Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrigue Domingos, Nuno Preguica

Lect. 9
DBMS Security
The Case for CryptDB

DBMS Security

Part |
* DBMS Security Issues
— DBMS and Security Issues
— RDBMS
e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

Part Il — Other Dimensions
Other DBMS Security DImensions
— SQL Injection Attacks
— Database Access Control
— Inference Attacks

Bibliography

* For CryptDB

— See Raluca Popa, C. Redfield, N. Zeldovich, H. Balakrisnan,
CryptDB: protecting confidentiality with encrypted query

processing, in Proc. SOSP Symposium on Operating System
Principles, 2011

e Also:
— http://dl.acm.org/citation.cfm?id=2043566
— https://css.csail.mit.edu/cryptdb/

* Stallings, Computer Security — Principles and Practice, 3™ Ed.,
Pearson

— Chap. 5 Database and Cloud Security
e Database part: pp. 155-180

DBMS Security

Part |
*e DBMS
— DBMS and Security Issues
— RDBMS
e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

Databases

e Structured collections of data, stored as possible
common data-backends for one or more applications

— Ex., Data-Layer in 3-N Tier Distributed Architectures

* Contains:
— Data items
— Relations between data items and groups of data items

* |In some cases, databases are used to manage and
store sensitive data (in the context of possible critical
applications)

— Data needs to be secured:

* access control, confidentiality, privacy issues, inference
(operations and relations)

Query Languages

* Languages providing uniform query-interface to the
database

— Standard query languages are also used to access
sensitive data and their relations

— Commonly: SQL operations, SQL Queries

Generic DBMS Architecture

DBMS View (Systemic View)

- DDL - Data Definition Language
- DDL Processor

- DDTs - Data Description Tables

- DML — Data Manipulation Language and QL
Processor

- DBMS

- Auth Tables

- Concurrency Control Tables
- Physical Database

DBMS Generic Architecture

Database
Utilities and
Tools

Data Definition
Language

DDL Processor

Database
Description
Tables

Authorization
Tables

User Applications
(data-access logics)

U

User Queries

@

DML (Data Manipulation Language)
and Query Language Processor

DBMS

Transaction
Manager

File Manager

Physical

Database

Concurrent

Access Tables

DBMS Generic Architecture

Database
Utilities and
Tools

J |7 Data Definition
Language

DDL Processor

DDL (Data Definition Language)
Database designers and administrators

Database

De;ggf’:s"’” make use of DDL:
* to define the database logical
structure

* and procedural properties
which are represented by a set of
DDTs (Database Description Tables)

DBMS Generic Architecture

Database o
Utilities and User Applications _
Tools (data-access logics) User Queries

Data Definition J |7 J |7
Language

DML (Data Manipulation Language)
and Query Language Processor

DDL Processor

Database

Description
Tables

DML (Data manipulation language)
| * Provides a powerful set of tools for application

developers

* Query languages: declarative languages designed
to support end-users and end-applications

 Data manipulations are described by the query
language statements

* Ex., SQL Language

Authorization

Tables

DBMS Generic Architecture

Database management system
* Makes use of the database description tables to
manage the physical database.
* The interface to the database:
* through a File Manager Module and a
Transaction Manager Module.

Database |

Description
Tables

DBMS

Authorization Concurrent

Tables Transaction
Manager

>
Physical
Database

File Manager Access Tables

DBMS Generic Architecture

... In addition to DDTs

Authorization Tables
Ensure the user has

permission to execute the
query language statement

on the database

(Access Control Support)

Concurrent Access tables

Prevent conflicts when
simultaneous (concurrent)
conflicting commands are
executed.

(Concurrency Control)

DBMS

Authorization

Tables

Transaction
Manager

Concurrent

File Manager Access Tables

>
Physical
Database

DBMS Security

Part |
e DBMS
> — DBMS and Security Issues
— RDBMS
e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

DB Architecture and Security Issues

e Database systems provide efficient access to large
volumes of related data that are vital to the
operation of many organizations.

e Because of their complexity and criticality, database
systems generate security requirements that are
beyond the capability of typical OS-based security
mechanisms or stand-alone security packages.

