader election, message ordering, among other synchronization tasks. The big advantage
of using a coordination service is that it relieves distributed application developed to im-
plement complex and error-prone synchronization algorithms, providing instead a central
point of coordination in the system.

Naturally, such service will be a critical component of the distributed system,
and thus it should be designed in a dependable way. SMR-based techniques are often
employed for that (Burrows 2006; Hunt et al. 2010; Bessani et al. 2008).

In a nutshell, a coordination service is a durable main-memory storage system
that offers operations with synchronization power (Herlihy and Wing 1990). In this way,
although the data stored in the coordination service must still fit in a replica memory, dura-
bility techniques ensure that such data will not be lost in case there are more than f faulty
replicas. In the remaining of this section we describe three representative coordination
services.

Chubby is a locking service by Google (Burrows 2006) that implements a hier-
archical name space with locking primitives. Chubby exports a file system interface in
which users can create small files that can be locked for a specific amount of time. This



abstraction is implemented using the Paxos protocol, with leader replicas having the addi-
tional responsibility of notifying clients about events of interest in the system (see below).

Another interesting aspect of chubby is the client-side cache it offers. This cache
absorbs a large amount of read requests and relieves the coordination service replicas from
a significant work, contributing to the system scalability. However, as a consequence, a
cache invalidation protocol is used, and the leader replica is responsible for notifying
clients about cached data updates and lock expirations (Burrows 2006). This kind of
design breaks the modularity of a pure SMR-based system, in which the ordering protocol
is completely independent of the service being replicated.

Apache ZooKeeper is a widely used open source coordination service that pro-
vides a hierarchical name space and strong coordination primitives (Hunt et al. 2010).
However, differently from Chubby, ZooKeeper provides no blocking primitives such as
locks, and instead only wait-free objects are provided in its data model.

More specifically, coordination is implemented in ZooKeeper through the use of
znodes, which have a name and value associated. Znodes can be regular or ephemeral. An
ephemeral znode disappears from the ZooKeeper namespace when the client that creates
it disconnects (e.g., due to a crashes), which is quite useful for detecting failures. Regular
nodes can have other znodes as children. A child node can be created using the sequential
flag, which ensures that every node created under the same parent will have monotonically
increasing sequence number appended to its name. This basic feature allows Zookeeper
data model to have synchronization power sufficient for solving consensus and related
tasks, such as leader election and message ordering (Hunt et al. 2010).

Similarly to Chubby, in ZooKeeper the master has additional responsibilities be-
sides the ordering of requests. Consequently, the durability mechanisms, data store imple-
mentation and message ordering are highly integrated, with little or no separation between
them. Due to this, ZooKeeper requires a Paxos-like replication protocol called Zab (Jun-
queira et al. 2011), which offers additional guarantees that are important for systems in
which the primary is specially important.

Both Chubby and ZooKeeper tolerate only crash faults. Although there were some
prototypes for adapting ZooKeeper for tolerating Byzantine faults (e.g., UR-ZK (Clement
et al. 2009a)), the only coordination service genuinely tolerant to Byzantine faults is
DepSpace (Bessani et al. 2008). This system provides a tuple space abstraction (Gelernter
1985) in which variable size data structures called tuples are inserted, read and removed.
In particular, DepSpace provides additional operations to allow a tuple space to have
sufficient synchronization power for solving consensus (Bessani et al. 2009).

Contrary to Chubby and ZooKeeper, the implementation of DepSpace is modular
with respect of the SMR protocols: the coordination service code is implemented on top
of the replication algorithm. Notice that although DepSpace originally has no support for
durability, recently it was updated for integrating efficient durability techniques (Bessani
et al. 2013).



4.5.3. Network Services

Recently there has been an effort to separate the network control plane from the data plane
for improving the manageability, programmability and extensibility of networks. Most of
these efforts are being done in the context of Software-Defined Networks (SDNs). In this
paradigm, a programmable control plane is implemented through one or more controllers
attached to the network switches that act as simple forwarding devices. These controllers
host network applications capable of deciding, for each flow, how the network should
behave.

