Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 1b
Introduction

Outline

Concepts, Terminology / Dependable Systems
and Dependability Criteria

Fault-Tolerance vs. Intrusion Tolerance
Failures/Attacks Masking and Techniques
Failure Detection vs. Intrusion Detection

Dependable Systems

* Concepts, Terminology
* Dependability Criteria

What is “Dependability” ?

* Context:
— A component provides services to clients.

— To provide services, the component may require the
services from other components

—> a component may depend on some other
component.

We say that a component C depends on C* if the
correctness of C's behavior depends on the
correctness of C*'s behavior.

What are “these” components about ?

Dependable Distributed Systems

What are components about ?

In Dependable Distributed Systems components
are (generally):

— Processes (Computations + Data-Processing)

— Channels

Dependability Properties

Base dependability properties

Availability
* Readiness for usage
Reliability
e Continuity of service delivery
Safety
— Very low probability of catastrophes

Maintainability

— How easily can a failed system be repaired

Dependability Properties

Base dependability properties

* Availability Availability and
* Readiness for usage Fault-Tolerance
* Reliability and Conditions

e Continuity of service delivery
e Safety
— Very low probability of catastrophes
* Maintainability

— How easily can a failed system be repaired

Reliability vs. Availability (1)

* Reliability R(t):

— probability that a component has been up and
running (correctly and continuously) in the time
interval [0, t]

Conventional Metrics:
e MTTF: Mean Time To Failure:
— Average time until a component fails

« MTTR: Average time it takes to repair (recover) a
failed component.

e MTBF: Mean Time Between Failures
— MTTF + MTTR

Reliability vs. Availability (2)

e Availability: A(t):

— Average fraction of time that a component has been
up and running in the interval [0, t]

* Long-Term Avaiability (or Always Available):
— (A(=)

Relating:
* A=MTTF/MTBF
=> A=MTTF/(MTTF + MTTR)

Reliability vs. Availability (3)

* Important Observation:
— Reliability and availability make sense:

— If we have an accurate notion of what a failure
actually is

— Requires a “very well-defined” Failure Model,
related to the System Model and Design

— => Reliability vs. Availability Tradeoffs BY DESIGN !

Terminology: Let’s start by Failures

Term

Failure

Error

Fault

Description
May occur when a

component is not living up to
its specifications

Part of a component that
may lead to a failure

The cause of an error

Example

A crashed program

A programming bug

A sloppy programmer

Terminology: Let’s start by Failures

Term

Fault
prevention

Fault
tolerance

Fault removal

Fault
forecasting

Description

Prevent the occurrence
of a fault

Build a component such
that it can mask the
occurrence of a fault

Reduce the presence,
number, or seriousness
of a fault

Estimate current
presence, future
incidence, and
consequences of faults

Example

Don't hire sloppy
programmers

Build each component by
two independent
programmers

Get rid of sloppy
programmers

Estimate how a recruiter is
doing when it comes to
hiring sloppy programmers

Failure Models

Generic Characterization

Failures
Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures

Typology (as ref. in Andrew Tanenbaum, Maarten Van Steen,
Distributed Systems - Principles and Paradigms, Chap. 7 — Fault Tolerance (2"¢ Edition,

13

Failure Models
> Crash Failures

Failures
Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures

v

Halt, But Correct Behavior until halting

14

Failure Models
> Omission Failures

Failures
Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures

!

Failure in Sending or Receiving Messages
Recv Omissions: Correctly Sent Messages are not Received
Send Omissions: Messages not sent correctly (that should have)

15

Failure Models
> Timing Failures

|

Failures
Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures

Correct Output, but provided by outside a specific time interval
Performance Perceived Failures: Component Answer too Slow

16

Failure Models
> Response Failures

Failures

Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures l

Incorrect output, but cannot be accounted to another component

> Value Failures: wrong output values
> State-Transition Failures: deviation from correct flow of control

(Note: this failure may initially not even be observable)

Failure Models
> Arbitrary Failures

Failures
Crash General || Timming||Response | |Arbitrary
Failures | | Omission | | Failures || Failures Failures
Failures

|

Any (or any combination of) failure may occur, perhaps even
unnoticed (silent failures) or not (noticed or detectable failures)

18

Failure Models

Type of failure

Description

Crash failure

A server halts, but is working correctly until it halts

Omission failure
Receive omission
Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure

A server’s response lies outside the specified time interval

Response failure
Value failure
State transition failure

A server’s response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure

A server may produce arbitrary responses at arbitrary times

Tanenbaum & Van Steen, Distributed Systems: Principles and
Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved.
0-13-239227-5

Failure Masking by Redundancy

® ® ©

\Voter

Systems: Principles and Paradigms, 2e, (c)
2007 Prentice-Hall, Inc. All rights reserved.
0-13-239227-5

Flat Groups versus Hierarchical Groups

Flat group

Hierarchical group Coordinator

(a) Communication in a flat group.
(b) Communication in a simple hierarchical group.

Dependability Properties:
Dependability vs. Security

Dependability vs. -
Availability and Dependability vs.
Reliability Guarantees Security Guarantees

* Availability
* Reliability
e Safety

* Maintainability ?

Availability and o
Fault-Tolerance
and Conditions

Dependability vs. Security

* Omission / Response Failures

— A component fails to take an action that it should
have taken

e Commission Failures

— A component takes an action that it should not
have taken, as a deviation to the expected correct
behaviour

Not only accidentally But as Deliberate Failires

Dependability vs. Security

* Deliberate Failures, be they omission or
commission failures, stretch out to the field of

security

— No accidental failures but induced failures by
adveraries

e So...

