Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 3
Byzantine Fault-tolerance

Last lecture: Read/write register

replication

1. Service is replicated

2. Operations execute in a quorum of replicas and
provide the illusion of a single replica (atomicity)

e

= =

=
Client \& |

Reque%jReply

Replicas

Last lecture: State machine replication
(SMR)

1. Service is deterministic (i.e., all operation are
deterministic)

2. Service is replicated
3. All correct replicas execute the same sequence of

operations
Reque%jReply

e

= =

=
Client \& |

Replicas

Paxos

1,)

CEPT_OK(

V)

1,))

RE(1)

ARE_OK(

A3

Today

* Byzantine fault model

— Byzantine consensus

* Byzantine fau

e Byzantine fau
replication

t-1o
t-1o

erant read/write register

erant state-machine

Byzantine fault model

* Processes that fail can exhibit arbitrary
behavior

— Return wrong replies

— Take too long to execute a computation step
— Do not follow the communication protocol
— Collude with other processes

Why is the model interesting?

* Model addresses behavior due to:
— Software bugs
— Memory/disk corruption
— Overloaded machine

* Additionally addresses malicious behavior of
machines controlled by an attacker

Common assumption when dealing
with Byzantine faults

Only a subset of the machines exhibits
arbitrary behavior

It is impossible to break cryptographic
primitices

— Cannot lead to hash collisions

— Cannot forge digital signatures nor authenticators

Cannot directly change the state of other
processes

Can replay old authenticated messages

Minimum number of processes for
consensus

* [tisimpossible to solve consensus with n
processes and f Byzantine faults if n 3f

Byzantine Consensus

Inputs: each process has its initial proposal in variable
Vi

Outputs: each process has an output variable decision,
initially null

C1 [Validity] If all correct processes have v, =v, thenv is
the only allowed output

C2 [Agreement] Two correct processes cannot decide
different values

C3 [Termination] All correct processes eventually
decide

C4dlintegrity] If a correct process decides v, then v was
the initial proposal of some process

Today

* Byzantine fault-tolerant read/write register

* Byzantine fault-tolerant state-machine
replication

ABD: State and write algorithm

* State
— vali =2 value of the variable, initially vO

— tagi =2 pair <number of sequence,id>initially <0,0>

* <s1il> ><s2,i2>iff s1>52 || (s1==52 p oplem 1

If process can fake their identity,
e Client c : Write(v) how to know that we have received
— Step 1: a quorum of replies?

Send(<read-tag>) to all processes (or toa quroum)
Wait for a quorum Q of replies
Let segmax = max{sn :<sn,id> Q}
— Step 2: Solution
" Use authenticated channels
Send(<write(<segmax+1,c>,v)>) to all preccoocoror oo vurowryg

Wait for a quorum of acks

ABD: State and write algorithm

e State

— vali =2 value of the variable, initially vO

— tagi =2 pair <number of sequence,id>initially <0,0>

* <s1il> ><s2,i2>iffs1>s2 || (s1==52 5 1oy

Replica in the intersection of two
e Client c : Write(v) quorums can be Byzantine

— Step 1.

Send(<read-tag>) to all processes (or toa quroum)
Wait for a quorum Q of replies

Let segmax = max{sn :<sn,id> Q}

— Step 2: Solution

: Need to have larger quorums
Send(<write(<segmax+1,c>,v)>) to all preccoocoyor o - \1?,. v

Wait for a quorum of acks

Byzantine quorums

What is the size of qguorums and the number of replicas?

(i) Quorums cannot have more than n-f replicas. Why?

Otherwise it could be impossible to get a quorum:
Byzantine replicas may never reply

(ii) Every two quorums must intersectin at least one
correctreplica

(i) Q <= N-f
(i) N—(N-Q) — (N-Q) >=f+1

Optimal solution: N = 3f+1, Q=2f+1

s this enough for read/write registers?