One key requirement of these systems is that the network controller should be
neither a bottleneck nor a single point of failure. This means that the design of such sys-
tems should be scalable and fault-tolerant. One appealing solution is to use a distributed
controller integrated with a fault-tolerant network information base (NIB) (Koponen et al.
2010; Botelho et al. 2013). Since the NIB is not expected to store a lot of information,
it can be implemented just like a KV-Store, presented in Section 4.5.1, with controllers
acting as clients. This kind of design was recently shown to be able to deal with represen-
tative SDN workloads for small to medium networks (Botelho et al. 2013).

Other distributed network services have been using SMR-like techniques for im-
plementing middlebox-related functionalities (e.g., NAT, VPN, load balancing) without
using middleboxes. For example, the ETTM system (Dixon et al. 2011) implements such
functionalities in a distributed way using a Paxos-based replication algorithm for storing
the service-related state in a consistent and fault-tolerant way. In a production environ-
ment, the Ananta distributed load balancer (Patel et al. 2013), which serves thousands of
flows per day in the Windows Azure cloud, uses Paxos for maintaining high-availability
in its manager component, which keeps the configuration of individual managed load
balancers (called MUXes).

4.5.4. Other Services

There are many other applications of state machine replication in practical systems. For
example, BFT state machine replication has been used to implement survivable DNS
systems (Cachin and Samar 2004) and even a SCADA system (Kirsch et al. 2013). When
only crash faults are considered, the Paxos/VR algorithm is becoming a de-facto standard
with application in basically every critical system deployed these days.

4.6. Implementing SMR: The BFT-SMART Library

The last part of this chapter describes some details about the internals of the BFT-SMART
SMR replication library, its performance and how it can be used for implementing depend-
able services. The objective here is to show how some of the techniques described through
the chapter are implemented in practice. In this way, we just highlight selected aspects of
the system and refer the interested readers to the papers describing it for details (Sousa
and Bessani 2012; Bessani et al. 2013; Bessani et al. 2014).

BFT-SMART is an open-source Java-based library implementing robust BFT state
machine replication. Some of the key features of this library that distinguishes it from sim-
ilar systems (e.g., PBFT (Castro and Liskov 2002) and UpRightt (Clement et al. 2009a))



are its reliability, modularity, multicore-awareness, reconfiguration support and a flexible
APIL. When compared to other SMR libraries, BFT-SMART achieves better performance
and is able to withstand a number of real-world faults that previous implementations can-
not.

4.6.1. BFT-SMART Design

The design principles that guided the development of BFT-SMART are: (1) tunable fault
model — it is possible to configure the system to tolerate Byzantine failures or only crash
failures; (2) simplicity — the emphasis on protocol correctness led BFT-SMART to avoid
optimizations that could bring extra complexity both in terms of deployment, coding, or
even new corner cases; (3) modularity — BFT-SMART implements a modular SMR pro-
tocol that uses a well-defined consensus primitive in its core, besides the existence of
modules for reliable point-to-point communication, client requests ordering and consen-
sus, BFT-SMART also implements state transfer and reconfiguration modules, which are
completely separated from the agreement protocol; (4) simple and extensible AP — BFT-
SMART encapsulates all the complexity of BFT SMR inside a simple API that could be
extended in order to implement a more complex application; and (5) multi-core awareness
— BFT-SMART architecture takes advantage of the multicore processors present in mod-
ern servers to improve some costly processing tasks on the critical path of the protocol.
In this section we focus on principles 1, 2 and 3.

All protocols used in BEFT-SMART require the partially synchronous system model
with 3 f + 1 replicas for tolerating Byzantine failures and 2f + 1 if only crashes are con-
sidered, just like in similar protocols (PBFT and VR - Section 4.3). Independently of the
configuration (crash or BFT), the system requires reliable point-to-point links between
processes for communication. These links are implemented using message authentication
codes (MACs) over TCP/IP. The symmetric keys for the replica-replica channels are gen-
erated through signed Diffie-Helman using a pair of RSA keys per replica. The keys for
client-replica channels are generated based on the ids of the endpoints, without the need
for clients to hold key pairs.