Database security

e Database attacks and countermeasures must be
considered, orthogonally to other defenses:

— Network-Access Control Services
— Firewalls and IPS - Intrusion Prevention Systems
— IDS - Intrusion Detection Systems

— Operating Systems Security Services and Mechanisms
— Software Security Mechanisms and Techniques

— Other security Management and Operational Issues in Datacenters
e Security management and risk assessment
* IT security controls, plans and procedures
* Physical and infrastructure security
* Human resources security
e Security auditing
* Legal and Ethical Aspects

Database security problems

Primary concerns

e Security services and mechanisms, as
countermeasures against:
— Attacks by possible (malicious) SQL injection
— Inband SQLi attacks
— Inferential attacks
— Out-of-Band attacks
— Data Access Control and Granularity Issues
— Data-confidentiality and Privacy Concerns

e Particularly relevant for outsourced databases or
Cloud-Based DBaaS environments
— Confidentiality, Honest-but-curious adversary models
— How to outsource DBs without outsource Data Control ?

DBMS

Granularity Issues and Access Control

DB Architecture and Security Issues

— Base Security Services for the Data-Access Layer
(orthogonal to OSes, Applications, Middleware
Logics) must be supported with appropriate “fine-
grain access control enforcement”

— Access Control Requirements for RDBMS Model

Access Control Granularity Issues

Granularity and access-control enforcements and
flexibility Issues

Operating system security mechanisms typically control with
DAC models read/write/execution access to entire files
(the base object-granularity), under OS-User granularity

— OS security mechanisms could be used to allow a user
to read or write information in, for example, a
personnel file, fils sharing authorizations etc ...

* But those mechanisms could not be used to limit
access to specific records or fields or specific
entries in that file (as a file containing specific data-
structures)

DB Access Control Granularity

 What if only support file-grain access control to
be specified ?

* Ok for single tables as flat files ? Problem ?

Example:
A typical telephone directory contains:

one entry for each subscriber with columns for name,
telephone number, and address

Subscriber Name Telef. Address

Limitation on using single tables (as
flat files) in a DBMS

* For the telephone directory, there might be a
number of subscribers with the same name, but
the telephone numbers should be unique,

—so that the telephone number is ok to serve
as a unique identifier for a row.

e But... (problem):

— What if two or more people sharing the same
phone number might each be listed in the
directory ?

Drawbacks with single tables (as flat files)

* To continue to hold all of the data for the telephone
directory in a single table and to provide for a unique
identifier for each row, we could require a separate
column for secondary subscriber, tertiary subscriber,
and soon ...

— The result would be that for each telephone number in
use, there is a single entry in the table.

 The drawback is that some of the column positions for
a given row may be blank (not used).

* Also, any time a new service or new type of information

is incorporated in the database, more columns must be
added

— Consequence of these structural change: database and
accompanying software must be redesigned and rebuilt.

Fine-Granularity Issues

A DBMS typically does allow a type of more
detailed and also file-grain access control to be
specified.

* |t also usually enables access controls to be

specified over a wider range of commands, such
as to:

— select, insert, update, or delete operations
— over specified items in the database.

* Thus, DB security services and mechanisms are
needed (beyond OS services)

— They must be designed specifically for, and integrated
with, DBMS architecture

DBMS Security

Part |
e DBMS
— DBMS and Security Issues
* — RDBMS
e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

RDBMS (checklist)

What is a RDBMS ? What is the RDBMS Building
Blocks ? Tables (Raws: as tuples; Columns: as
attrributes), Table-Links/Relations and Query
Language

What are Primary Keys (unigueness) vs. Foreign Keys
(non-uniqueness)

Querying on Multiple Tables

— How to create relatioships between tables ?
What are Views ... Views as Virtual Tables
SQL Querying, SQL Operations, SQL Programming

RDBMS

* Relational Database Management Systems
e Base building block: Table of Data
— A Table consists of rows and columns
* Each column holds a particular type of data

* Each row contains a specific value for each
column

— Ideally has one column where all values are
unique, forming an identifier/key for that row

RDBMS: Tables, Table-Links, Relations
and Query Languages

 Multiple tables are created and linked
together by a unique identifier that is present
in all tables

— Use a relational query language to access the
database

— Allows the user to request data that fit a given set
of criteria, expressed in query-language
statements

Querying on Multiple Tables

* More flexibility: the software figures out how to
extract the requested data from one or more
tables.

