Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 4

Randomized Consensus
2015/2016, 2nd SEM

MIEI
Mestrado Integrado em Engenharia Informatica

Last lecture: Byzantine fault model

* Processes that fail can exhibit arbitrary
behavior

— Return wrong replies

— Take too long to execute a computation step
— Do not follow the communication protocol
— Collude with other processes

Byzantine fault-tolerant read/write
register
 ABD with Byzantine quorums

— Client sign requests
— Larger quorum

Byzantine fault-tolerant SMR: PBFT

Request IPre—Prepare Fl’repare ICommit IReply
. |
Client | | |m

| | |

Primary : | '
| /

Replica 2 :
| /

Replica 3 l '
|
|

Replica 4

Today

e Randomized consensus

Consensus

Inputs: each process has its initial proposal in variable
Vi

Outputs: each process has an output variable decision,
initially null

C1 [Validity] If all processes have v, = v, then v is the
only allowed output

C2 [Agreement] Two correct processes cannot decide
different values

C3 [Termination] All correct processes eventually
decide

C4dlintegrity] If a correct process decides v, then v was
the initial proposal of some process

P1

Al

A2

A3

P2

Liveness not guaranteed: Paxos

PPPPPPP (1) PREPARE_OK(1,_) ACCEPT(1,v)

N

[
¥\ J I 1\

\ % \\

Source of the impossibility

Consider n process, 1 possible fault
Each process votes on his proposal

Decide if a majority of processes vote in the
same value

Need to proceed when receiving n-1 votes,
but we can have a draw.

— Solution: execute another round
— The same outcome may occur.

Randomized Consensus

* Getting around FLP negative result for
asynchronous consensus:
— weaken the termination condition: non-faulty

orocessors must decide with some nonzero
orobability

— keep the same agreement and validity conditions

Consensus

Inputs: each process has its initial proposal in variable
Vi

Outputs: each process has an output variable decision,
initially null

C1 [Validity] If all processes have v, = v, then v is the
only allowed output

C2 [Agreement] Two correct processes cannot decide
different values

C3 [Termination] With probability 1, all correct
processes eventually decide

C4dlintegrity] If a correct process decides v, then v was
the initial proposal of some process

Randomized algorithm

M. Ben Or. “Another advantage of free choice:

completely asynchronous agreement
protocols” (PODC 1983, pp. 27-30)

— exponential number of operations per process

— With n processes, it tolerates f < n/2 faults

Algorithm idea

* An infinite repetition of asynchronous rounds
— in roundr, p only handles messages with timestamp r
— each round has two phases

— in the first phase, each p broadcasts its proposal

* The proposalisa function ofthe values collected in the
second phase of last round (in the first round, it is the input)

— in the second phase, each p broadcasts a value which
is a function of the values collected in the first phase

— decide stutters

Ben Or’s algorithm

State:
Input = boolean
output = boolean
preference = boolean
round: integer

Ben Or’s algorithm

preference < input
round < 1
while true do

end

send (1, round, preference) to all processes
wait to receive n - f (1, round, *) messages
if received n-f (1, round, v) messages then
send (2, round, v, ratify) to all processes
else
send (2, round, L) to all processes
end
wait to receive n - f (2, round, *) messages
if received a (2, round, v, ratify) message then
preference & v
if received n - f (2, round, v, ratify) messages then
output < v
end
else
preference < CoinFlip()
end
round € round +1

Validity

while true do

send (1, round, preference) to all processes
wait to receive n - f (1, round, *) messages
if received n-f(1, round, v) messages then
send (2, round, v, ratify) to all processes
else
send (2, round, L) to all processes
end
wait to receive n - f (2, round, *) messages
if received a (2, round, v, ratify) message then
preference < v
if received n - f (2, round, v, ratify)

messages then

end

output < v
end
else
preference & CoinFlip()
end
round & round +1

C1 [Validity] If all processes
havev, =v, thenv isthe only
allowed output

e Ifall processes start with
the same value, that value
is decided

Agreement

while true do C2 [Agreement] Two correct
send (1, round, preference) to all processes
wait to receive n - f (1, round, *) messages processes can not decide
if received n-f(1, round, v) messages then .
send (2, round, v, ratify) to all processes different values
else
send (2, round, L) to all processes
end]
wait to receive n - f (2, round, *) messages ® Lemma: |n a glven rOund, ad
if received a (2, round, v, ratify) message then . . -
oreference < v single value can be ratified,
if received n -f(2, round, v, ratify) at most
messages then
output & v * Corollary:Ina given round,
end
else o a single value can be
preference & CoinFlip() .
end decided at most

round & round +1
end

Validity

while true do C2 [Agreement] Two correct
send (1, round, preference) to all processes . .
processes cannotdecide different

wait to receive n - f (1, round, *) messages
if received n-f(1, round, v) messages then Val ues
send (2, round, v, ratify) to all processes

else
send (2, round, L) to all processes .
o . Lemma. After a process
wait to receive n - f (2, round, *) messages decideson a val ue, S
if received a (2, round, v, ratify) message then impossi b|e to decide 3
preference < v .
if received n - f (2, round, v, ratify) d Iffe rent Val ue
messages then ° Proof'
output & v |
end — For deciding, n-f processes had
else f ¢ Coinfiio) to send ratify
preference oinFlip)
end — All processes will vote the
round < round +1 decided value, as they have

end received at least n - 2f ratifies

Termination

while true do

C3 [Termination] All correct
send (1, round, preference) to all processes
wait to receive n - f (1, round, *) messages processes eventua“y decide

if received n-f(1, round, v) messages then . .
send (2, round, v, ratify) to all processes with prObablllty thattendsto 1
else
send (2, round, L) to all processes
end
wait to receive n - f (2, round, *) messages ® FOF the nhext rou nd

if received a (2, round, v, ratify) message then .
preference < v — some processes will vote on a

if received n—f(2, FOUI’\d, Vv, ratify) Value as a result Of a ratrfy
messages then

output & v — others will vote on a random
end value
else
2lisiElEnEs S Geli AT * Thereis some probability
end
round - round +1 that all values will be equal

end

