
Confiabilidade	de	Sistemas	Distribuídos	
Dependable	Distributed	Systems	

Lect.	9	
DBMS	Security	

The	Case	for	CryptDB	
	

2015/2016,	2nd	SEM	
	

MIEI	
Mestrado	Integrado	em	Engenharia	InformáHca	

1	

DI-FCT-UNL,	Henrique	Domingos,	Nuno	Preguiça	

DBMS	Security	

Part	I	
•  DBMS	Security	Issues	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	–	Other	Dimensions	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

2	

Bibliography	

•  For	CryptDB	
–  See	Raluca	Popa,	C.	Redfield,	N.	Zeldovich,	H.	Balakrisnan,	
CryptDB:	protecHng	confidenHality	with	encrypted	query	
processing,	in	Proc.	SOSP	Symposium	on	OperaHng	System	
Principles,	2011	

•  Also:		
– hWp://dl.acm.org/citaHon.cfm?id=2043566	
– hWps://css.csail.mit.edu/cryptdb/	

•  Stallings,	Computer	Security	–	Principles	and	PracHce,	3rd	Ed.,	
Pearson	
–  Chap.	5	Database	and	Cloud	Security	

•  Database	part:	pp.	155-180	
3	

DBMS	Security	

Part	I	
•  DBMS	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	–	Other	Dimensions	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

4	

Databases	

•  Structured	collecHons	of	data,	stored	as	possible	
common	data-backends	for	one	or	more	applicaHons	
–  Ex.,	Data-Layer	in	3-N	Tier	Distributed	Architectures	

•  Contains:	
–  Data	items	
–  RelaHons	between	data	items	and	groups	of	data	items	
	

•  In	some	cases,	databases	are	used	to	manage	and	
store	sensiHve	data	(in	the	context	of	possible	criHcal	
applicaHons)	
–  Data	needs	to	be	secured:		

•  access	control,	confidenHality,	privacy	issues,	inference	
(operaHons	and	relaHons)		 5	

Query	Languages	

•  Languages	providing	uniform	query-interface	to	the	
database	

	
– Standard	query	languages	are	also	used	to	access	
sensiHve	data	and	their	relaHons	

– Commonly:	SQL	operaHons,	SQL	Queries	

6	

Generic	DBMS	Architecture	
	DBMS	View	(Systemic	View)	

-  DDL	-	Data	DefiniHon	Language	
-  DDL	Processor	
-  DDTs	-	Data	DescripHon	Tables	
-  DML	–	Data	ManipulaHon	Language	and	QL	
Processor	

-  DBMS	
-  Auth	Tables	
-  Concurrency		Control	Tables	
-  Physical	Database	

	

7	

DBMS	Generic	Architecture	

User	Queries	
User	ApplicaHons	
(data-access	logics)	

Database	
UHliHes	and	

Tools	

DDL	Processor	

Database	
DescripHon	

Tables	

DML	(Data	Manipula?on	Language)	
and	Query	Language	Processor	

AuthorizaHon	
Tables	

DBMS	

TransacHon	
Manager	 File	Manager	

Concurrent	
Access	Tables	

Physical	
Database	

Data		Defini?on	
Language	

DBMS	Generic	Architecture	
Database	

UHliHes	and	
Tools	

DDL	Processor	

Database	
DescripHon	

Tables	

DBMS	

TransacHon	
Manager	 File	Manager	

Concurrent	
Access	Tables	

Data		Defini?on	
Language	

DDL	(Data	Defini?on	Language)	
Database	designers	and	administrators	
make	use	of	DDL:		
•  to	define	the	database	logical	

structure	
•  and	procedural	properHes	

which	are	represented	by	a	set	of	
DDTs	(Database	DescripHon	Tables)	

DBMS	Generic	Architecture	

User	Queries	
User	ApplicaHons	
(data-access	logics)	

Database	
UHliHes	and	

Tools	

DDL	Processor	

Database	
DescripHon	

Tables	

DML	(Data	Manipula?on	Language)	
and	Query	Language	Processor	

AuthorizaHon	
Tables	

DBMS	

TransacHon	
Manager	 File	Manager	

Concurrent	
Access	Tables	

Physical	
Database	

Data		Defini?on	
Language	

DML	(Data	manipula?on	language)	
•  Provides	a	powerful	set	of	tools	for	applicaHon	

developers	
•  Query	languages:	declaraHve	languages	designed	

to	support	end-users	and	end-applicaHons	
•  Data	manipulaHons	are	described	by	the	query	

language		statements	
•  Ex.,	SQL	Language	

	

DBMS	Generic	Architecture	

User	Queries	
User	ApplicaHons	
(data-access	logics)	

Database	
UHliHes	and	

Tools	

DDL	Processor	

Database	
DescripHon	

Tables	

DML	(Data	Manipula?on	Language)	
and	Query	Language	Processor	

AuthorizaHon	
Tables	

DBMS	

TransacHon	
Manager	 File	Manager	

Concurrent	
Access	Tables	

Physical	
Database	

Data		Defini?on	
Language	

Database	management	system	
•  Makes	use	of	the	database	descripHon	tables	to	

manage	the	physical	database.		
•  The	interface	to	the	database:		

•  through	a	File	Manager	Module	and	a	
TransacHon	Manager	Module.	

DBMS	Generic	Architecture	

AuthorizaHon	
Tables	

DBMS	

TransacHon	
Manager	 File	Manager	

Concurrent	
Access	Tables	

Physical	
Database	

Authoriza?on	Tables	
Ensure	the	user	has	
permission	to	execute	the	
query	language	statement	
on	the	database	
(Access	Control	Support)	

Concurrent	Access	tables		
Prevent	conflicts	when	
simultaneous	(concurrent)	
conflicHng	commands	are	
executed.	
(Concurrency	Control)	

…	In	addi?on	to	DDTs	

DBMS	Security	

Part	I	
•  DBMS	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

13	

DB	Architecture	and	Security	Issues	

•  Database	systems	provide	efficient	access	to	large	
volumes	of	related	data	that	are	vital	to	the	
operaHon	of	many	organizaHons.	

	
•  Because	of	their	complexity	and	criHcality,	database	
systems	generate	security	requirements	that	are	
beyond	the	capability	of	typical	OS-based	security	
mechanisms	or	stand-alone	security	packages.	