— With a relational design model, we can have a main
table (or primary table) that never requires a
reconstruction

— And we can structure multiple tables, relating then
with a primary key
DB administrator can define new tables,
— each one with a column for the primary key

—and any number of columns with the required
information

Querying on Multiple Tables

* For example, a telephone company representative
could retrieve:

— a subscriber’s billing information
AND

— as well as, the status of special services
OR

* the latest payment received, all displayed on one
screen.

RDBMS Tables (example)

4 Caller ID Table

* Phone Number

Caller ID has service ?

_ (YorN)

~

v

4 Additional Subscriber)
Table

Phone Number <

List of Subscribers

/

>
>

Primary Table)

Phone Number ﬁ

Last Name, First Name,
Address, ...

/

4 Billing History Table

» Phone Number

Date,
Transaction Type,

Transaction Amount

. J

/ Current Bill Table \

Phone Number <
Current Date,
Previous Balance,
Current Charges
Date of Last Payment

\ Amount of Last payment/

RDBMS elements: Relation, Row,
Column and Primary Key

Relations: which are flat tables
Rows: are tuples
Columns: are attributes

Primary Key

— is defined to be a portion of a row used to
uniquely identify a row in a table
e Used as the row unique identifier

* A portion means that a primary key may be one or more
column names

RDBMS base design elements

Relations
— Table/File

Rows

— Tuple/Record

Columns

— Attributes/Fields

Primary Key

Formal Name | Common Name | Also Known As
Relation Table File
Tuple Row Record
Attribute Column Field

— One or more (unique) column names

Foreign Key

— Links a table to attributes in another table

View

— Result of a query (as selected rows and columns from

one or more tab

RDMS Table: Abstract Model

M atributes

Attributes

A, Aj o o o Ay,
- 1 x]] o o o x]j e o o x]M
0
(»]
=I
O = ’ ;
= e . -
7,
25| ¢
o o— 8 1 X] e o o xiM
25 >
o =~ . .
N | Xy ANj Nm

Each attribute A; has IAJ-I possible values
With denoting the value of attribute j for entity /.

RDBMS elements:
Table Relationships and Foreign Keys

* How to create a relationship between two tables ?

— the attributes that define the primary key in one table must
appear as attributes in another table

— In that table they will be considered as the foreign key
* Uniqueness of primary keys
— The value of a primary key must be always unique for each
tuple (row) of its table,
* Non-uniqueness of foreign keys
— But a foreign key value can appear multiple times in a table

— So that there is a one-to-many relationship between a row in
the table with the primary key and rows in the table with the
foreign key.

RDBMS elements: Views

e WhatisaVIEW ?

— A view is a virtual table

— In essence, a view is the result of a query that
returns selected rows and columns, from one or
more tables.

* Views are often used for security purposes

— A view can provide restricted access to a
relational database

* so that a user or application only has access to certain
rows or columns.

Examples

Two possible tables in a database

Employee Table

Department Table Ename [Did | Salarycode | Eid Ephone
Did Dname Dacctno Robin |15 23 2345 | 6127092485
4 | human resources | 528221 Neil |13 12 5088 | 6127092246
8 | education 202035 Jasmine| 4 26 7712 | 6127099348
accounts 709257 Cody [15 22 9664 | 6127093148
13 | public relations | 755827 Holly | 8 23 3054 | 6127092729
15 | services 223945 Robin | 8 24 2976 | 6127091945
p;;;;y Smith | 9 21 4490 | 6127099380

key rm”re;;n primary
key key

A view that can be derived Dname | Ename| Eid | Ephone
human resources |Jasmine| 7712 | 6127099348
f rom 1. h € da-l.a bas = education Holly | 3054 | 6127092729
education Robin | 2976 | 6127091945
accounts Smith | 4490 [6127099380
public relations | Neil 5088 | 6127092246
services Robin | 2345 | 6127092485
services Cody 9664 | 6127093148

SQL (Structured Query Language)

— SQL is a Standardized language

* That can be used to define schema, manipulate, and
qguery data in a relational database

* Several similar versions of ANSI/ISO standard
— Variety of different implementations
— All following the same basic syntax and semantics

— SQL Statements

— can be used:
* to create tables
* insert and delete data in tables
* create views
* and retrieve data with query statements.

