Confiabilidade de Sistemas Distribuídos Dependable Distributed Systems

DI-FCT-UNL, Henrique Domingos, Nuno Preguiça

Lect. 2 State-machine replication

2015/2016, 2nd SEM

MIEI

Mestrado Integrado em Engenharia Informática

Outline

- Replication as basic mechanism for dependability
- Replication models
- Consensus
- Paxos

What to do in a crash fault?

What to do in a crash fault?

client server

What to do in a crash fault?

 If the service (and data) are replicated in multiple machines, it should be possible to tolerate faults

Replication models: read/write register

- Each server (replica):
 - Maintains a copy of the service state
 - Exports two operations:
 - read() returns value previously written
 - write(val) writes val, returning when operation is completed

Read/write register replication

- 1. Service is replicated
- Operations execute in a quorum of replicas and provide the illusion of a single replica (atomicity)

Quorum system

Given a set of replicas P={p₁,p₂,...,p_n}, a
 quorum system is a set Q={q₁,q₂,...,q_m} of ubsets of P, such that i,j, q_i q_j

Majority

 All sets of the quorum system must include more tha half of the replicas

```
- Given n = |P|, q_i, |q_i| > n/2
```

- Properties
 - All operations need to access the same number of replicas

Read-write quorum system

- A read-write quorum system is a pair of sets
 R={r₁,r₂,...,r_m}, W={w₁,w₂,...,w_r}, of subsets of P, such that:
 - i,j, r_i w_i (read intersects write)
 - i,j, w_i w_i (write intersects write)

Read one / write all

 Every single replica is a read quorum, all replicas are included in the write quorum

- Properties
 - Very light read; very heavy writes

Other quorum systems?

Algorithm ABD [Attiya, Bar-Noy, Dolev]

- Assumptions: asynchronous system, reliable channels
- Requires 2f+1 replicas to tolerate f crash faults
 - Safety always guaranteed
 - Liveness only in execution with less than f faults

ABD: State and write algorithm

- State
 - $val_i \rightarrow value of the variable, initially v0$
 - $tag \rightarrow pair < number of sequence, id > initially < 0.0 > 1.0 =$
 - <s1,i1> > <s2,i2> iff s1 > s2 || (s1 == s2 & i1> i2)
- Client c : Write(v)
 - Step 1:

Send(<read-tag>) to all processes (or to a quroum)

Wait for a quorum Q of replies

Let segmax = max{sn: <sn,id> Q}

– Step 2:

Send(<write(<seqmax+1,c>,v)>) to all processes (or to a quroum)

Wait for a quorum of acks

ABD: Algorithm for replica i

- on_recv(<read_tag>)
 - Return <tagi>
- on_recv(<write(new-tag,new-val)>)
 - If new-tag > tagi then
 - tagi = new tag
 - val = new-val
 - Return ack
- on_recv(<read>)
 - Return <tagi, vali>

ABD: Algorithm for read

- Client c : Read()
 - Step 1:

Send(<read>) to all processes (or to a quroum)

Wait for a quorum Q of replies

Let <tagmax, valmax> Q be the reply with largest tagmax

– Step 2:

Send(<write(tagmax, valmax) >) to all processes (or to a quroum)

Wait for a quorum of acks

Return valmax

Is all this complexity necessary?

- How does ABD protcol addresses the following challenges?
 - On concurrent writes, it is necessary to decide which value to keep
 - After a read returns some value, a read executed after must not return na older value
 - Note that reads execute concurrently with writes that are being executed and may fail in the middle of execution

Replication models: state-machine replication (SMR)

- Each server (replica):
 - Maintains a copy of the service state
 - Exports a set of operations O
- Each operation:
 - Has arguments (input)
 - Generates a result (output)
 - Makes a state transition in the server (i.e. change its internal state)

Determinism

 An operation is deterministic if the result and state transition it generate depends exclusively of the initial state and the operation arguments.

State machine replication (SMR)

- 1. Service is deterministic (i.e., all operation are deterministic)
- 2. Service is replicated
- 3. All correct replicas execute the same sequence of operations

Central requirement for SMR

All correct replicas execute the same sequence of operations

Necessary to decide the order of execution of operations

Consensus

- Inputs: each process has its initial proposal in variable
 V_i
- Outputs: each process has an output variable decision, initially null
- C1 [Validity] If all processes have v_i = v, then v is the only allowed output
- C2 [Agreement] Two correct processes cannot decide different values
- C3 [Termination] All correct processes eventually decide
- C4[integrity] If a correct process decides v, then v was the initial proposal of some process

Central requirement for SMR

All correct replicas execute the same sequence of operations

- Necessary to decide the order of execution of operations
- Protocol:
 - Servers run a consensus protocols to decide the next operation to execute

FLP result

- There is no deterministic protocol to solve consensus in an asynchronous system in which a single process can fail by crash
 - Fisher, Lynch, and Paterson. Impossibility of distributed consensus with one faulty process.
 JACM, Vol. 32, no. 2, April 1985, pp. 374-382

Does this mean that SMR is a good idea that cannot be implemented in practice?

PAXOS

- Assumptions (rather weak ones):
 - An asynchronous system
 - Communication may be unreliable (meaning that messages may be lost, duplicated, or reordered)
 - Corrupted messages are detectable (and can thus be discarded)
 - All operations are deterministic
 - Process may exhibit halting failures,
 - but not arbitrary failures, nor do they collude.

Essential PAXOS

- A collection of (replicated) threads,
 collectively fulfilling the following roles:
 - Client: a thread that requests to have an operation performed
 - Learner: a thread that eventually performs an operation
 - Acceptor: a thread that operates in a quorum to vote for the
 - Proposer: a thread that takes a client's request and attempts to have the requested operation accepted for execution

Essential PAXOS: Base Properties

Safety (nothing bad will happen):

- Only proposed operations will be learned
- At most one operation will be learned (and subsequently executed before a next operation is learned)

Liveness (something good will eventually happen):

- If sufficient processes remain nonfaulty, then a proposed operation will
- eventually be learned (and thus executed)

Essential PAXOS

- For your Self-Study
- For your Self-Revision

Paxos: proposer

```
PROPOSE(v)
  choose unique n, higher than any n seen so far
  send PREPARE(n) to all nodes
  if PREPARE_OK(na, va) from majority then
     va = va with highest na (or choose v otherwise)
  send ACCEPT (n, va) to all
  if ACCEPT_OK(n) from majority then
     send DECIDED(va) to all
```

Paxos: acceptor

```
State: np (highest prepare), na, va (highest accept)
/* This state is maintained in stable storage */
PREPARE (n)
  if n > np then
     np = n // will not accept anything <n</pre>
     reply <PREPARE OK,na,va>
ACCEPT(n, v)
  if n >= np then
    na = n
    va = v
    reply with <ACCEPT OK, n>
```

Learner

 Learn a value when receive the confirmation of the value from a quorum of processes

- For your Self-Study
- For your Self-Revision

Liveness not guaranteed