14	

Database	security	
•  Database	aWacks	and	countermeasures	must	be	
considered,	orthogonally	to	other	defenses:	

	
–  Network-Access	Control	Services	
–  Firewalls	and	IPS	-	Intrusion	PrevenHon	Systems	
–  IDS	-	Intrusion	DetecHon	Systems	
	
–  OperaHng	Systems	Security	Services	and	Mechanisms	
–  Sokware	Security	Mechanisms	and	Techniques	

–  Other	security	Management	and	OperaHonal	Issues	in	Datacenters	
•  Security	management	and	risk	assessment	
•  IT	security	controls,	plans	and	procedures	
•  Physical	and	infrastructure	security	
•  Human	resources	security	
•  Security	audiHng		
•  Legal	and	Ethical	Aspects	

Database	security	problems	
Primary	concerns	
•  Security	services	and	mechanisms,	as	
countermeasures	against:	
–  AWacks	by	possible	(malicious)	SQL	injecHon	
–  Inband	SQLi		aWacks	
–  InferenHal	aWacks	
–  Out-of-Band	aWacks	
–  Data	Access	Control	and	Granularity	Issues	
–  Data-confiden?ality	and	Privacy	Concerns	

•  ParHcularly	relevant	for	outsourced	databases	or	
Cloud-Based	DBaaS	environments	
–  Confiden?ality,	Honest-but-curious	adversary	models	
–  How	to	outsource	DBs	without	outsource	Data	Control	?	

DBMS	

Granularity	Issues	and	Access	Control	

	

17	

DB	Architecture	and	Security	Issues	

– Base	Security	Services	for	the	Data-Access	Layer	
(orthogonal	to	OSes,	ApplicaHons,	Middleware	
Logics)	must	be	supported	with	appropriate	“fine-
grain	access	control	enforcement”	

– Access	Control	Requirements	for	RDBMS	Model	

18	

Access	Control	Granularity	Issues	

Granularity	and	access-control	enforcements	and	
flexibility	Issues	
	
OperaHng	system	security	mechanisms	typically	control	with	
DAC	models	read/write/execu?on	access	to	en?re	files	
(the	base	object-granularity),	under	OS-User	granularity	

– OS	security	mechanisms	could	be	used	to	allow	a	user	
to	read	or	write	informaHon	in,	for	example,	a	
personnel	file,	fils	sharing	authorizaHons	etc	…	
•  But	those	mechanisms	could	not	be	used	to	limit	
access	to	specific	records	or	fields	or	specific	
entries	in	that	file	(as	a	file	containing	specific	data-
structures)	

19	

DB	Access	Control	Granularity	
•  What	if	only	support	file-grain	access	control	to	
be	specified	?	

•  Ok	for	single	tables	as	flat	files	?	Problem	?	
Example:	
A	typical	telephone	directory	contains:	
one	entry	for	each	subscriber	with	columns	for	name,	
telephone	number,	and	address	
	
Subscriber	 	Name 	 	Telef. 	 	Address	
	

20	

LimitaHon	on	using	single	tables	(as	
flat	files)	in	a	DBMS	

•  For	the	telephone	directory,	there	might	be	a	
number	of	subscribers	with	the	same	name,	but	
the	telephone	numbers	should	be	unique,	
– so	that	the	telephone	number	is	ok	to	serve	
as	a	unique	idenHfier	for	a	row.	

•  But…	(problem):	
– What	if	two	or	more	people	sharing	the	same	
phone	number	might	each	be	listed	in	the	
directory	?	

21	

Drawbacks	with	single	tables	(as	flat	files)	
•  To	conHnue	to	hold	all	of	the	data	for	the	telephone	
directory	in	a	single	table	and	to	provide	for	a	unique	
idenHfier	for	each	row,	we	could	require	a	separate	
column	for	secondary	subscriber,	terHary	subscriber,	
and	so	on	…	
–  The	result	would	be	that	for	each	telephone	number	in	
use,	there	is	a	single	entry	in	the	table.	

•  The	drawback	is	that	some	of	the	column	posiHons	for	
a	given	row	may	be	blank	(not	used).		

	
•  Also,	any	Hme	a	new	service	or	new	type	of	informaHon	
is	incorporated	in	the	database,	more	columns	must	be	
added		
–  Consequence	of	these	structural	change:	database	and	
accompanying	sokware	must	be	redesigned	and	rebuilt.	

Fine-Granularity	Issues	

•  A	DBMS	typically	does	allow	a	type	of	more	
detailed	and	also		file-grain	access	control	to	be	
specified.		

•  It	also	usually	enables	access	controls	to	be	
specified	over	a	wider	range	of	commands,	such	
as	to:		
–  select,	insert,	update,	or	delete	opera?ons		
–  over	specified	items	in	the	database.		
	

•  Thus,	DB	security	services	and	mechanisms	are	
needed	(beyond	OS	services)		
–  They	must	be	designed	specifically	for,	and	integrated	
with,	DBMS	architecture	

23	

DBMS	Security	

Part	I	
•  DBMS	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

24	

RDBMS	(checklist)	

•  What	is	a	RDBMS	?	What	is	the	RDBMS	Building	
Blocks	?	Tables	(Raws:	as	tuples;	Columns:	as	
aWrributes),	Table-Links/RelaHons	and	Query	
Language	

•  What	are	Primary	Keys	(uniqueness)	vs.	Foreign	Keys	
(non-uniqueness)	

•  Querying	on	MulHple	Tables	
–  How	to	create	relaHoships	between	tables	?	

•  What	are	Views	...	Views	as	Virtual	Tables	
•  SQL	Querying,	SQL	OperaHons,	SQL	Programming	

25	

RDBMS	

•  Rela?onal	Database	Management	Systems	
•  Base	building	block:	Table	of	Data	

– A	Table	consists	of	rows	and	columns	
•  Each	column	holds	a	parHcular	type	of	data	
•  Each	row	contains	a	specific	value	for	each	
column	

–  Ideally	has	one	column	where	all	values	are	
unique,	forming	an	iden?fier/key	for	that	row	

26	

RDBMS:	Tables,	Table-Links,	RelaHons	
and	Query	Languages	

•  MulHple	tables	are	created	and	linked	
together	by	a	unique	idenHfier	that	is	present	
in	all	tables	
– Use	a	relaHonal	query	language	to	access	the	
database	

– Allows	the	user	to	request	data	that	fit	a	given	set	
of	criteria,	expressed	in	query-language	
statements	

27	

Querying	on	MulHple	Tables	
•  More	flexibility:	the	sokware	figures	out	how	to	
extract	the	requested	data	from	one	or	more	
tables.	
– With	a	relaHonal	design	model,	we	can	have	a	main	
table	(or	primary	table)	that	never	requires	a	
reconstruc?on	

– And	we	can	structure	mul?ple	tables,	rela?ng	then	
with	a	primary	key	

•  DB	administrator	can	define	new	tables,		
– each	one	with	a	column	for	the	primary	key		
– and	any	number	of	columns	with	the	required	
informaHon	 28	

Querying	on	MulHple	Tables	
•  For	example,	a	telephone	company	representa?ve	
could	retrieve:	
– a	subscriber’s	billing	informaHon		

AND	
– as	well	as,	the	status	of	special	services		

OR		
•  the	latest	payment	received,	all	displayed	on	one	
screen.	