BFT-SMART uses a replica coordination protocol called Mod-SMaRt, a modular
protocol that implements BFT SMR using an underlying consensus primitive (Sousa and
Bessani 2012). During normal execution, clients send their requests to all replicas and
wait for their replies. Total order is achieved through a sequence of consensus instances,
each of them deciding a batch of client requests. Each instance is comprised by three com-
munication steps, just like in PBFT. When only crashes are tolerated, the system needs
only n = 2f 4+ 1 replicas to tolerate f crash faults and bypasses one of the steps during the
consensus execution, becoming similar to VR/Paxos with fast execution (Section 4.3.1).

Besides the ordering protocol, the system also implements novel state transfer
and reconfiguration protocols tolerant to Byzantine faults. These protocols are described
elsewhere (Bessani et al. 2013; Bessani et al. 2014).

4.6.2. Architecture and Implementation

A key issue when implementing an efficient SMR library is how to break the several tasks
of the protocol in an architecture that is robust and efficient. Figure 4.13 presents the



main architecture of a BFT-SMART replica with the threads used for staged message
processing.
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Figure 4.13. BFT-SMART replica staged message processing (Bessani et al. 2014).

In this architecture, all threads communicate through bounded queues. The client
requests are received through a thread pool provided by the Netty communication frame-
work. Unordered (read-only) requests are directly delivered to the service implementa-
tion. Otherwise, they are delivered to the client manager in order to be ordered. Each
request is added to the respective client’s pending queue.

The proposer thread is activated at the leader replica to submit proposals of se-
quence number assignment for a batch of client requests (Section 4.3). Every message
m to be sent by one replica to another is put on the out queue to be sent by a sender
thread. At the receiver replica, a receiver thread for this sender will read m and put it on
the in queue, where all messages received from other replicas are stored in order to be
processed.

The message processor thread is responsible for dealing with the messages from
the SMR protocol (Section 4.3). When a consensus is finished on a replica (i.e., when the
request is committed in PBFT parlance), the decided batch is put on the decided queue to
be delivered, by the delivery thread, to the service replica, that executes the requests and
generates the corresponding replies. The replies are put into the reply queue and are sent
to the clients by the reply thread.

Finally, the request timer thread is responsible for triggering view changes (Sec-
tion 4.3), being periodically activated to verify if some request remained more than a
pre-defined time on the pending requests queue.

Overall, the codebase of BFT-SMART consists in almost 14000 lines of com-
mented Java code and both the system and its source code can be freely obtained in



http://code.google.com/p/bft—-smart/.

4.6.3. Performance

This section presents some experimental results from BFT-SMART’s performance eval-
uation (Bessani et al. 2014). We present these results here just to give the reader an
idea about the performance of SMR systems under different fault models, conditions and
workloads. The experiments presented here consist of: (1) some micro-benchmarks de-
signed to evaluate the library’s raw throughput; and (2) a performance comparison with
some competing systems.

Experimental Setup. All experiments ran with three (CFT) and four (BFT) replicas
hosted in separated machines. Up to 1600 clients were distributed uniformly across an-
other four machines. Clients and replicas were deployed in JRE 1.7.0_21 on Ubuntu
Linux 10.04, hosted in Dell PowerEdge R410 servers. Each machine have 32 GB of
memory and two quad-core 2.27 GHz Intel Xeon E5520 processor with hyper-threading
(supporting 16 hardware threads). Machines communicate through an isolated gigabit
Ethernet network.

Micro-benchmarks. BFT-SMART was evaluated through a set of micro-benchmarks
for an “empty” service implemented with BFT-SMART to perform raw throughput cal-
culations at the server side. The objective of using such service is to measure the per-
formance of the replication library alone, without applicational overheads. Throughput
results were gathered from the leader replica.

Table 4.2 presents approximate values for the peak throughputs of both BFT and
CFT setups considering different request/reply sizes (in bytes): 0/0, 100/100, 1024/1024.
The table shows that the CFT protocol consistently outperforms its BFT counterpart, what
happens due to the smaller number of messages exchanged in the CFT setup.

Configuration BET CET
Workload
0/0 83000 | 91000
100/100 72000 | 80000
1024/1024 16000 | 21000

Table 4.2. Peak throughput of BFT-SMART (in ops/sec) for the CFT and BFT con-
figurations tolerating a single failure and with different workloads (adapted from
(Bessani et al. 2014)).

