Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 2
State-machine replication

Outline

Replication as basic mechanism for
dependability

Replication models
Consensus
Paxos

What to do in a crash fault?

o

client %

What to do in a crash fault?

o

client %

What to do in a crash fault?

* |f the service (and data) are replicated in
multiple machines, it should be possible to
tolerate faults

Replication models: read/write
register

e Each server (replica):
— Maintains a copy of the service state
— Exports two operations:

* read() — returnsvalue previously written

e write(val) —writesval, returning when operation is
completed

Read/write register replication

1. Service is replicated

2. Operations execute in a quorum of replicas and
provide the illusion of a single replica (atomicity)

= =

=
Client \& |

Reque%jReply

Replicas

Quorum system

* Given a set of replicas P={p4,p,,---,P,,}, @
quorum system is a set Q={q,,q9,,...,9,,} Of
ubsets of P, such that i,j, g; q;

Majority

* All sets of the quorum system must include
more tha half of the replicas

—Givenn=|P |, q,|q|>n/2

* Properties

— All operations need to access the same number of
replicas

Read-write quorum system

* Aread-write guorum system is a pair of sets
R={r,,ry,...,rn}, W={w,,w,,...,w.}, of subsets of P, such
that :

— LW,

— L, wpw, (write intersects write)

(read intersects write)

Read one / write all

* Every single replica is a read quorum, all
replicas are included in the write quorum

* Properties
— Very light read; very heavy writes

Other quorum systems?

Algorithm ABD [Attiya, Bar-Noy, Dolev]

* Assumptions: asynchronous system, reliable
channels

* Requires 2f+1 replicas to tolerate f crash faults

— Safety always guaranteed
— Livenessonly in execution with less than f faults

ABD: State and write algorithm

* State
— vali =2 value of the variable, initially vO
— tagi =2 pair <number of sequence,id>initially <0,0>
e <s1,i1> ><s2,i2>iff s1>s2 || (s1==52 & i1>i2)

* Client c: Write(v)
— Step 1.
Send(<read-tag>) to all processes (or toa quroum)
Wait for a quorum Q of replies
Let segmax = max{sn :<sn,id> Q}
— Step 2:
Send(<write(<segmax+1,c>,v)>)to all processes (or to a quroum)
Wait for a quorum of acks

ABD: Algorithm for replica |

 on_recv(<read tag>)
— Return <tag>

* on_recv(<write(new-tag,new-val)>)
— If new-tag > tagi then
e tagi= newtag
* val = new-val
— Return ack

* on_recv(<read>)
— Return <tag;,vali>

ABD: Algorithm for read

* Client c: Read()
— Step 1:
Send(<read>) to all processes (or toa quroum)
Wait for a quorum Q of replies

Let <tagmax,valmax> Q be the reply with largest tagmax
— Step 2:

Send(<write(tagmax,valmax)>) to all processes (or to a
guroum)

Wait for a quorum of acks
Return valmax

Is all this complexity necessary?

* How does ABD protcol addresses the following
challenges?

— On concurrent writes, it is necessary to decide
which value to keep

— After a read returns some value, a read executed
after must not return na older value
* Note that reads execute concurrently with writes that

are being executed and may fail in the middle of
execution

Replication models: state-machine
replication (SMR)

* Each server (replica):
— Maintains a copy of the service state
— Exports a set of operations O

* Each operation:
— Has arguments (input)
— Generates a result (output)

— Makes a state transition in the server (i.e. change
its internal state)

Determinism

* An operation is deterministic if the result and
state transition it generate depends
exclusively of the initial state and the
operation arguments.

State machine replication (SMR)

1. Service is deterministic (i.e., all operation are
deterministic)

2. Service is replicated
3. All correct replicas execute the same sequence of

operations
Reque%jReply

Y
Client \\A& |

Replicas

Central requirement for SMR

All correct replicas execute the same sequence
of operations

* Necessary to decide the order of execution of
operations

Consensus

Inputs: each process has its initial proposal in variable
Vi

Outputs: each process has an output variable decision,
initially null

C1 [Validity] If all processes have v, = v, then v is the
only allowed output

C2 [Agreement] Two correct processes cannot decide
different values

C3 [Termination] All correct processes eventually
decide

C4dlintegrity] If a correct process decides v, then v was
the initial proposal of some process

Central requirement for SMR

All correct replicas execute the same sequence
of operations

* Necessary to decide the order of execution of
operations

* Protocol:

— Servers run a consensus protocols to decide the
next operation to execute

FLP result

* Thereis no deterministic protocol to solve
consensus in an asynchronous system in which
a single process can fail by crash

— Fisher, Lynch, and Paterson. Impossibility of
distributed consensus with one faulty process.
JACM, Vol. 32, no. 2, April 1985, pp. 374-382

Does this mean that SMR is a good
idea that cannot be implemented
in practice?