* Consider there are no writes executing

* Which (type of) values can be returned in a
read quroum?
— Correct and actual value (at least how many?)
— Correct but old values
— Incorrect values (returned by Byzantine replicas)

Example

Solution: clients sign writes

In the write, the client signs the pair
<tag,valor>

Replicas store and return the signature

On read, the client discards replies with invalid
signatures

Need to send nonce with each request/reply
to avoid “replay attacks”

Alternative solution: larger quorums

Guarantee that correct actual values have larger votes
that incorrect votes

Quorums must intersect in 2f+1 replicas

— Intersection has, in the worst case, f+1 correct replicas and
f Byzantine

Requires n=4f+1, Q=3f+1

Read result is the largest value returned by >= f+1
replicas

Problem: it might be impossible to find f+1 equal
values. In which case?

Example

ABD: State and write algorithm

* State
— vali = value of the variable, initially vO
— tagi =2 pair <number of sequence,id> initially <0,0>
— sigi = signature of <vali, tagi>

e (Clientc: Write(v) Why is te nonce needed?

Generate nonce

— Step 1:

Send(<read-tag(nonce)>) to all processes (or to a quroum)

Wait for a quorum Q of valid replies (with nonce and authenticated)

Let segmax = max{sn : <sn,id,sig> Q}

— Step 2:

Send(<write(<seqgmax+1,c>,v,sig,nonce)>) to all processes (or to a quroum) ,
with sig = sign(<<seqgmax+1,c>,v>)

Wait for a quorum of valid acks with the given nonce

ABD: Algorithm for replica |

* on_recv(<read_tag(nonce)>)
— Return <tagi,vali, sigi, nonce>

* on_recv(<write(new-tag,new-val,new-sig,nonce)>)
— If valid(newsig,<new-tag,new-val>) new-tag > tagi then
e tagi = new tag
* vali = new-val
* sSigi = new-sig
— Return ack

* on_recv(<read(nonce)>)
— Return <tagj,vali,sig,nonce>

ABD: Algorithm for read

* Client c: Read()

Generate nonce

— Step 1:

Send(<read(nonce)>)to all processes (or to a quroum)

Wait for a quorum Q of valid replies (with nonce and authenticated)
Let <tagmax,valmax,sigmax> Q be the reply with largest tagmax
— Step 2:

Send(<write(tagmax,valmax,sigmax,nonce)>) to all processes (or
toa quroum)

Wait for a quorum of valid acks

Return valmax

Today

* Byzantine fault-tolerant state-machine
replication

Pratical Byzantine Fault-Tolerance
(BFT)

* Replication algorithm that tolerates Byzantine faults

— State-machinereplication
* The same sequence of operationsis executed in all replicas
* Guaranteesthatall coorrect replicas will converge to the same state

— Can be used as a basis for repplicatingany service (e.g. NFS, DB)
* Operationscan be generic, assuming that they are deterministic

* Firstalgorithm to show that Byzantine fault-tolerance can
be practical

— i.e., thatitcan be implementedwithout prohibitive overhead

e System requires 3f+1 nodes to tolerate f failures

System model

* Asynchronous distributed system

— Network may fail to deliver messages, delay them, duplicate
them, or deliverthem out of order

— If messages are retransmitted, they will be eventually delivered
to the destination

* Byzantine fault model
— Nodes may behave arbitrarily
— Faulty nodesmay collude forattacking the system

e Uses public-key cryptography: all messages are signed
— Nodes know each other’s public key
— Attacker cannotsubvert cryptographictechniquesused

Protocol basis

Protocol proceeds in a sequence of views
— All views have the same nodes

For a given view, a particular node is designated as the
primary node; other nodes are backup nodes

— Primary=vmodn
e Nisnumberof nodes
e Vistheview nhumber

Each node maintains the following state
— Log

— View number

— Service state

Protocol basis (cont.ed)

* Protocol strategy
— Primary runs the protocolin the normal case

— Replicas watch the primary and do a view change if it
fails

* Protocolin three phases
— Client sends message to primary
— Pre-prepare: Primary proposesan order
— Prepare: Backup copies agree on #
— Commit: agree to commit
— Replicas reply directly to the client

Protocol: normal case

Request IPre—Prepare Fl’repare ICommit Beply
Client : : : :
Primary \Ai i i i
Replica 2 i i i i
| | | |
Replica 3 i i i i
Replica 4 ; ; ; ;

* Client starts by sending the request to the expected
primary

* Primary checkif the request is valid

Protocol: normal case

|

Client : :

| |

| |

Replica 2 : :
|

|

.

