Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 6
Pro-Active Recovery Approach

and Intrusion Detection Systems

Last lecture (L5):
Protection with IPSec and VPNSs

— |PSec as a possible solution for orthogonal
security: protection of channels at network level

— Protection in the layer-below the transport level
channels (TCP or UDP based communication
channels)

* Transport mode vs. end-to-end security arguments
* Tunneling mode

 Different security properties (IPSec Stack, Sub-
Protocols): AH, ESP-CA, ESP-C

* VPN support
* SAs / Composition of Sas
* ISAKMP and IKE: establishment of SA parameters

Pro-Active Recovery vs. Intrusion
Prevention vs. Intrusion Detection

Conjugation: Prevention > Detection > Recovery

* Intrusion Prevention Systems (IPS)

— Preventive Solutions: including Firewall-based
approaches, traffic shapers / blocking boxes, traffic
inspection systems (with possible stateful inspection)
in different typologies and configurations

 We will discuss IPS and perimeter defenses later
* Intrusion Detection Systems (IDS)
— Intrusion detection, relevant when IPS fail

— IDS approach could allow a reactive intrusion recovery
approach

Intrusion Recovery Approach

 Main idea in the context of intrusion recovery: How to
remove intrusions, in such a way that:

— The number of compromised servers (replicas) must be
always below f

— Maintaining availability conditions (avoiding a “stop the
world” approach) and recovering compromised servers
(replicas) in the life-cycle of system operation

— How to discover compromised servers (replicas) ?

* Use of Intrusion Detectors? Reactive Approach ?

— Currently, this type of systems may not be able to be used for the
objective (in order to preserve availability)

— Some problems (remaining in the research agenda):

» Effectiveness, false positive / false negative rates (or base rate
fallacy)

» Timing assumptions-constraints, “just in time” detection and
recovery (circumvention of vulnerability window)

» Problem of Zero-Day vulnerabilities

IR: Intrusion Recovery

* Reactive Intrusion Recovery Approach

* A reactive intrusion recovery solution can be fired by
Intrusion Detectors (implemented by Software based
solutions (Intrusion Detection Components) or
orthogonal (vertical) dedicated IDS systems: HIDS, NIDS
or Honeypots (or hybridized systems)

e SW based IR deals with different directions

— From more generic to app-specific Intrusion
Detectors

IR: Intrusion Recovery
for Intrusion Tolerance

e Particularly interested in IR for Intrusion-Tolerant
Distributed Systems (Dependable Systems)

— Ex., based on SMR approach (leveraged by
CONSENSUS protocols, with reliable and secure state-
transfer support)

* Possible use of deterministic or randomized consensus
* Practical BFT protocols

— IR Approach more related to pro-active recovery

— Techniques can be conjugated with
* Periodic Rejuvenation
* Enhanced by Diversity
 Randomization

Pro-Active Recovery
for Intrusion Tolerance

* |dea: Periodically, a process for the
rejuvenation of each server (replica) is fired,
to achieve a correct state

* During the rejuvenation process:

— All the malicious modifications which caused
incorrect state or code tampering

— But the rejuvenation is done, even when no
intrusions take place

Problem ...

... and rational on “independent” failures/intrusions (1)

* Problem with tolerating f faults:

If an intelligent adversary is able to compromise f
machines, given enough time, he/she will
compromise f+1 (or more)

=>This is the base rational (starting point) for
Proactive-Recovery [Castro&Liskov,TOCS2002]

Replicas (compromised or not) are cleaned periodically,
because soon or later they will be failed / attacked

Problem ...

... and rational on “independent” failures/intrusions (2)

e But...

* PR requires local TCB components, anyway:
— Trusted real-time component (ex., timer)

— Possibly, trusted loader, Crypto module NVRAM and
RO-Storage

* TPM Assumptions: in HW TPMs
— (ex., see TPM emergent 2.0 Assumptions)

* Otherwise: the PR process may be vulnerable to
certain attack types

— Currently, some pro-active recovery systems are
vulnerable ...

Problem ...