29	

RDBMS	Tables	(example)	

Primary Table

Last Name, First Name, 	
Address, …	

Caller ID Table

Caller ID has service ?	
(Y or N)	

Phone Number	

Additional Subscriber
Table

List of Subscribers	
Phone Number	

Phone Number	

Date, 	
Transaction Type,	
Transaction Amount 	

Billing History Table
Phone Number	

Current Bill Table
Phone Number	

Current Date, 	
Previous Balance,	
Current Charges	
Date of Last Payment	
Amount of Last payment	

RDBMS	elements:	RelaHon,	Row,	
Column	and	Primary	Key	

•  Rela?ons:	which	are	flat	tables	
	

•  Rows:	are	tuples	
	

•  Columns:	are	aWributes	

•  Primary	Key	
–  is defined to be a portion of a row used to

uniquely identify a row in a table
•  Used	as	the	row	unique	idenHfier	
•  A	por?on	means	that	a	primary	key	may	be	one	or	more	
column	names		

RDBMS	base	design	elements	
•  Relations

–  Table/File
•  Rows

–  Tuple/Record
•  Columns

–  Attributes/Fields

•  Primary Key
–  One or more (unique) column names

•  Foreign Key
–  Links a table to attributes in another table

•  View
–  Result of a query (as selected rows and columns from

one or more tables)

RDMS	Table:	Abstract	Model	

Each attribute Aj has |Aj| possible values
With xij denoting the value of attribute j for entity i .

 Attributes
 A1 • • • Aj • • • AM

R
ec

or
ds

1 x11 • • • x1j • • • x1M

• • • •

• • • •

• • • •

i xi1 • • • xij • • • xiM

• • • •

• • • •

• • • •

N xN1 • • • xNj • • • xNM

Figure 5.3 Abstract Model of a Relational Database

N
 in

di
vi

du
al

s,

or
 e

nt
it

ie
s	

M atributes	

RDBMS	elements:		
Table	RelaHonships	and	Foreign	Keys	

•  How	to	create	a	rela?onship	between	two	tables	?	
–  the	aWributes	that	define	the	primary	key	in	one	table	must	
appear	as	aWributes	in	another	table	

–  In	that	table	they	will	be	considered	as	the	foreign	key	
•  Uniqueness	of	primary	keys	

–  The	value	of	a	primary	key	must	be	always	unique	for	each	
tuple	(row)	of	its	table,		

•  Non-uniqueness	of	foreign	keys	
–  But	a	foreign	key	value	can	appear	mulHple	Hmes	in	a	table	
–  So	that	there	is	a	one-to-many	relaHonship	between	a	row	in	
the	table	with	the	primary	key	and	rows	in	the	table	with	the	
foreign	key.	

RDBMS	elements:	Views	
•  What	is	a	VIEW	?	

– A	view	is	a	virtual	table	
–  In	essence,	a	view	is	the	result	of	a	query	that	
returns	selected	rows	and	columns,	from	one	or	
more	tables.	

•  Views	are	o_en	used	for	security	purposes	
– A	view	can	provide	restricted	access	to	a	
rela?onal	database		

•  so	that	a	user	or	applica?on	only	has	access	to	certain	
rows	or	columns.	

Examples	

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23
13 6127092246

6127092246

Neil

Neil

12
4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26
15 9664

9664

6127093148

6127093148

Cody

Cody

22
8 3054

3054

6127092729

6127092729

Holly

Holly

23
8 2976

2976

6127091945

6127091945

Robin

Robin

24
9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education
education

202035
9 accounts

accounts

709257
13 public relations 755827
15

primary
key

services

public relations
services
services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table
Dacctno

Employee Table

foreign
key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary
key

Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23
13 6127092246

6127092246

Neil

Neil

12
4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26
15 9664

9664

6127093148

6127093148

Cody

Cody

22
8 3054

3054

6127092729

6127092729

Holly

Holly

23
8 2976

2976

6127091945

6127091945

Robin

Robin

24
9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education
education

202035
9 accounts

accounts

709257
13 public relations 755827
15

primary
key

services

public relations
services
services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table
Dacctno

Employee Table

foreign
key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary
key

Two possible tables in a database
Did Did Eid

Eid

4 15 2345

2345

5088

5088

6127092485

6127092485

human resources

human resources

528221 Robin

Robin

23
13 6127092246

6127092246

Neil

Neil

12
4 7712

7712

6127099348

6127099348

Jasmine

Jasmine

26
15 9664

9664

6127093148

6127093148

Cody

Cody

22
8 3054

3054

6127092729

6127092729

Holly

Holly

23
8 2976

2976

6127091945

6127091945

Robin

Robin

24
9 4490

4490

6127099380

6127099380

Smith

Smith

21

8 education

education
education

202035
9 accounts

accounts

709257
13 public relations 755827
15

primary
key

services

public relations
services
services

223945

Dname

Dname

Ename

Ename

Salarycode Ephone

Ephone

Department Table
Dacctno

Employee Table

foreign
key

(a) Two tables in a relational database

(b) A view derived from the database

Figure 5.4 Relational Database Example

primary
key

A view that can be derived
from the database

SQL	(Structured	Query	Language)	
–  SQL	is	a	Standardized	language		

•  That	can	be	used	to	define	schema,	manipulate,	and	
query	data	in	a	rela?onal	database	

•  Several	similar	versions	of	ANSI/ISO	standard	
–  Variety	of	different	implementa?ons	
–  All	following	the	same	basic	syntax	and	seman?cs	

–  SQL	Statements	
– can	be	used:	

•  to	create	tables	
•  insert	and	delete	data	in	tables	
•  create	views	
•  and	retrieve	data	with	query	statements.	