Table 4.3 shows how different request-reply combinations affect the throughput
of the system in a BFT setup tolerating a single failure. The results clearly show that
large request’s payload degrades throughput more than large reply’s payload. This can be
explained by the increase in the size of the requests’ batch proposed for ordering.

These results illustrate the tradeoffs between crash and Byzantine fault tolerance
and the influence of different request and reply sizes in the performance of a RSM. These
trends appear in most modern SMR systems we are aware of.



Replies | o) bytes | 100 bytes | 1024 bytes
Requests
0 bytes 83801 | 75138 | 37320
100 bytes 78711 | 72879 | 36948
1024 bytes 16309 | 16284 | 15878

Table 4.3. Peak throughput of BFT-SMART (in ops/sec) in a BFT configuration
tolerating a single failure for different request and reply sizes.

Comparison with others. BFT-SMART was compared (both in BFT and CFT con-
figurations) with PBFT (Castro and Liskov 2002), UpRight (Clement et al. 2009a) and
JPaxos (Santos and Schiper 2013) considering the 0/0 benchmark. Table 4.4 shows the
peak sustained throughput obtained for all these systems and the associated number of
clients required to achieve this throughput.

’ System H Peak Throughput Clients \ Throughput 200 ‘
BFT-SMART 83801 1000 66665
PBFT 78765 100 65603
UpRight 5160 600 3355
CFT-SMART 90909 600 83834
JPaxos 62847 800 45407

Table 4.4. Throughput of different replication libraries for the 0/0 benchmark and
f = 1. Throughput 200 reports the throughput with 200 clients.

The results presented in Table 4.4 show that BEFT-SMART achieves a peak sus-
tained throughput higher than all other systems. The table also presents the throughput of
the systems using 200 clients (the maximum supported by PBFT without crashing).

4.6.4. A Key-Value Store using BFT-SMART

This section describes the implementation of a dependable main-memory KV-Store based
on BFT-SMART. The developed datastore should provide an interface similar to the
java.util.Map interface from the Java API. To simplify the design, we consider keys
and values as String objects. We implemented the put, get and remove methods of the
aforementioned Java interface together with an additional 11 st operation for obtaining
the set of keys stored in the system.

Two main classes are used in order to build such service on top of the BFT-
SMART library. The ServiceReplica is used at server side to instantiate a BFT-
SMART replica while the ServiceProxy is used at client side for accessing the repli-
cated service. The instantiation of ServiceReplica requires the provision of an
unique replica id (which is mapped to an IP and port in a configuration file) and im-
plementations of an Executable (which defines the methods called when the service
needs to process a request) and a Recoverable (which defines the state management
methods) interfaces. At the client side, to start a ServiceProxy it is necessary only
the id of the client. Besides that, both the clients and servers need to have access to the
configuration files of the system (which includes the addresses of the replicas).



4.6.4.1. Server Side

The abstract class DefaultSingleRecoverable implements both the interfaces
Executable and Recoverable and can be used as the basis for a BFT-SMART
service. Using this class, a developer only needs to provide the implementation for the ab-
stract methods described in Table 4.5. BFT-SMART invokes both executeOrdered
and executeUnordered methods upon delivering client requests (or operations) to
the replica. Furthermore, BFT-SMART also invokes the state management methods
(getSnapshot and installSnapshot) for obtaining the state of the service when
checkpoints are needed and updating the state of a recovered or delayed replica, respec-
tively.

This class was extended by the main class of our KV-Store replica, theTreeMap—
Server. Listing 4.1 shows the fields of our class and its constructor, which instantiate the
ServiceReplica and a TreeMap<String, String> data structure for holding
the data stored in the replica. Starting a server in this example requires the instantiation
of this class (not show in this example).

