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Databases and non fail-stop faults

Database systems are central in many software
infrastructures

Database systems incur in non fail-stop faults

* Software bugs
= Large fraction of non fail-stop bugs

e Hardware faults
e Malicious intrusions
* Incorrect configurations



Goals

Middleware for database replication
* Tolerate non-fail stop faults (Byzantine fault model)
* No centralized component

* Performance
= Circumvent expensive BFT protocols when possible
= Exploit Snapshot Isolation
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Background: snapshot isolation (Sl)

A transaction is processed as follows:
* Begin: get database snapshot
* Read/write: execute in snapshot

e Commit: abort if write-write conflict

Properties:
* A read-only transaction does not block nor abort
* No read-write conflicts - increased concurrency



Addressing Byzantine Faults

Byzantine Fault Tolerant (BFT) systems
* Tolerate arbitrary faults
* Good performance (batching, speculation, etc.)

State-machine BFT replication
* Replicate arbitrary deterministic service
* All replicas agree on operation ordering
* All replicas execute one operation at a time



Byzantium Architecture
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Mapping transactions and state-
machine BFT

Each DB operation as one BFT operation
* Limitsconcurrency on database servers
* BFT overhead for each operation
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Mapping transactions and state-
machine BFT

Our key idea: minimize the number of BFT operations
* Operations execute concurrently
 BFT overhead only for a small fraction of operations
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Basic solution
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Basic solution

Transaction must execute in the same state in all

replicas replicas
create
DB
shapshot
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Basic solution

Operations execute tentatively in a master replica

replicas master replica
create executes
DB operations
shapshot
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Basic solution

Replicas need to confirm tentative execution

replicas master replica replicas

create executes confirm

DB operations correct

shapshot execution
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Basic solution: normal case

Correct replicas compute the same results

« Execute in the same snapshot
= BEGIN & COMMIT are totally ordered

 Deterministic
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Basic solution: Byzantine replica

With up to f non-master Byzantine replicas, a
quorum of correct replicas will commit
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Basic solution: Byzantine master

In the presence of a Byzantine master, correct
replicas will abort on incorrect result

e Client sends hash of observed results with COMMIT
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Databases and locks

Most databases use locks to avoid conflicts

Byzantium must avoid deadlocks
BEGIN WRITE OMMIT

WRITE COMMIT



Avoiding deadlocks

Multi-master

* Each transaction/client will select its master
replica

Single master

 All transactions have the same master
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Multi-master: approach and
challenges

Each transaction/client will select its master
replica

Two conflicting transactions may have different
masters and proceed concurrently

Challenge
* Avoid system deadlocks during commit
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Multi-master: solution

Non-master replicas must undo local
transactions to avoid deadlocks

BEGIN  WRITE COMMIT
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Multi-master: solution

When commit fails, re-executes local
transaction from savepoint created on begin

WRITE COMMIT
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Single master: approach and
challenges

A single master exists in the system

All transactions share one master, which
manages concurrent transactions

Database server solves deadlocks on master

Challenges

e Execute operation is non-master replicas as soon
as possible

* Avoiding deadlocks in non-master replicas
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Singe-master: solution

A transaction blocks in the master if it
conflicts with another
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Singe-master: solution

Non-master replicas execute previous
operation guaranteeing consistent locking
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Singe-master: solution

On commit, all replicas execute last
operation
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Comparing solutions

Single master

* All transactions proceed in all replicas with one-
operation lag

 Faster commits
Multiple masters

 Non-master replicas execute transaction
operations in a burst
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Evaluation

Byzantium single master

Byzantium multi-master

Proxy: single server accessed through proxy
Full BFT: all operations execute as BFT

Benchmark TPC-C (open source)

Database PostgreSQL 8.3.4

0OS Linux 2.6.30

Processor Single-core 2.6 Ghz Opteron 252
Memory 4GB

Network 1Gbit ethernet
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Standard TPC-C (92% writes)

Modest overhead compared with non-replicated DB
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* Improving read-only transactions

Final remarks
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Optimizing read-only transactions

Key observations
* In snapshot isolation reads never block
e Reads confirmed by f+1 replicas are correct

Key ideas
* Read operations contact f+1 replicas in parallel
e Commit does not require BFT operation
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Optimizing read-only transactions

Reads execute tentatively in f+1 read replicas
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Optimizing read-only transactions

Commit confirmed locally if all reads confirmed
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Optimizing read-only transactions

Reads from different clients striped to different
replicas => reduced load on each server
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Read-only workload

Up to 90% improvement over non-replicated DB

Transactions per minute
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Summary

Middleware solution for tolerating Byzantine
faults in database systems

* No trusted component
* Avoid BFT serialization for improved concurrency

 Striping of read operations among replicas

Two solutions
e Single master — better for read-write transactions
* Multi-master — better for read-only transactions
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