	

DBMS	Security	

Part	I	
•  DBMS	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

38	

ConfidenHality	
•  Today	DBs	are	typically	the	most	important	
resources	for	many	organizaHons	
–  Therefore	protected	by	mulHple	security	layers	and	
services	

•  Firewalls,	IDs,	AuthenHcaHon/SSO	Systems,	Access-Control	
Services,	and	specific	DB	Access	Control	Services	and	
Mechanisms	

–  But	addiHonally,	for	parHcular	sensiHve	data,	DB	
encrypHon	must	be	provided	for	

•  Data	ConfidenHality	Guarantees	
•  Privacy-Preserving	OperaHon	
•  (as	the	last	line	of	defense:	example:	

–  ProtecHon	from	external	hackers	and	Intruders	that	overcome	all	
the	perimeter-defense	mechanisms	or	vulnerabilituie	sin	the	
above	systems	

–  ProtecHon	from	insider	“honest-but-curious	DB/System	
Administrators)	

39	

ConfidenHality	
•  ParHcular	Issue	today,	considering:	

– Outsourced	Databases	/	Outsourced	DataCenters	
– Cloud-Based	SoluHons	
– DBaaS	

AWracHve	SoluHons	(ex.,	Cloud-Provided	SoluHons)	
Cheap/Pay-Per-Use	Models,	High-Availability,	
Scalability,	ElasHcity,	Easy-to-Deploy,	Disaster	&	
Recovery	PrevenHon,	Efficient-Ubiquitous	Access	
and	Update	…	
	

But	ConfidenHality	and	Privacy	are	the	Main	
Concerns	!		

40	

SensiHve	Data	and	CriHcal	Databases	

•  Corporate	Financial	Data		
•  ConfidenHal	Phone	Records		
•  Customer	and	employee	informaHon,	such	as	Name,	
Social	Security	Number,	Salary,	Bank	Account	
InformaHon,	Credit	Card	InformaHon		

•  Proprietary	product	informaHon,	Customer-
informaHon,	Commercial	Proposals,	…		

•  Health	care	management	informaHon,	Health	
Records	and	Medical	records,	BioBanking	Data	

•  Etc	…	
41	

Disadvantages	and	DifficulHes	to	DB	
EncrypHon		

•  Need	effecHve	Key-Management	Services	
•  It	is	not	an	easy-task:	

– MulH-user	environment,	MulH-Role	ResponsibiliHes	
– MulH-Access	Vectors	

•  Different	ApplicaHons,	Different	Middleware	Services,	
for	example	in	the	context	of	3-to-N	Tier	SW	
Architectures	

	

42	

Disadvantages	and	DifficulHes	to	DB	
EncrypHon		

•  Inflexibility	issues	
– More	difficult	to	perform	queries,	record	searching,	
logging-control	

– How	to	support	full-fledged	operaHons	?	

	

43	

Disadvantages	and	DifficulHes	to	DB	
EncrypHon		

•  Granularity	Issues	
– Encrypt	the	EnHre	Database	?	
– Encrypt	at	the	Record	Level	(Selected	Records,	Lines)	?	
– Encrypt	at	AWribute	Level	(Columns)	?	
– Encrypt	Individual	Fields		?	
	
A	number	of	approaches	exist:	

	-	Industrial	SoluHons	
	-	Research	SoluHons	

	

44	

Disadvantages	and	DifficulHes	to	DB	
EncrypHon		

•  A	straighworward	soluHon	
–  Encrypt	the	enHre	DB	(or	enHre	PorHons)	
–  Keys	in	the	DB	Side	(DB	Admin/Management	Side)	
–  Key-Management	in	the	DB	Provider	side	

•  And	this	means	“outsource	control”	
•  Or	such	a	soluHon	is	not	flexible	

– User	has	liWle	ability	to	access	individual	data	items	
based	on	searches	or	indexing	on	key	parameters	

–  Rather	would	have	to	download	enHre	tables,	decrypt	
tables	and	work	with	the	results	

•  This	is	known	as	“Security-on-the-Rest”	soluHons	

	

45	

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Data-Owners	(Data-Subjects):	
An	OrganizaHon	or	User	that	Produces	Data	to	
be	Made	Available	for	Controlled	Release,	
either	within	organizaHons	or	to	external	users	

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Users	:	
Human	enHty	that	submit	
requests	(queries)	
Could	be	an	employee	of	an	
organizaHon	who	is	granted	
access	to	the	database,	via	a	
service	(front-end,	web-app	
server,	…)	
Can	be	an	external	user	who	
can	access	data	aker	an	
authenHcaHon	and	access-
control	process	

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Clients	(Client-Based	SW)	:	
A	Front-End	that	transforms	
user-queries	into	queries	
on	the	encrypted	data	
stored	on	the	DB	server	

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

Server	(or	Service)	
An	OrganizaHon	(enHty,	
resource)	that	receives	
encrypted	data	from	data-
owners	and	makes	them	
available	for	client-access	/	
distribuHon	
	
Could	be	owned	by	the	Data-
Owner	(or	Data-Subject)	but,	
more	typically,	is	a	facility	
owned	and	maintained	by	an	
external	provider	

Database	EncrypHon	Model	

Query
Processor

1. Original query
metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Server

Figure 5.9 A Database Encryption Scheme

Encrypt/
Decrypt

Query
Executor

Meta
Data

Meta
Data

Encrypted
database

Data-
base

SELECT	Ename,	Eid,	Ephone	
	FROM	Employee	
	WHERE	DepiD	=	15	

SELECT	Ename,	Eid,	Ephone	
	FROM	Employee	
	WHERE	DepiD	=	!&#/&#%&!(#()$	

!&#/&#%&!(#()$	=	E	(k,	15)	

Flexibility	Problems	to	have	a	Full-Fledged	Solu?on	?		

A	Base	EncrypHon	Scheme	for	a	DB	

E(k, B1) I11 • • • I1j • • • I1M
•
•
•

•
•
•

 •
•
•

 •
•
•

E(k, Bi) Ii1 • • • Iij • • • IiM
•
•
•

•
•
•

 •
•
•

 •
•
•

E(k, BN) IN1 • • • INj • • • INM

 Bi = (xi1 || xi2 || … || xiM)

Figure 5.10 Encryption Scheme for Database of Figure 5.3

Other possible approaches ?
Problems (other required services) ?