DBMS Security

Part |
e DBMS
— DBMS and Security Issues
— RDBMS
“e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

Confidentiality

 Today DBs are typically the most important
resources for many organizations

— Therefore protected by multiple security layers and
services
* Firewalls, IDs, Authentication/SSO Systems, Access-Control

Services, and specific DB Access Control Services and
Mechanisms

— But additionally, for particular sensitive data, DB
encryption must be provided for

e Data Confidentiality Guarantees
* Privacy-Preserving Operation

 (as the last line of defense: example:

— Protection from external hackers and Intruders that overcome all
the perimeter-defense mechanisms or vulnerabilituie sin the
above systems

— Protection from insider “honest-but-curious DB/System
Administrators)

Confidentiality

* Particular Issue today, considering:
— Qutsourced Databases / Outsourced DataCenters
— Cloud-Based Solutions
— DBaaS$S

Attractive Solutions (ex., Cloud-Provided Solutions)

Cheap/Pay-Per-Use Models, High-Availability,
Scalability, Elasticity, Easy-to-Deploy, Disaster &
Recovery Prevention, Efficient-Ubiquitous Access
and Update ...

But Confidentiality and Privacy are the Main
Concerns |

Sensitive Data and Critical Databases

Corporate Financial Data
Confidential Phone Records

Customer and employee information, such as Name,
Social Security Number, Salary, Bank Account
Information, Credit Card Information

Proprietary product information, Customer-
information, Commercial Proposals, ...

Health care management information, Health
Records and Medical records, BioBanking Data

Etc ...

Disadvantages and Difficulties to DB
Encryption

* Need effective Key-Management Services
* |tis not an easy-task:
— Multi-user environment, Multi-Role Responsibilities

— Multi-Access Vectors

» Different Applications, Different Middleware Services,
for example in the context of 3-to-N Tier SW
Architectures

Disadvantages and Difficulties to DB
Encryption

* |nflexibility issues

— More difficult to perform queries, record searching,
logging-control

— How to support full-fledged operations ?

Disadvantages and Difficulties to DB
Encryption

* Granularity Issues
— Encrypt the Entire Database ?
— Encrypt at the Record Level (Selected Records, Lines) ?
— Encrypt at Attribute Level (Columns) ?
— Encrypt Individual Fields ?

A number of approaches exist:
- Industrial Solutions
- Research Solutions

Disadvantages and Difficulties to DB
Encryption

e A straightforward solution
— Encrypt the entire DB (or entire Portions)

— Keys in the DB Side (DB Admin/Management Side)
— Key-Management in the DB Provider side

e And this means “outsource control”

e Or such a solution is not flexible

— User has little ability to access individual data items
based on searches or indexing on key parameters

— Rather would have to download entire tables, decrypt
tables and work with the results

* This is known as “Security-on-the-Rest” solutions

Database Encryption Model

‘A ,\I’ metadata
75 1. Original query | = — — = = = =
|
< 1
/e |
|
4. Plaintext
User result :
* I
Y 2. Transformed +
: |
uer
Client Query query > Query |
Processor Executor I
<€
3. Encrypted I
i result
-
Meta Encrypt/ Encrypted
Data Decrypt Server database

Database Encryption Model

Data-Owners (Data-Subjects):

An Organization or User that Produces Data to
be Made Available for Controlled Release,
either within organizations or to external users

o J

Database Encryption Model

Client

Query
Processc

1

Encrypt

>
Meta
Data

Decryp!

Users :

Human entity that submit
requests (queries)

Could be an employee of an
organization who is granted
access to the database, via a
service (front-end, web-app
server, ...)

Can be an external user who
can access data after an
authentication and access-
control process

Database Encryption Model

Client

Query
Processor

l

Encrypt/
Decrypt

Clients (Client-Based SW) :
A Front-End that transforms

user-queries into queries
on the encrypted data
stored on the DB server

o

N

%

Database Encryption Model

Server (or Service)

An Organization (entity,

resource) that receives

encrypted data from data-

owners and makes them

available for client-access / ’

—1> Query

dlStFIbUl‘IOn Executor

Could be owned by the Data-
Owner (or Data-Subject) but,
more typically, is a facility
owned and maintained by an
external provider

Server

Database Encryption Model

SELECT Ename, Eid, Ephone

FROM Employee
WHERE DepiD = 15

‘A A" metadata
1. Original query = = = = = = =

|
< |
/" m SELECT Ename, Eid, Ephone
User fésll’lllétlintext FROM Employee
WHERE DepiD = !&#/&#%&!(#()S
 Z 2. Transformed
Client [. query > Query
1&#/&#%&!(#()S = E (k, 15) r < Executor
[3. Encrypted
I result
-
Meta Encrypt/
Data Decrypt Server

Flexibility Problems to have a Full-Fledged Solution ?