... and rational on “independent” failures/intrusions (3)

e Other considerations

— To ensure availability (“business continuity
assumptions) you may also need 2k extra replicas
if at most k recover at the same time

Outdated !

10

Pro-Active Recovery
for Intrusion Tolerance

* Important to notice:

— The technique don’t avoid the possible vulnerability of
the system: the idea is to minimize the adversary
hypothesis in compromising the security of the
system

— In practice: the risk of compromising more than f
servers / replicas is circumvented to a vulnerability
window that depends on the rejuvenation time

— In Intrusion-Tolerance terminology, attackers trying to
compromise servers, successively, is called a MOBILE
ADVERSARY *

*) Ostrovsky, Yung, How to withstand mobile virus attacks, Proc. of 19t
ACM Symposium on Principles of Distributed Computing, 1992

Complementary for BFT or BIT

(Byzantine Intrusion Tolerance)

enforcement: DIVERSITY

e f-fault-tolerant replicated systems are useful
only if faults are not correlated

— Independent Failure / Intrusion Model
— No Collusion Attacks

* |t usually requires diverse replicas

What is DIVERSITY about ?

Different administrative domains

N-version programming (effective?)

Obfuscation, Memory randomization (effective?)

Use of different components like databases (Gashi et al, TDSC
2007), file systems (Castro et al, TOCS 2003) and operating

systems (Garcia et al, DSN’11) is effective!
— Heterogeneous Software STACKS !

What about deploying and managing diversity?

— Good news: Virtualization, (Fast-Access) RO / Encrypted Flash
Memory, SSDs, ...

What more ? Randomization

e Randomization

— Refreshing Replicas (and their Diverse Eco Systems) with
Randomization Principles

— Example: Randomized Chains of Diverse Firewalls !

Some relevant references ...

Abd-El-Malek et al. Fault-scalable Byzantine Fault- tolerant Services. SOSP’05

Cowling et al. HQ-Replication: a Hybrid Quorum Protocol for Byzantine Fault Tolerance.
OSDI'06

Kotla et al. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM TOCS 2009 (prel. SOSP’07)
Guerraoui et al. The Next 700 BFT Protocols. EuroSys’10

Amir et al. Byzantine protocols Under Attack. IEEE TDSC 2011

Levin et al. Trinc: Small Trusted Hardware for Large Distributed Systems. NSDI'09

Veronese et al. Spin One’s Wheels? Byzantine Fault Tolerance with a Spinning Primary.
SRDS’09

Gashi et al. Fault tolerance via diversity for off-the- shelf products: a study with SQL database
servers. |[EEE TDSC 2007

Garcia et al. OS Diversity for Intrusion tolerance: Myth or Reality? DSN’11

M. Castro, B. Liskov, Practical Byzantine Fault Tolerance with Pro-Active Recovery, TOCS 2002

— http://research.microsoft.com/en-us/um/people/mcastro/publications/p398-castro-bft-
tocs.pdf

Castro et al, BASE: Using Abstraction to Improve Fault Tolerance", ACM Transactions on
Computer Systems (TOC 2003)

— http://research.microsoft.com/en-us/um/people/mcastro/publications/p236-castro-
base-tocs.pdf

PBFT-PR

 The PBFT Approach was extended to support
a Pro-Active Recover approach

 The support includes 3 Base Operations:

— Rekeying (renovation of secret keys used in the
communication rounds C/S and S/S and in MAC
computations/verifications)

— Reposition of code (if compromised)
— Reposition of correct state (if compromised)

*) M. Castro, B. Liskov, Practical Byzantine Fault Tolerance and Pro-active
recovery”, ACM Transactions on Computer Systems, 20(4):398-461, Nov
2002

PBFT-PR (solution)

* Requirements for each node:

— A Cryptographic Coprocessor (storing the private key of
the replica, and providing digital signatures and
encryption/decryption without exposing keys

— NV Read-Only memory, to store public keys of the other
replicas, as well as, the recovery monitor (ex., BIOS)

— A secure timer (trusted) to fire the recovery process
(possible use of HW timers for this purpose)

— Restrictions:

* The adversary cannot have physical access to the node

* Timing hypothesis: there is a certain instant t (unknown), after
which the communication delay is below a given threshold value

Key-Refreshment

* |In each period (ex, 1 minute) a new message with
a new key is sent

* S;sendstoS;:

— {new-key, i, j, ..., {K; Ykoubsj s -+ T Fsig kerivsi

— K; ;- used for HMACs sent from §; to S

— t is a sequence counter (protecting replaying)
- HMAC Keys used for one-direction messages

Communication with the client involves one key
(bidirectional) and is distributed by the server (with a
similar message as above

Code reposition

* This operation is fired by the trusted timer

e When the timer fires:

— The recovery monitor creates a new code-image
and teh state of the replica stored in disk

— Forces a machine reboot

* To verify if everything os OK it uses secure hash-proofs
of SO and service code (SW atack to be reloaded)
stored in read-only memory

* |f the SW stack is compromised, it must be necessry to
obtain a copy of such images from other servers

State Reposition

* A protocol involving the other servers
(replicas), to determine if the state is correct
(or if it is compromised)

— If compromised:
* The new state is transferred from the other replicas

* Vulnerability window in the PBFT-PR
Tv=2Tk+Tr
Tk: maxim period for rekeying
Tr: recuperation period of the server

Another Pro-Active recovery
approach: COCA System

e COCA means Cornell On Line Certification
Authority

— Motivation: Intrusion Tolerant CA (developed in the
context of the OSASIS program)

* Provide certificates with associations
<name, public-key>

* Two base operations:
— Update // to create, update or invalidate associations
— Query // to obtain a certificate given a name

— Approach: simplicity compared with PBFT-PR

— Use of dissemination quorums, N >= 3f+1, Quorum
Size = 2f +1

COCA System

e Use of (k,N) threshold-signature cryptographic
construction (asymmetric crypto scheme), with

k=f+1
* All clients and servers know the public key of the
service, but the private key is distributed by all

the servers (as private key shares)
* A certificate signature requires a quorum k

See:
https://en.wikipedia.org/wiki/Threshold_cryptosystem

COCA Operation

Online CA

Quorum of 2f+1 servers ,
: N servers :
[S o H e
: e :
| 0 > |
: Q£ |
! &, :
; (] !
\ N>= 3f+1

-

Clients

-

Cada servidor obtem o
Certificado e assina com
a sua parte da chave
privada

23

COCA Pro-Active Recovery

* 3 operations:

— Refreshment of the Private Key Shares for each
server

— Code reposition (if compromised) | cimilar to the
— State reposition (If Compromised) PBFT-PR approach

The idea here is to avoid a MOBIEL ADVERSARY to compromise f+1 servers
In order to capture the f+1 private key shares

Refreshment based in a pro-active protocol working as a
Proactive protocol for secret sharing (COCA uses the APSS Algorithm)

COCA Pro-Active Recovery

and other Related Papers

COCA and APSS

L. Zhou, F. Schneider, R. Van Renesse, COCA: A Secure Distributed On-
Line Certification Authority, ACM Transactions on Computer Systems,
20(4): 329-368, Nov 2002 (suggested reading)

More ...

— L. Zhou, F. Schneider, R. Van Renesse, “Pro-Active Secret Sharing in
Asynchronous Systems”, TR 1877, Cornell University, Oct 2002

— C. Cachin, K. Kursawe, A. Lysyanskaya, R. Strobl, Asynchronous
Verifiable Secret Sharing and Pro-Active Cryptosystems, Proc. 9t" ACM
Conference on Computer Communications Security, 2002

— M. A. Marsh and F. B. Schneider, CODEX: A Robust and Secure Secret
Distribution System, IEEE Transactions on Dependable and Secure
Computing, 1(1): 34-47, Jan-Mar, 2004

More on Pro-Active Recovery

e Approach to a solution for TP2

— More (later) in the discussion of TP2 requirements
and objectives, possibly will involve the design,
implementation and evaluation a pro-active
recovery mechanism, as a new work direction in
evolving the initial TP1 implementation

* Together with other requirements that will be added