Encrypt	lines	as	a	block:	a	con?guous	block	Bi	=	(Xi1	||	Xi2	||	…	Xin)	

A	sequence	of	BITS	in	the	Block	

E	(k,	Bi)	=	E	(k,	(xi1	||	xi2,	xi3	,	……	xiN)						=>			[E(k,Bi),	Ii1,,	Ii2,	Ii3,	….	IiN)			

Example	

53	

eID	 eName	 Salary	 Addr	 DepID	
23	 Tom	 70K	 Marple	Road,	23	 45	
860	 Mary	 60K	 Main	Rooad,	1	 83	
320	 John	 50K	 River	Street,	2	 50	
875	 Jerry	 55K	 Hopewell	Av.	456	 92	

Employee	Table	

Supposing	we	know	that	the	iID	values	are	in	the	range	
[1,	1000],	we	can	divide	these	values	in	five	parHHons,	
assigning	indexes,	ex:	
[1,	200] 	 	…..	1	
[201,	400] 	 	…..	2	
[401,	600] 	 	…..	3	
[601,	800] 	…..	4	
[801,	1000] 	…..	5	

Meta-Data	on	the	Indexing	Process	
Only-Known	for	the	Client	
(Not	Stored	in	the	DB	Server)…	

Example	

54	

eID	 eName	 Salary	 Addr	 DepID	
23	 Tom	 70K	 Marple	Road,	23	 45	
860	 Mary	 60K	 Main	Rooad,	1	 83	
320	 John	 50K	 River	Street,	2	 50	
875	 Jerry	 55K	 Hopewell	Av.	456	 92	

Employee	Table	

For	text	field	we	can	derive	an	index	from	the	first	
leWer	of	the	aWribute	value,	ex:	
A,B	 	……	1	
C,D	 	……	2	
Etc	…	

And	we	can	make	the	same	for	the	other	aWributes	(columns)	

Table	TransformaHon	

55	

Employee	Table	

Problem:	
Some	Inference	is	possible	for	an	adversary	?	

E(k,	B)	 I(eID)	 I(eName)	 I(Salary)	 I(Addr)	 I(DepID)	

110011011....1111100101	 1	 10	 3	 7	 4	

10211010120101110...100	 5	 7	 2	 7	 8	

10011000101011..110110	 2	 5	 1	 9	 5	

11110111010001....11010	 5	 5	 2	 4	 9	

Can	we	avoid	it	?	
Yes	…	Randomize	the	used	Indexes	

Example	

56	

eID	 eName	 Salary	 Addr	 DepID	
23	 Tom	 70K	 Marple	Road,	23	 45	
860	 Mary	 60K	 Main	Rooad,	1	 83	
320	 John	 50K	 River	Street,	2	 50	
875	 Jerry	 55K	 Hopewell	Av.	456	 92	

Employee	Table	

Supposing	we	know	that	the	iID	values	are	in	the	range	
[1,	1000],	we	can	divide	these	values	in	five	parHHons,	
assigning	indexes,	ex:	
[1,	200] 	 	…..	2	
[201,	400] 	 	…..	3	
[401,	600] 	 	…..	5	
[601,	800] 	…..	1	
[801,	1000] 	…..	4	

Because	Meta-Data	are	not	Stored	
In	the	Server	Side,	the	AWacker	will	
Not	know	nothing	about	…	

Other	possible	enhancements	

57	

To	increase	the	efficiency	of	accessing	records	by	
means	of	the	primary	key,	the	system	could	use	the	
encrypted	value	of	the	primary	key	auribute	values,	
or	a	hash-value	

In	both	cases,	the	row	corresponding	to	the	primary	
key	value	could	be	retrieved	individually	

Other	possible	enhancements	

58	

Different	PorHons	of	the	Database	could	be	
encrypted	with	different	keys	

	To	have	more	appropriate	granularity	…	

So	that	users	would	only	have	access	to	that	porHon	
of	the	DB	for	which	they	had	the	corresponding	
decrypHon	keys	
	
…	This	can	be	beWer	mapped	to	a	Role-Based	Access	
Control	Model	

Encrypted	Database	Techniques	
•  ParHcularly	relevant	for:	

•  Outsourced	databases	
•  Cloud-based	databases	

•  Two	different	models:	

•  Security	“on	the	rest”:	Classic	Approach	
•  On-Line	Security:	More	InteresHng	

•  How	to	provide	more	flexibility	with	Database	
operaHons	on	encrypted	data	?	

	 * Outsourceable Encryption Techniques

* Homomorphic Encryption Techniques,
Schemes and Algorithms

State-of-Art	
Related	Research	

DBMS	Security	

Part	I	
•  DBMS	

– DBMS	and	Security	Issues	
–  RDBMS		

•  ConfidenHality	and	Database	EncrypHon	
•  Encrypted	Databases	and	the	case	for	CryptDB	
	
Part	II	
Other	DBMS	Security	DImensions	

–  SQL	InjecHon	AWacks	
– Database	Access	Control	
–  Inference	AWacks	

60	

CryptDB:	ProtecHng	ConfidenHality	with	
Encrypted	Query	Processing	

Raluca	Ada	Popa,	Catherine	M.	S.	Redfield,		
Nickolai	Zeldovich,	and	Hari	Balakrishnan	

MIT	CSAIL	

Material	delivered	by	the	authors	corresponding	to	the		
CryptDB	PresentaHon		at	SOSP	2011	

Raluca	Popa,	C.	Redfield,	N.	Zeldovich,	H.	Balakrisnan,	CryptDB:	protecHng	
confidenHality	with	encrypted	query	processing,	in	Proc.	SOSP	Symposium	on	
OperaHng	System	Principles,	2011	

ApplicaHon	
DB	Server	SQL	

User	1	

User	2	

User	3	

}  Confidential data leaks from databases

}  E.g., Sony Playstation Network, impacted 77 million
personal information profiles

Problem	

	
System	

administrator	

Threat	1:	passive	DB	
server	aWacks	

Threat	2:	any	aWacks	on	all	servers	

	
Hackers	

CryptDB	in	a	nutshell	

}  Goal: protect confidentiality of data

1.  Process SQL queries on encrypted data
 2.  Use fine-grained keys; chain these keys to user

passwords based on access control

ApplicaHon	
DB	Server	SQL	

Threat	1:	passive	DB	
server	aWacks	

Threat	2:	any	aWacks	on	all	servers	

on	encrypted	data	

User	1	

User	2	

User	3	

1.  First practical DBMS to process most SQL queries

on encrypted data
 Hide DB from sys. admins., outsource DB

2.  Protects data of users logged out during attack,
even when all servers are compromised

 Limit leakage from compromised applications
3.  Modest overhead: 26% throughput loss for TPC-C

ContribuHons	

4.  No changes to DBMS (e.g., Postgres, MySQL)

Threat	1:	Passive	aWacks	to	DB	Server	

DB	Server	transformed	query	Proxy	plain	query		

	
Ø 	Stores	schema,	master	key	
Ø 	No	data	storage	
Ø 	No	query	execuHon	

Under	aWack	

ApplicaHon	
decrypted	results	 encrypted	results	

Trusted	

	
Ø 	Process	queries	completely	
at	the	DBMS,	on	encrypted	
database	

}  Process SQL queries on encrypted data

Encrypted	DB	

col1/rank	 col2/name	

table1/emp	

SELECT * FROM emp
WHERE salary = 100

x934bc1

x5a8c34

x5a8c34

x84a21c

SELECT * FROM table1
WHERE col3 = x5a8c34

Proxy	

?	x5a8c34

x5a8c34

?	x5a8c34

x5a8c34

x4be219	

x95c623	

x2ea887	

x17cea7	

col3/salary	

ApplicaHon	

60	

100	

800	

100	

Randomized	
encrypHon	

DeterminisHc	
encrypHon	

col1/rank	 col2/name	

table1	(emp)	

x934bc1

x5a8c34

x5a8c34

x84a21c

x638e54

x638e54

x922eb4

x1eab81

SELECT * FROM table1
WHERE col3 ≥ x638e54

Proxy	

x638e54

x922eb4

x638e54

col3/salary	

ApplicaHon	

60	

100	

800	

100	

DeterminisHc	
encrypHon	

SELECT * FROM emp
WHERE salary ≥ 100

OPE	(order)	
encrypHon	

1.  Use SQL-aware set of encryption schemes

	