Request IPre—Prepare Prepare Commit Beply
l
|
|
|
|
|
|
|
!
|
|
|
|
I

|
Replica 3 ! '
| \4|
| |
Replica 4 : :

* Primary sends pre-prepare message to all

* Pre-prepare contains <view#,seq##,0p>
— Primary records operation in log as pre-prepared

Protocol: normal case

Request Pre-Prepare Prepare Commit Beply
l
|
|
|
|
|
|
|
!
|
|
|
|
I

Client

Primary

Replica 2

Replica 3

|
|
|
|
|
|
|
|
|
|
|
i
Replica 4 i

* Replicas check the pre-prepare and if it is ok (signed, no
previous pre-prepare with the same seq #):
— Record operationinlog as pre-prepared
— Send prepare messagesto all
— Preparefromreplicai contains<i,view#,seg#,op>

Protocol: normal case

Client

Primary

Replica 2

Replica 3

Request Pre-Prepare Prepare ICommit Beply
| |
| |
| |
| |

|
|
|
|
|
i
Replica 4 |

* Replicas wait for 2f+1 matching prepares
— Record operationin log as prepared
— Send commit message to all
— Commit contains <i,view#,seq#,0p>

What does a replica know when it has received 2f+1 matching prepares?
It knows that f+1 correct replicas agreed on ordering the operation with
the given seq#

Protocol: normal case

Request Pre-Prepare

Client

Primary

Replica 2

Replica 3

repare ICommit Beply

| |

| |

| |

| |

|

|

|

|

|

i

Replica 4 |

* Replicas wait for 2f+1 matching prepares
— Record operationin log as prepared
— Send commit message to all
— Commit contains <i,view#,seq#,0p>

Why cannot execute operation immediately?
In a view change, the information that an order has been agreed might be
lost.

Protocol: normal case

Request IPre—Prepare Fl’repare ICommit Beply
Client : : : :m
Primary i i : i
Replica 2 i : i /
| | |
Replica 3 i : i /
Replica 4 ; : ;

e Replicas wait for 2f+1 matching commits
— Record operationin log as committed
— Execute the operation
— Send result to the client

What does a replica know when it has received 2f+1 matching commits?
It knows that f+1 correct replicas prepared to execute the operation

Protocol: normal case

Request IPre—Prepare Fl’repare ICommit Beply
Client : : : :%
Primary i i : i
Replica 2 i : i /
| | |
Replica 3 i : i /
Replica 4 ; : ;

* Client waits for f+1 matching replies

What does the client know when it has received f+1 matching replies?

It knows that: f+1 correct replicas prepared to execute the operation with
some seg# and that the returned result is correct (as it has been returned
by at least one correct replica)

Correctness

e Safety:

— Correct replicas cannot execute a wrong step
(influenced by faulty ones)? Why?

e Liveness:

— It is guaranteed that the system makes progress?
Why?

Protocol: view change

* Backups watch the primary

* |f some backup suspects the Primary, it calls for a view
change

— When a backup receives a valid view change request it
starts a timer (if it is not running)

— When the timer expires, the Primary must be faulty.
Decide to change view.

— If backups receive requests from the primary, when
receiving no request, how will it be suspected?

* Clients that do not receive a reply send the request to all servers

Protocol: view change

* A backup sends a view-change message

— Requestincludes check-pointing information +
messages prepared

* When the primary of the new view receives 2f
view-change messages from other replicas

— Declares the new view

— Send a new-view message, including a proof that 2f+1
nodes decided to change the view

— The new-view message includes also messages that
were not completed in the previous view

Practical aspect

 Operation only sentin the pre-prepare message
— Other messages carry an hash of the operation
* Cryptography

— Instead of sighing every message with public key crypto, it
is possible to use na array of authenticators (hash signed
with symettric key)

Improved Performance

* Fast reads (one round trip)
— Client sends to all; they respond immediately
— Client waits for 2f+1 matching responses