A Base Encryption Scheme for a DB

Encrypt lines as a block: a contiguous block Bi = (Xil || Xi2 || ... Xin)

| E(k, B,) (I, > . .. I, . .. I, |
a a & &
Il] e o o IlJ e o o IiM
IN] e o o IN] e o o INM
B;=(x/llx, Il ... Ix,,)

Other possible approaches ?
Problems (other required services) ?

A sequence of BITS in the Block

E (k, Bi) = E (k, (xi1 || Xi2, Xi3 , ... XiN) => [E(k,Bi), li1,, 1i2, i3, liN)

Example

Employee Table
elD eName Salary Addr DeplD
23 Tom 70K Marple Road, 23 45
860 Mary 60K Main Rooad, 1 83
320 John 50K River Street, 2 50
875 Jerry 55K Hopewell Av. 456 92

Supposing we know that the ilD values are in the range
[1, 1000], we can divide these values in five partitions,

assigning indexes, ex:

1,200] ... 1

201, 400] ... 2 Meta-Data on the Indexing Process
:401’ 600] ... 3 Only-Known for the Client

:601, 800 | ... 4 (Not Stored in the DB Server)...
801, 1000] 5

53

Example

Employee Table
elD eName Salary Addr DeplD
23 Tom 70K Marple Road, 23 45
860 Mary 60K Main Rooad, 1 83
320 John 50K River Street, 2 50
875 Jerry 55K Hopewell Av. 456 92

For text field we can derive an index from the first

letter of the attribute value, ex:

And we can make the same for the other attributes (columns)

54

Table Transformation

Employee Table
E(k, B) I(eID) | I{(eName) | I(Salary) I(Addr) I(DeplD)
110011011....1111100101 1 10 3 7 4
10211010120101110...100 5 7 2 7 8
10011000101011..110110 2 5 1 9 5
11110111010001....11010 5 5 2 4 9
Problem:

Some Inference is possible for an adversary ?

Can we avoid it ?

Yes ... Randomize the used Indexes -

Example

Employee Table
elD eName Salary Addr DeplD
23 Tom 70K Marple Road, 23 45
860 Mary 60K Main Rooad, 1 83
320 John 50K River Street, 2 50
875 Jerry 55K Hopewell Av. 456 92

Supposing we know that the ilD values are in the range
[1, 1000], we can divide these values in five partitions,

assigning indexes, ex:

1,200] ... 2

201, 400] ... 3 Because Meta-Data are not Stored
:401’ 600] ... 5 In the Server Side, the Attacker will
3601, 800] .. 1 Not know nothing about ...

801, 1000] 4

56

Other possible enhancements

To increase the efficiency of accessing records by
means of the primary key, the system could use the

encrypted value of the primary key attribute values,
or a hash-value

In both cases, the row corresponding to the primary
key value could be retrieved individually

Other possible enhancements

Different Portions of the Database could be
encrypted with different keys
To have more appropriate granularity ...

So that users would only have access to that portion
of the DB for which they had the corresponding
decryption keys

... This can be better mapped to a Role-Based Access
Control Model

Encrypted Database Techniques

e Particularly relevant for:
* Qutsourced databases
* Cloud-based databases
* Two different models:

e Security “on the rest”: Classic Approach

State-of-Art
Related Research

* On-Line Security: More Interesting

* How to provide more flexibility with Database
operations on encrypted data ?
* Outsourceable Encryption Techniques

* Homomorphic Encryption Techniques,
Schemes and Algorithms

DBMS Security

Part |
e DBMS
— DBMS and Security Issues
— RDBMS
e Confidentiality and Database Encryption
* Encrypted Databases and the case for CryptDB

>

Material delivered by the authors corresponding to the
CryptDB Presentation at SOSP 2011

CryptDB: Protecting Confidentiality with
Encrypted Query Processing

Raluca Ada Popa, Catherine M. S. Redfield,
Nickolai Zeldovich, and Hari Balakrishnan

MIT CSAIL

Raluca Popa, C. Redfield, N. Zeldovich, H. Balakrisnan, CryptDB: protecting
confidentiality with encrypted query processing, in Proc. SOSP Symposium on
Operating System Principles, 2011