	

Two techniques

Most SQL uses a limited set of operations
	
	

	

2.  Adjust encryption of database based on
queries

	

EncrypHon	schemes	

e.g.,	=,	!=,	IN,	COUNT,	
GROUP	BY,	DISTINCT		

Scheme

 RND

 HOM

 DET

 SEARCH

 JOIN

OPE

Function

none

+, *

equality

join

word search

order

Construction

AES in CBC

AES in CMC

Paillier

our new scheme

Song et al.,‘00

Boldyreva et al.’09

first	implementaHon	

e.g.,	>,	<,	ORDER	BY,	
SORT,	MAX,	MIN	

restricted	ILIKE	

Highest	

Security	

see	paper	

e.g.,	sum	

How to encrypt each data item?

Ø 	Encryption schemes needed depend on queries

Ø  May not know queries ahead of time

Leaks	order!	

rank	

ALL?	

col1-
RND	

col1-
HOM	

col1-
SEARCH	

col1-
DET	

col1-
JOIN	

col1-
OPE	

‘CEO’	

‘worker’	

int	value	
HOM	

Onion	Add	

Onions of encryptions

		value	
			JOIN	
DET	
RND	

Onion	Equality	

Onion	Search	

Ø 	Same	key	for	all	items	in	a	column	for	same	onion	layer	
Ø 	Start	out	the	database	with	the	most	secure	encrypHon	
scheme	

OR	
each	
value	

		value	
			OPE-JOIN	

OPE	
RND	

Onion	Order	

text	value	
SEARCH	

Adjust	encrypHon	

Ø Strip off layers of the onions
Ø Proxy gives keys to server using a SQL UDF

(“user-defined function”)
Ø Proxy remembers onion layer for columns

Ø Do not put back onion layer
	

Example:	

SELECT	*	FROM	emp	WHERE	rank	=	‘CEO’;	

emp:	

rank	 name	 salary	

‘CEO’	
‘worker’	

		‘CEO’	

JOIN	
DET	
RND	

Onion	Equality	

col1-
OnionEq	

col1-
OnionOrder	

col1-
OnionSearch	

col2-
OnionEq	

table	1:	

…	
…	
…	

RND	

RND	

SEARCH	 RND	

SEARCH	 RND	

RND	

RND	

Example	(cont’d)	

UPDATE table1 SET col1-OnionEq =
 Decrypt_RND(key, col1-OnionEq);

		‘CEO’	

JOIN	
DET	
RND	

SELECT * FROM table1 WHERE col1-OnionEq = xda5c0407;

DET	

Onion	Equality	

RND	

RND	

SELECT	*	FROM	emp	WHERE	rank	=	‘CEO’;	

DET	

DET	

col1-
OnionEq	

col1-
OnionOrder	

col1-
OnionSearch	

col2-
OnionEq	

table	1	

…	
…	
…	

RND	

RND	

SEARCH	 RND	

SEARCH	 RND	

	
• 	aggregaHon	on	a	column																	HOM											nothing	

ConfidenHality	level	

• 	equality	predicate	on	a	column								DET												repeats	

•  Never	reveals	plaintext	

		

Queries						encrypHon	scheme	exposed	

common	in	prac<ce	

	
• 	no	filter	on	a	column																								RND											nothing	

amount	of	
leakage	

		

	

Ø 	EncrypHon	schemes	exposed	for	each	column	are	the	most	
secure	enabling	queries	

ApplicaHon	protecHon	

DB	Server	SQL	Proxy	ApplicaHon	

User	1	

User	2	

User	3	

Arbitrary	aWacks	on	any	servers		

Passive	aWacks	

Ø  User	password	gives	access	to	data	allowed	to	user	by	
access	control	policy	

	Ø  Protects	data	of	logged	out	users	during	aWack	

Challenge:	data	sharing	

	
3.  Process	queries	on	encrypted	data	

msg_id	 sender	 receiver	 msg_id	 message	

5	 “secret	message”	5	 Alice	 Bob	

SPEAKS_FOR	
msg_id	

SPEAKS_FOR	
msg_id	 ENC_FOR	msg_id	

	
2.  Capture	read	access	policy	of	applicaHon	at	SQL	level?	
	 AnnotaHons	

Key	chains	from	user	passwords		

Km5	
Km5	 Km5	

	
1.  How	to	enforce	access	control	cryptographically?	

Alice-pass	 Bob-pass	

ImplementaHon	

CryptDB	
Proxy	

Unmodified	
DBMS	

CryptDB		
SQL	UDFs	

	(user-defined	
funcHons)	

Server	

query	

results	

transformed	query	

encrypted	results	

SQL	Interface	

Ø  No	change	to	the	DBMS	
Ø  Portable:	from	Postgres	to	MySQL	with	86	lines	

ApplicaHon	

Ø  One-key:	no	change	to	applicaHons	
Ø  MulH-user	keys:	annotaHons	and	login/logout	

EvaluaHon	

	
1.  Does	it	support	real	queries/applicaHons?		
2.  What	is	the	resulHng	confidenHality?	
3.  What	is	the	performance	overhead?	