Requests Execution Operations (Executable interface)
public byte[ ] executeOrdered(byte[ ] cmd, MsgContext ctx) implemented for executing
Parameters: cmd — serialized client request; ctx — request metadata || ordered requests
Returns the serialized reply for ordered execution of cmd
public byte[ ] executeUnOrdered(byte[ ] cmd, MsgContext ctx) implemented for executing
Parameters: cmd — serialized client request; ctx — request metadata || unordered requests
Returns the serialized reply for the unordered execution of cmd

State Management Operations (Recoverable interface)

public byte[] getSnapshot() implemented for creating a

Returns the serialized snapshot of the application state snapshot of the application
state

public void installSnapshot(byte[ | state) implement for installing a

Parameters: state — the snapshot of the application state to be snapshot of the application

installed state

Table 4.5. Server-side operations to be implemented by a service.

public class TreeMapServer extends DefaultSingleRecoverable {
ServiceReplica replica = null;
Map<String, String> table;

public TreeMapServer (int id) {
replica = new ServiceReplica(id, this, this);
table = new TreeMap<String, String>();

Listing 4.1. Server constructor method.

The next step for implementing the replica is to define its behavior when ordered
and unordered requests are delivered. Listing 4.2 shows the code for implementing all
operations from the service. As can be seen in the code, our implementation (1) parses
the command received to identify the operation (the enum RequestType will be de-
fined later on Listing 4.5), (2) reads the appropriate fields of the command, (3) performs




16

19
20

NS I ]
N —

8}

(SRS S N

N

[\*)

30
3

32
33
34
35
36
37
38
39
40
41

the operation in the data structure and (4) returns the results to the BFT-SMART, that
forwards it to the client. Notice that we use some stream classes provided by the Java API
for marshaling/unmarshaling the transmitted data.

public byte[] executeOrdered(byte[] cmd, MsgContext ctx) {

ByteArrayInputStream in new ByteArrayInputStream(cmd) ;
DataInputStream dis = new DatalInputStream(in);
int reqType;
try {
reqType = dis.readInt();
if (reqType == RequestType.PUT) {

String key = dis.readUTF();
String value = dis.readUTF () ;
String oldvValue = table.put (key, value);
byte[] resultBytes = null;
if (oldvalue != null) {
resultBytes = oldValue.getBytes();
return resultBytes;
} else if (reqType == RequestType.REMOVE) {
String key = dis.readUTF();
String removedValue = table.remove (key);
byte[] resultBytes = null;
if (removedvalue != null)
resultBytes = removedValue.getBytes();
return resultBytes;
if (reqType == RequestType.GET) {
String key = dis.readUTF();
String readvValue = table.get (key);
byte[] resultBytes = null;
if (readvalue !'= null)
resultBytes = readValue.getBytes();
return resultBytes;
} else if (reqType == RequestType.LIST) {
Set keys = table.keySet();
byte[] keysInBytes = toBytes (keys);
return keysInBytes;
} else {
System.out.println( + reqType);
return null;
}
} catch (IOException e) {
System.out.println( ) ;
return null;

Listing 4.2. Implementation of executeOrdered method.

For the considered service, the get and the 11 st operations are read only (they
do not change the data structure contents) and thus can be tentatively processed without
replica coordination!?. Therefore, we can execute them even if delivered as unordered
operations, as described in Listing 4.3. The processing of these operations follows the
same steps of ordered requests.

Finally, the implementation of the state management methods is trivial since it
only serializes and gets the service state or deserializes and applies a received snapshot
(Listing 4.4).

BInterestingly, these operations can also be delivered as ordered requests since the library may order
read-only operations in case of concurrency or failures (see Section 4.3.2).
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public byte[] executeUnordered(byte[] cmd, MsgContext msgCtx) {

ByteArrayInputStream in = new ByteArrayInputStream(cmd);
DataInputStream dis = new DatalnputStream(in);
int reqType;
try {
reqType = dis.readInt();
if (reqType == RequestType.GET) {
//lines 23-28 of Listing 2
} else if (reqType == RequestType.LIST) {
//lines 30-32 of Listing 2
} else {
System.out.println( +reqType) ;

return null;
}
} catch (IOException e) {
System.out.println( )i
return null;

Listing 4.3. Implementation of executeUnordered method.

public byte[] getSnapshot () {

try {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream out = new ObjectOutputStream(bos);
out.writeObject (table);
out.flush(); out.close();
return bos.toByteArray () ;

} catch (IOException e) {
System.out.println( )
return new byte[0];

bos.close();

}

public void installSnapshot (byte[] state) ({
ByteArrayInputStream bis = new ByteArrayInputStream(state);
try {
ObjectInput in = new ObjectInputStream(bis);
table = (Map<String, String>)in.readObject ();
in.close(); bis.close();
} catch (Exception e) {
System.out.print ( )
}

Listing 4.4. Implementation of state management methods.