Problem

» Confidential data leaks from databases

» E.g., Sony Playstation Network, impacted 77 million
personal information profiles

Threat 2: any attacks on all servers

Threat 1: passive DB
server attacks

DB Server

338

S

System

administrator
Hackers

CryptDB in a nutshell

» Goal: protect confidentiality of data

Threat 2: any attacks on all servers

(Threat 1: passive DB\

—— server attacks

User 1
~—

o sqL DB Server
User 2 Application
on encrypted data

)

User 3)

~— @@

1. Process SQL queries on encrypted data

2. Use fine-grained keys; chain these keys to user
passwords based on access control

Contributions

1. First practical DBMS to process most SQL queries
on encrypted data

W) Hide DB from sys. admins., outsource DB

2. Protects data of users logged out during attack,
even when all servers are compromised

W) Limit leakage from compromised applications

3. Modest overhead: 26% throughput loss for TPC-C
4. No changes to DBMS (e.g., Postgres, MySQL)

e —————————————————————
Threat 1: Passive attacks to DB Server

Trusted

-
plain query

[

\

Proxy

p———

Under attack @

ltransformed query

Wi =——

Applica’tionJ‘= >
decrypted results _

| encrypted results

> Stores schema, master key
» No data storage

» No query execution

4 DB Server

Encrypted DB

\.

J

> Process queries completely
at the DBMS, on encrypted

database

» Process SQL queries on encrypted data

I EEEEEEEE————————

[Application } Bered orivivstil
! encryption
SELECT * FROM emp
WHERE salary = 100
tablel/emp

l SELECT * FROM table1

) WHERE col3 = x5a8c34

coll/rank | col2/name | col3/salary
[Proxy] >

l *;529.634|¢ 100

———
w4721

800

1 ==
|10

<

I EEEEEEEE————————

[Application] E@IP@'(‘D 'mlietjc

| encryption
SELECT * FROM emp

WHERE salary 100
l tablel (emp)

SELECT * FROM table1 col1/rank

col2/name | col3/salary
1 WHERE col3 2 x638e54 -

[Proxy) > l Xleab81| 60

l x638€54|¢ 100
l X922€b4| J 800

x638e54 J 100

D .)
<

D .)
_J JEES

EEEEEEEE————————.,y
Two techniques

1. Use SQL-aware set of encryption schemes

N
Q Most SQL uses a limited set of operations

2. Adjust encryption of database based on
queries

EEEEEEEEE—————
Encryption schemes

Highest

Security

e.g., sum

restricted ILIKE

e.g., =, 1=, IN, COUNT

4GROUP BY, DISTINCT

W) sce paper

e.g., >, <, ORDER BY,

Scheme Construction Function
RND AES in CBC none
HOM Paillier +, "

SEARCH Song et al.,'00 |[word search
DET AES in CMC equality

JOIN our new scheme join
OPE Boldyreva et al.’09 order

SORT, MAX, MIN

first implementation

EEEEEEEE————————.,y
How to encrypt each data item?

» Encryption schemes needed depend on queries

» May not know queries ahead of time

coll- | coll- coll- coll- | coll- | coll-
rank RND HOM SEARCH DET | JOIN OPE

w | e o ||
‘worker’ q
- n s EmoLar

Leaks order!

EEEEEEEE————————.,y
Onions of encryptions

* =

SEARCH

* [text value]

RND A © __RND A —~——

each DET OPE Onion Search
value JOIN OPE-JOIN _OR

value [value] o

- / HOM

w w [int value]

Onion Equality Onion Order |
Onion Add

» Same key for all items in a column for same onion layer

» Start out the database with the most secure encryption
scheme

I EEEEEEEE————————

Adjust encryption

» Strip off layers of the onions

» Proxy gives keys to server using a SQL UDF
(“user-defined function™)

» Proxy remembers onion layer for columns
» Do not put back onion layer

I EEEEEEEEE——————————

emp:
Exa m p I e : rank | name salary
‘CEQ’
‘worker’
/ ~ ~
/ - S~ ~
/ ~ ~ ™ L
/ . ~ S o
K table 1: T ~.o
./ ~ . - = - - N
7~ RND N) ¥ Rt
coll- coll- coll- col2-
DET OnionEq || OnionOrder | OnionSearch | OnionEq
JOIN ‘ p y y
- RND - RND - SEARCH - RND
oo | s s s s
K / - RND - RND - SEARCH - RND
Y