Queries	not	supported	
	
Ø  More	complex	operators,	e.g.,	trigonometry	
Ø  	OperaHons	that	require	combining	incompaHble	
encrypHon	schemes	
Ø  e.g.,	T1.a	+	T1.b	>	T2.c	

	 	
				Extensions:	split	queries,	precompute	
columns,	or	add	new	encrypHon	schemes	

Real	queries/applicaHons	

ApplicaHon	 Total	
columns	

Encrypted	
columns	

phpBB	 563	 23	
HotCRP	 204	 22	
grad-apply	 706	 103	
TPC-C	 92	 92	
sql.mit.edu	 128,840	 128,840	

AnnotaHons	+	lines	
of	code	changed	

38	
31	

113	
0	
0	

MulH-user	
keys	

One-key	

#	cols	not	
supported	

0	
0	
0	
0	

1,094	

SELECT	1/log(series_no+1.2)	…		
…	WHERE	sin(laHtude	+	PI())	…		

ResulHng	confidenHality	

ApplicaHon	 Total	
columns	

Encrypted	
columns	

phpBB	 563	 23	
HotCRP	 204	 22	
grad-apply	 706	 103	
TPC-C	 92	 92	
sql.mit.edu	 128,840	 128,840	

One-key

Min	level	
is	RND	

21	
18	
95	
65	

80,053	

Min	level	
is	DET	

1	
1	
6	
19	

34,212	

Min	level	
is	OPE	

1	
2	
2	
8	

13,131	

Most	columns	at	RND	 Most	columns	at	
OPE	analyzed	were	

less	sensiHve	

MulH-user	
keys	

Performance	
DB	server	throughput	

CryptDB	
Proxy	

Encrypted	
database	

	

ApplicaHon	1	

CryptDB:	

Plain	database	
	

ApplicaHon	1	

MySQL:	

CryptDB	
Proxy	

ApplicaHon	2	

ApplicaHon	2	

Latency	

Ø  Hardware:	2.4	GHz	Intel	Xeon	E5620	–	8	cores,	12	GB	RAM	

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5 6 7 8

Q
u
er

ie
s

/
se

c

Number of server cores

MySQL
CryptDB

Figure 10: Throughput for TPC-C queries, for a varying number of
cores on the underlying MySQL DBMS server.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Equality

Join
Range

Sum
D

elete

Insert

U
pd. set

U
pd. inc

Q
u
er

ie
s

/
se

c

MySQL
CryptDB

Strawman

Figure 11: Throughput of different types of SQL queries from the TPC-
C query mix running under MySQL, CryptDB, and the strawman design.
“Upd. inc” stands for UPDATE that increments a column, and “Upd. set”
stands for UPDATE which sets columns to a constant.

8.4.1 TPC-C
We compare the performance of a TPC-C query mix when running
on an unmodified MySQL server versus on a CryptDB proxy in front
of the MySQL server. We trained CryptDB on the query set (§3.5.2)
so there are no onion adjustments during the TPC-C experiments.
Figure 10 shows the throughput of TPC-C queries as the number of
cores on the server varies from one to eight. In all cases, the server
spends 100% of its CPU time processing queries. Both MySQL and
CryptDB scale well initially, but start to level off due to internal
lock contention in the MySQL server, as reported by SHOW STATUS
LIKE ’Table%’. The overall throughput with CryptDB is 21–26%
lower than MySQL, depending on the exact number of cores.

To understand the sources of CryptDB’s overhead, we measure
the server throughput for different types of SQL queries seen in
TPC-C, on the same server, but running with only one core enabled.
Figure 11 shows the results for MySQL, CryptDB, and a strawman
design; the strawman performs each query over data encrypted with
RND by decrypting the relevant data using a UDF, performing the
query over the plaintext, and re-encrypting the result (if updating
rows). The results show that CryptDB’s throughput penalty is great-
est for queries that involve a SUM (2.0� less throughput) and for
incrementing UPDATE statements (1.6� less throughput); these are
the queries that involve HOM additions at the server. For the other
types of queries, which form a larger part of the TPC-C mix, the
throughput overhead is modest. The strawman design performs
poorly for almost all queries because the DBMS’s indexes on the

Query (& scheme) MySQL CryptDB
Server Server Proxy Proxy�

Select by = (DET) 0.10 ms 0.11 ms 0.86 ms 0.86 ms
Select join (JOIN) 0.10 ms 0.11 ms 0.75 ms 0.75 ms
Select range (OPE) 0.16 ms 0.22 ms 0.78 ms 28.7 ms
Select sum (HOM) 0.11 ms 0.46 ms 0.99 ms 0.99 ms
Delete 0.07 ms 0.08 ms 0.28 ms 0.28 ms
Insert (all) 0.08 ms 0.10 ms 0.37 ms 16.3 ms
Update set (all) 0.11 ms 0.14 ms 0.36 ms 3.80 ms
Update inc (HOM) 0.10 ms 0.17 ms 0.30 ms 25.1 ms
Overall 0.10 ms 0.12 ms 0.60 ms 10.7 ms

Figure 12: Server and proxy latency for different types of SQL queries
from TPC-C. For each query type, we show the predominant encryption
scheme used at the server. Due to details of the TPC-C workload, each
query type affects a different number of rows, and involves a different
number of cryptographic operations. The left two columns correspond to
server throughput, which is also shown in Figure 11. “Proxy” shows the
latency added by CryptDB’s proxy; “Proxy�” shows the proxy latency
without the ciphertext pre-computing and caching optimization (§3.5).
Bold numbers show where pre-computing and caching ciphertexts helps.
The “Overall” row is the average latency over the mix of TPC-C queries.
“Update set” is an UPDATE where the fields are set to a constant, and
“Update inc” is an UPDATE where some fields are incremented.

Scheme Encrypt Decrypt Special operation
Blowfish (1 int.) 0.0001 ms 0.0001 ms —
AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) 0.016 ms 0.015 ms —
OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

Figure 13: Microbenchmarks of cryptographic schemes, per unit of
data encrypted (one 32-bit integer, 1 KB, or one 15-byte word of text),
measured by taking the average time over many iterations.

RND-encrypted data are useless for operations on the underlying
plaintext data. It is pleasantly surprising that the higher security of
CryptDB over the strawman also brings better performance.

To understand the latency introduced by CryptDB’s proxy, we
measure the server and proxy processing times for the same types
of SQL queries as above. Figure 12 shows the results. We can
see that there is an overall server latency increase of 20% with
CryptDB, which we consider modest. The proxy adds an average
of 0.60 ms to a query; of that time, 24% is spent in MySQL proxy,
23% is spent in encryption and decryption, and the remaining 53% is
spent parsing and processing queries. The cryptographic overhead is
relatively small because most of our encryption schemes are efficient;
Figure 13 shows their performance. OPE and HOM are the slowest,
but the ciphertext pre-computing and caching optimization (§3.5)
masks the high latency of queries requiring OPE and HOM. Proxy�
in Figure 12 shows the latency without these optimizations, which
is significantly higher for the corresponding query types. SELECT
queries that involve a SUM use HOM but do not benefit from this
optimization, because the proxy performs decryption, rather than
encryption.

In all TPC-C experiments, the proxy used less than 20 MB of
memory. Caching ciphertexts for the 30,000 most common values
for OPE accounts for about 3 MB, and pre-computing ciphertexts
and randomness for 30,000 values at HOM required 10 MB.