PAXOS

* Assumptions (rather weak ones):
— An asynchronous system

— Communication may be unreliable (meaning that
messages may be lost, duplicated, or reordered)

— Corrupted messages are detectable (and can thus
be discarded)

— All operations are deterministic
— Process may exhibit halting failures,
* but not arbitrary failures, nor do they collude.

Essential PAXOS

* A collection of (replicated) threads,
collectively fulfilling the following roles:

— Client: a thread that requests to have an
operation performed

— Learner: a thread that eventually performs an
operation

— Acceptor: a thread that operates in a quorum to
vote for the

— Proposer: a thread that takes a client's request
and attempts to have the requested operation
accepted for execution

Essential PAXOS: Base Properties

» Safety (nothing bad will happen):
— Only proposed operations will be learned

— At most one operation will be learned (and
subsequently executed before a next operation is
learned)

* Liveness (something good will eventually
happen):

— If sufficient processes remain nonfaulty, then a
proposed operation will

— eventually be learned (and thus executed)

Essential PAXOS

* For your Self-Study

* For your Self-Revision

Paxos: proposer

PROPOSE (V)
choose unique n, higher than any n seen so far
send PREPARE (n) to all nodes
if PREPARE OK(na, va) from majority then
va = va with highest na (or choose v otherwise)
send ACCEPT (n, wva) to all
if ACCEPT OK(n) from majority then
send DECIDED (va) to all

Paxos: acceptor

State: np (highest prepare), na, va (highest accept)
/* This state is maintained in stable storage */

PREPARE (n)
if n > np then
np = n // will not accept anything <n
reply <PREPARE OK, na,va>

ACCEPT (n, wv)
if n >= np then
na = n
va = v
reply with <ACCEPT OK,6 n>

Learner

e Learn a value when receive the confirmation
of the value from a quorum of processes

Essential PAXOS: Normal Case

X C,0 p,l,0 0

© '® O
A A
- ™
® '® O
A /
- ™
® ‘® O

Essential PAXOS: Normal Case

prepare(1)

prepare(

o

Essential PAXOS: Normal Case

prom(1

Essential PAXOS: Normal Case

accept(1,x)

accept(1,x)

Essential PAXOS: Normal Case

=
x ® ® ©

I

® ©

B E P
® ©

Essential PAXOS: Normal Case

Essential PAXOS: Problematic Case

* For your Self-Study

* For your Self-Revision

Essential PAXOS: Problematic

prepare(1)

38

Essential PAXOS: Problematic

prepare(1)

Essential PAXOS: Problematic

prom(1,-,-

40

Essential PAXOS: Problematic

prepare(2

41

Essential PAXOS: Problematic

prepare(2)

42

Essential PAXOS: Problematic

43

Essential PAXOS: Problematic

accept(1,x)

44

Essential PAXOS: Problematic

learn(x)

45

Essential PAXOS: Problematic

46

Essential PAXOS: Problematic

=
x ® ® ©
2 E P

® ©

"
z ® ® ©

47

Essential PAXOS: Problematic

=
x ® ® ©

prepare(3)

.
y ® ® ©
(3)

prepare

48

Essential PAXOS: Problematic

C
x ® ® ©

prepare(3)

-
y ® ® O
)

prepare(3

49

Essential PAXOS: Problematic

promise(3,1,x)

.
y ©

prnmlse

50

Essential PAXOS: Problematic

promise(3,1,x)

.
y (D)

prnmlse

51

Essential PAXOS: Problematic

accept(3,x)

52

Essential PAXOS: Problematic

accept(3.x)

53

Essential PAXOS: Problematic

54

P1

Al

A2

A3

P2

Liveness not guaranteed

L N A .
N W N N

\ 7@ \\