Onion Equality

SELECT * FROM emp WHERE rank = ‘CEQ’;

——
Example (cont’d)

-

RND

N

DET

JOIN

[

‘CEQ’

]

~

)

Onion Equality

—

—

SELECT * FROM emp WHERE rank = ‘CEQ’;

4

UPDATE table1 SET col1-OnionEq =
Decrypt_ RND(key, col1-OnionEq);

SELECT * FROM table1 WHERE col1-OnionEq = xda5c0407;

—

table 1
coll- coll- coll- col2-
OnionEq | OnionOrder | OnionSearch | OnionEq
™ BED | RND .~ SEARCH [RND
RED RND ~ SEARCH RND

—————————————————————————————————
Confidentiality level

amount of

Queries mmpncryption scheme exposed — leakage

» Encryption schemes exposed for each column are the most
secure enabling queries

e equality predicate on a column =2:T mPeats
e aggregation on a column oM nathing
[* no filter on a column Fuvd nething]

common in practice

) Never reveals plaintext

Application protection

Arbitrary attacks on any servers

o

\

User 2 Appllcatlon Proxy

sSQL

Passwe attacks @

&= [0

>

DB Server

g

» User password gives access to data allowed to user by

access control policy

» Protects data of logged out users during attack

EEEEEEEEE—————
Challenge: data sharing

SPEAKS_ FOR SPEAKS_FOR

msg_id msg_id ENC_FOR msg_id
msg_id | sender | receiver msg_id | message
| Alice | Bob |E’secret message”j
Km5
[KmS] [KmS]
Alice-pass Bob-pass

1. How to enforce access control cryptographically?

> Key chains from user passwords
2. Capture read access policy of application at SQL level?

‘ Annotations

3. Process queries on encrypted data

I EEEEEEEE————————

SQL Interface
: Server
. queiry 4 " transformed query N Unmodified CryptDB
[Application 1 " CryptDB DBMS | sQLUDFs
~Lesuits Proxy encrypted results 1 (user-defined
' \ functions)

» No change to the DBMS

» Portable: from Postgres to MySQL with 86 lines
» One-key: no change to applications

> Multi-user keys: annotations and login/logout

—
Evaluation

1. Does it support real queries/applications?
2. What is the resulting confidentiality?
3. What is the performance overhead?

EEEEEEEE————————.,y
Queries not supported

> More complex operators, e.g., trigonometry

» Operations that require combining incompatible
encryption schemes

>eg.,Tla+Tl.b>T2.c

» Extensions: split queries, precompute
columns, or add new encryption schemes

I EEEEEEEE————————

Real queries/applications

Application | Total Encrypted | #colsnot | Annotations + lines
columns columns supported of code changed
, phpBB 563 23 0 38
Multi-user

keys HotCRP 204 22 0 31
grad-apply 706 103 0 113
One-key TPC-C 92 92 0 0
sgl.mit.edu | 128,840 128,840 1,094 0

SELECT 1/log(series_no+1.2) ...
... WHERE sin(latitude + PI()) ...

Resulting confidentiality

Application Total Encrypted | Min level | Min level | Min level
columns columns is RND is DET is OPE
\ \
Multi-user phpBB 563 23 21 1 1
grad-apply 706 103 95 6 2
\

One-key TPC-C 92 92 65 19 \/8
sql.mit.edu 128,840 128,840 80,053 34,212 13,131

v
Most columns at RND Most columns at

OPE analyzed were
less sensitive

Performance

MySQL: DB server throughput
4 N
Application 1 |
o Plain database
Application 2 |
\ Y,
Latency
CryptDB: <€
4 ™
[Application 1 e CryptDB ’
Proxy
\ Encrypted
4 R database
[Application 2 }‘—’ CryptDB ¢
Proxy
- J

» Hardware: 2.4 GHz Intel Xeon E5620 — 8 cores, 12 GB RAM

————————————————————————————
TPC-C performance

> Latency (ms/query): 0.10 MySQL vs. 0.72 CryptDB

50000
40000

30000 Throughput

loss 26%

Queries / sec

20000

10000 €

CryptDB —+—
| |

1 2 3 4 5 6 7 8

Number of server cores

—————————————————————————
TPC-C microbenchmarks

14000
12000
10000
8000
6000
4000
2000

Homomorphic
addition

Queries / sec

No cryptography at the DB server in the steady state!