4.6.4.2. Client Side

At client side, each logical client must instantiate one ServiceProxy with a distinct id
for representing itself to the replicas. This class implements the SMR client-side protocols
and provides the methods described in Table 4.6 to issue commands to the servers.

For our KV-Store client, we aim to implement a simple stub that provides syn-
chronous methods that hide the details about accessing the RSM. This done by imple-
menting a subset of the Map interface in our TreeMapClient class (Listing 4.5), which
can be instantiated in a Java program.

Listing 4.6 shows the implementation of the four methods of the proposed service.
Since we are interested only in synchronous methods, we do not use the invokeAsyn-




Requests Execution Operations (ServiceProxy methods)
public byte[ | invokeOrdered(byte[ ] request) used for invoking an
Parameters: request — the serialized request to be sent to the application operation that should
Returns the serialized reply for ordered execution of request be ordered
public byte[ ] invokeUnordered(byte[ ] request) used for invoking an
Parameters: request — the serialized request to be sent to the application operation that does not
Returns the serialized reply for unordered execution of request need to be ordered
public void invokeAsynchronous(byte[ | request, ReplyListener listener, used for invocating an
int( ] receivers, MsgType type) operation asynchronously,
Parameters: request — the serialized request to be sent to the application; i.e., without blocking
listener — a callback to receive the replies; receivers — the destinations for || waiting for replies
request (usually, all servers); type — request type (ordered or unordered)

Table 4.6. Client-side operations.

public class TreeMapClient implements Map<String, String> {
ServiceProxy clientProxy = null;
enum RequestType {PUT, REMOVE, GET, LIST}

public TreeMapClient (int clientId) {
clientProxy = new ServiceProxy(clientId);

}

Listing 4.5. Client constructor method.

chronous operation defined in Table 4.6. Furthermore, it is worth to mention that the im-
plementation of put and remove use the invokeOrdered method of the Service-
Proxy while get and 1ist use the invokeUnordered.

A step-by-step tutorial showing a complete code for an example similar to this one
together with instructions of how to configure and run it can be found in following link:
http://code.google.com/p/bft-smart/wiki/GettingStarted.

4.7. Final Remarks

This chapter presented a guided tour on the main aspects of the theory and practice of
state machine replication. Our main objective through this document was to describe the
fundamental aspects and protocols required for implementing state machine replication
and present a brief discussion about the recent work and applications related with this
technique. We hope this document help researchers and developers to devise reliable
services as replicated state machines.
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public String put (String key, String value) {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out);
try {
dos.writelInt (RequestType.PUT) ;
dos.writeUTF (key) ;
dos.writeUTF (value) ;
byte[] reply = clientProxy.invokeOrdered (out.toByteArray());
return (reply !'= null)?new String(reply) :null;
} catch (IOException ioe) {
System.out.println ( )
return null;

}

public String remove (String key) {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out) ;
try {
dos.writeInt (RequestType.REMOVE) ;
dos.writeUTF (key) ;
byte[] reply = clientProxy.invokeOrdered (out.toByteArray());
return (reply != null)?new String(reply) :null;
} catch (IOException ioe) {
System.out.println( )
return null;

}

public String get (String key) {
try {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out);
dos.writeInt (RequestType.GET);
dos.writeUTF (key) ;
byte[] reply = clientProxy.invokeUnordered (out.toByteArray());
return (reply !'= null)?new String(reply) :null;
} catch (IOException ioe) {
System.out.println( )
return null;

}

public Set list() {

try {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(out);
dos.writeInt (RequestType.LIST);
byte[] reply = clientProxy.invokeUnordered (out.toByteArray());
ByteArrayInputStream in = new ByteArrayInputStream(reply);
ObjectInputStream ois = new ObjectInputStream(in);
return (Set) ois.readObject ();

} catch (IOException ioe) {
System.out.println( )
return null;

Listing 4.6. Implementation of client-side operations.
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