— There may actually be a “thin line” between
Availability, Reliability and Security as dimensions

of Dependability

Dependability vs. Security

* “Faces” in the same coin
* Challenge/Trend: Faces in the same solution ?

Availability Security
and Reliability Properties
Properties F

, Intrusion
Fault 4 Tolerance

Tolerance and
Availability

Fault Tolerance: Halting Failures

* Scenario:
* Cno longer perceives any activity from C*

* A Halting Failure?

— Distinguishing between a crash or omission/
timing failure may be impossible

— In what circumstances ?

Fault Tolerance: Halting Failures

In what circumstances ?

— Asynchronous system: no assumptions about
process execution speeds or message delivery
times
e = cannot reliably detect crash failures.

— Synchronous system: process execution speeds
and message delivery times are bounded

e = we can reliably detect omission and timing failures.

27

Fault Tolerance: Halting Failures

* |n practice we have partially synchronous
systems:

— most of the time, we can assume the system to be
synchronous,

— yet there is no bound on the time that a system is
asynchronous

 — can normally reliably detect crash failures.

Fault Tolerance: Halting Failures

Assumptions we can make:

* Fail-stop: Crash failures, but reliably detectable

* Fail-noisy: Crash failures, eventually reliably
detectable

* Fail-silent: Omission or crash failures: clients
cannot tell what went wrong.

* Fail-safe: Arbitrary, yet benign failures (can't do
any harm).

 Fail-arbitrary: Arbitrary, with malicious failures

29

Groups and Failure Masking

e k-Fault-tolerant group:

— When a group can mask any k concurrent
member failures

— k is called degree of fault tolerance.

Dependable Systems

* Faut Tolerance, Agreement and Consensus
 // See also specific materials on the topic

Week 2

Agreement in Faulty Systems

* Possible cases:
1.Synchronous versus asynchronous systems.
2.Communication delay is bounded or not.
3.Message delivery is ordered or not.

4.Message transmission is done through
unicasting or multicasting.

Process behavior

Agreement in Faulty Systems (2)

Synchronous

Asynchronous

{
{

Unordered
/"——ﬂ/% /—_'/R

Message ordering

Ordered

X
X
X X X X
X X
Unicast Multicast Unicast Multicast

Message transmission

Bounded
Unbounded

Bounded

Unbounded

Aejap uonesiunwwo)

Agreement in Faulty Systems (3)

(e
24

Faulty process

(@)

* The Byzantine agreement problem for three
non-faulty and one faulty process. (a) Each process
sends their value to the others.

Agreement in Faulty Systems (4)

1 Got(1,2,x, 4) 1 Got 2 Got 4 Got

2 Got(1,2,y, 4) (1,2,y,4) (1,2, x4) (1,2, x,4)
3 Got(1, 2,3,4) (a,b, c,d) (e, f, g,h) (1,2, vy,4)
4 Got(1,2,z, 4) 1,2, z,4) (1,2,z,4) (i, j, k1)

(b) (c)

 The Byzantine agreement problem for three
nonfaulty and one faulty process.

— (b) The vectors that
each process assembles based on (a).

— (c) The vectors that each process receives in step 3.

Agreement in Faulty Systems (5)

Faulty process

Groups and Failure Masking

How large must a k-fault-tolerant group be ?
* With halting failures (crash/omission/timing
failures):

— we need k+1 members: no member will produce
an incorrect result, so the result of one member is
good enough.

* With arbitrary failures:

— we need 2k+1 members: the correct result can be
obtained only through a majority vote.

Groups and Failure Masking

Important:
* All members are identical
* All members process commands in the same order

Result:

* Only then do we know that all processes are
programmed to do exactly the same thing.

Observation

* The processes need to have consensus on
which command to execute next

Flooding-based consensus

e Assume:
— Fail-crash semantics
— Reliable failure detection

— Unreliable communication

* Basicidea:
— Processes multicast their proposed operations

— All apply the same selection procedure - all
process will execute the same if no failures occur

e Suppose a process crashes before completing
its multicast

P1

P2

P3

P4

Flooding-based consensus

P1 crashes P2 has received all proposed
commands and decides

P3 and P4 have received all
proposed commands and take
same decision as P2

40

Relevance for Intrusion Tolerance
Protocols and Services
* Replication (ex., SMR)

e Consistency guarantees
— Consistency Models, PAXOS, PAXOS-Variants

* Consistency vs. Performance

— Role of Eventual Consistency Models

PAXOS

e Assumptions (rather weak ones):
— An asynchronous system

— Communication may be unreliable (meaning that
messages may be lost, duplicated, or reordered)

— Corrupted messages are detectable (and can thus
be discarded)

— All operations are deterministic
— Process may exhibit halting failures,

* but not arbitrary failures, nor do they collude.

Essential PAXOS

* A collection of (replicated) threads,
collectively fulfilling the following roles:

— Client: a thread that requests to have an
operation performed

— Learner: a thread that eventually performs an
operation

— Acceptor: a thread that operates in a quorum to
vote for the

— Proposer: a thread that takes a client's request
and attempts to have the requested operation
accepted for execution

Essential PAXOS: Base Properties

» Safety (nothing bad will happen):
— Only proposed operations will be learned

— At most one operation will be learned (and
subsequently executed before a next operation is

learned)
* Liveness (something good will eventually
happen):
— |If sufficient processes remain nonfaulty, then a
proposed operation will
— eventually be learned (and thus executed)

The PAXOS Environment ...

Clients

<

Single client request/response

C

1

Other request

Proposer Acceptor Learner

Server process

45

Essential PAXOS

* New for some of you ?
* Review for others

— => REVIEW next

— More on WEEK 2