» Encrypted DBMS is practical

————————————————————————————
Related work (See the
bibliography in the paper)

»> Cryptography proposals
Fully homomorphic encryption
Search on encrypted data

Systems proposals

YV VWV V VY

Lower degree of security, rewrite the DBMS, client-side
processing

> Query integrity

Conclusions

CryptDB:

1. The first practical DBMS for running most standard
gueries on encrypted data

2. Protects data of users logged out during attack even
when all servers are compromised

3. Modest overhead and no changes to DBMS

Website: http://css.csail.mit.edu/cryptdb/

Demo at poster session!

Thanks!

Database security problems (initially
stated), not covered by CryptDB

NO -— Attacks by possible (malicious) SQL injection
NO —Inband SQLi attacks

NO - Inferential attacks

NO — Out-of-Band attacks

Ok — Data-confidentiality and Privacy Concerns

Ok — Qutsourced databases or Cloud-Based DBaaS
environments

* Access Control Services
e Confidentiality, Honest-but-curious adversary models

e Other issues: integrity, user-authentication, ...
NO resistance against malicious intruders, DoS, ...

Remarks/Discussion/Open-Research

Onion Model:

— Considerable space overhead to store multiple copes of all columns
(one per onion) in general, for different Database EDR Models ?

— Some onions can be larger that the original data ?

Performance/Latency
— Authors argue that 26% Overhead (TPC-C) is reasonable: is it ?

For Logged On Users in operation, the system cannot have

the same guarantees comparing to the case when users are
not logged. During the operation, the security conditions are
“smoothly” decreased. Can we have a better solution ?

What if we lose the proxy: single point of failure... Ex., what if
we lose the keys (and onion-compositions) ... ?

Remarks/Discussion/Open-Research

* More open Research Issues from the CryptDB Design
— Adversary Model: Only Data Confidentiality Attacks
— No Protection for Inference Attacks
— Complete Protection: Only protected when Users are
Logged-Off

— User Authentication Services: User/Pwd, Pwd-Based
Encryption translated to Onion-Keys

 DAC-Model can be mapped with the scheme

— No Provision for more exigent Access-Control Services
« RBACs, ABACs, Context_Aware Access Control

— How to address multi-user environments with Data-
Owners/Data Subjects, Different User Roles,...
* Authentication vs. Key-Distribution Schemes

Remarks/Discussion/Open-Research

* Re-evaluation of the solution in a Cloud-Based SaaS /
DBaaS solution

— New tradeoffs ?
— New Adversarial Model Considerations ?

* No Full-Fledged SQL Solution
— How to support other SQL queries ?

* Ex., Manipulation of Dates, Temporal information, queries on sub-strings,
— In the proposed design: sub-strings in differet columns ...
 Statistical Databases: more queries involving arithmetic compjutations

* How to protect issues related to other dimensions in the DB: number of
rows, number of columns, table structure, approximate sizes od values in
cells, ... ??

* What if we have in some columns values that have few-values (ex., nale/
female), etc ...

Remarks/Discussion/Open-Research

— Other Crypto-Schemes
* More Homomorphic Schemes (New Crypto Schemes ? :- (((
 Symmetric Searchable Encryption Techniques ?

* How to support Multimodal Searches ?
— Supporting complementarily other Search Operations for Information Retrieval
— Hybrid Repositories ? DBMS + KVSs ?
» Search By Proximity, Similarities
» Search by “Ranking” Scores

Remarks/Discussion/Open-Research

* The Client and Proxy in the CryptDB Architecture are
“trusted” components.

— Can we redesign a solution if the Proxy is attacked when there are users
logon performing DB queries ? The Proxy can be a particular target of
attacks in the system architecture... particularly for multi-iser
environmemts

* The approach... probably just transit the attraction of attackers from the database
server to proxy server

— How to address a “end-to-end” encryption behaviour ? Example:
Interception between client and proxy ?

Other Open Issues ...
(See referred Drawbacks, Weaknesses,
Tradeofs)

* http://web.eecs.umich.edu/~mozafari/fall2015/
eecs584/reviews/summaries/summary40.html

* Another approach
— The Cipherbase approach

— http://research.microsoft.com/en-us/projects/
cipherbase/

— http://research.microsoft.com/pubs/179425/
cipherbase.pdf

94