8.4.2 Multi-User Web Applications
To evaluate the impact of CryptDB on application performance, we
measure the throughput of phpBB for a workload with 10 parallel
clients, which ensured 100% CPU load at the server. Each client
continuously issued HTTP requests to browse the forum, write and

97

TPC-C	performance	

Throughput	
loss	26%	

Ø  Latency	(ms/query):	0.10	MySQL	vs.	0.72	CryptDB	

TPC-C	microbenchmarks	

Encrypted	DBMS	is	pracHcal	

	

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

Equality

Join
Range

Delete
Insert

Upd. set

Upd. inc

Sum

Q
ue

rie
s /

 se
c

MySQL
CryptDB

No	cryptography	at	the	DB	server	in	the	steady	state!	

Homomorphic	
addiHon	

Ø  Cryptography	proposals	
Ø  Fully	homomorphic	encrypHon		
Ø  Search	on	encrypted	data		

Ø  Systems	proposals		
Ø  Lower	degree	of	security,	rewrite	the	DBMS,	client-side	

processing	

Ø  Query	integrity	

	

Related work (See the
bibliography in the paper)

Conclusions	

1.  The	first	pracHcal	DBMS	for	running	most	standard	
queries	on	encrypted	data	

Thanks!	

2.  Protects	data	of	users	logged	out	during	aWack	even	
when	all	servers	are	compromised	

3.  Modest	overhead	and	no	changes	to	DBMS	

CryptDB:	

Website: http://css.csail.mit.edu/cryptdb/

Demo at poster session!

Database	security	problems	(iniHally	
stated),	not	covered	by	CryptDB	
– AWacks	by	possible	(malicious)	SQL	injecHon	
–  Inband	SQLi		aWacks	
–  InferenHal	aWacks	
– Out-of-Band	aWacks	
– Data-confidenHality	and	Privacy	Concerns	
– Outsourced	databases	or	Cloud-Based	DBaaS	
environments	

•  Access	Control	Services	
•  ConfidenHality,	Honest-but-curious	adversary	models	
•  Other	issues:	integrity,	user-authenHcaHon,	…	
resistance	against	malicious	intruders,	DoS,	…	

•  NO	
•  NO	
•  NO	
•  NO	
•  Ok	
•  Ok	

•  NO	
	

Remarks/Discussion/Open-Research	

•  Onion	Model:	
–  Considerable	space	overhead	to	store	mulHple	copes	of	all	columns	

(one	per	onion)	in	general,	for	different	Database	EDR	Models	?	
–  Some	onions	can	be	larger	that	the	original	data	?	

•  Performance/Latency	
–  Authors	argue	that	26%	Overhead	(TPC-C)	is	reasonable:	is	it	?		

•  For	Logged	On	Users	in	operaHon,	the	system	cannot	have	
the	same	guarantees	comparing	to	the	case	when	users	are	
not	logged.	During	the	operaHon,	the	security	condiHons	are	
“smoothly”	decreased.	Can	we	have	a	beWer	soluHon	?	

•  What	if	we	lose	the	proxy:	single	point	of	failure…	Ex.,	what	if	
we	lose	the	keys	(and	onion-composiHons)	…	?	

Remarks/Discussion/Open-Research	

•  More	open	Research	Issues	from	the	CryptDB	Design	
–  Adversary	Model:	Only	Data	ConfidenHality	AWacks	
–  No	ProtecHon	for	Inference	AWacks	
–  Complete	ProtecHon:	Only	protected	when	Users	are	
Logged-Off	

–  User	AuthenHcaHon	Services:	User/Pwd,	Pwd-Based	
EncrypHon	translated	to	Onion-Keys	

•  DAC-Model	can	be	mapped	with	the	scheme	

–  No	Provision	for	more	exigent	Access-Control	Services	
•  RBACs,	ABACs,	Context_Aware	Access	Control	

–  How	to	address	mulH-user	environments	with	Data-
Owners/Data	Subjects,	Different	User	Roles,…	

•  AuthenHcaHon	vs.	Key-DistribuHon	Schemes	

Remarks/Discussion/Open-Research	
•  Re-evaluaHon	of	the	soluHon	in	a	Cloud-Based	SaaS	/	
DBaaS	soluHon	
–  New	tradeoffs	?	
–  New	Adversarial	Model	ConsideraHons	?	

•  No	Full-Fledged	SQL	SoluHon		
–  How	to	support	other	SQL	queries	?	

•  Ex.,	ManipulaHon	of	Dates,	Temporal	informaHon,	queries	on	sub-strings,	….	
–  In	the	proposed	design:	sub-strings	in	differet	columns	…	

•  StaHsHcal	Databases:	more	queries	involving	arithmeHc	compjutaHons	
•  How	to	protect	issues	related	to	other	dimensions	in	the	DB:	number	of	
rows,	number	of	columns,	table	structure,	approximate	sizes	od	values	in	
cells,	…	??	

•  What	if	we	have	in	some	columns	values	that	have	few-values	(ex.,	nale/
female),	etc	…		

Remarks/Discussion/Open-Research	
–  Other	Crypto-Schemes	

•  More	Homomorphic	Schemes	(New	Crypto	Schemes	?	:-	(((
•  Symmetric	Searchable	EncrypHon	Techniques	?	
•  How	to	support	MulHmodal	Searches	?	

–  SupporHng	complementarily	other	Search	OperaHons	for	InformaHon	Retrieval	
–  Hybrid	Repositories	?	DBMS	+	KVSs	?	

»  Search	By	Proximity,	SimilariHes	
»  Search	by	“Ranking”	Scores	

Remarks/Discussion/Open-Research	
•  The	Client	and	Proxy	in	the	CryptDB	Architecture	are	
“trusted”	components.	
–  Can	we	redesign	a	soluHon	if	the	Proxy	is	aWacked	when	there	are	users	

logon	performing	DB	queries	?	The	Proxy	can	be	a	parHcular	target	of	
aWacks	in	the	system	architecture…	parHcularly	for	mulH-iser	
environmemts	

•  The	approach…	probably		just	transit	the	aWracHon	of	aWackers	from	the	database	
server	to	proxy	server	

–  How	to	address	a	“end-to-end”	encrypHon	behaviour	?	Example:	
IntercepHon	between	client	and	proxy	?	

Other	Open	Issues	…	
(See	referred	Drawbacks,	Weaknesses,	

Tradeofs)		
•  hWp://web.eecs.umich.edu/~mozafari/fall2015/
eecs584/reviews/summaries/summary40.html	

•  Another	approach	
–  The	Cipherbase	approach	
–  hWp://research.microsok.com/en-us/projects/
cipherbase/	

–  hWp://research.microsok.com/pubs/179425/
cipherbase.pdf	

94	

