Confiabilidade de Sistemas Distribuidos
Dependable Distributed Systems

DI-FCT-UNL, Henrique Domingos, Nuno Preguica

Lect. 8

Use Cases
2015/2016, 2nd SEM

MIEI
Mestrado Integrado em Engenharia Informatica

BYZANTIUM
Efficient Middleware for Byzantine
Fault Tolerant Database Replication

Rui Garcia : CITI / DI - FCT - Universidade Nova de Lisboa
Rodrigo Rodrigues : MPI-SWS
Nuno Preguica : CITI/ DI - FCT - Universidade Nova de Lisboa

Databases and non fail-stop faults

Database systems are central in many software
infrastructures

Database systems incur in non fail-stop faults

* Software bugs
= Large fraction of non fail-stop bugs

e Hardware faults
e Malicious intrusions
* Incorrect configurations

Goals

Middleware for database replication
* Tolerate non-fail stop faults (Byzantine fault model)
* No centralized component

* Performance
= Circumvent expensive BFT protocols when possible
= Exploit Snapshot Isolation

Outline

Background
Basic solution

The devil is in the details

* Avoiding deadlock
* Improving read-only transactions

Final remarks

Background: snapshot isolation (Sl)

A transaction is processed as follows:
* Begin: get database snapshot
* Read/write: execute in snapshot

e Commit: abort if write-write conflict

Properties:
* A read-only transaction does not block nor abort
* No read-write conflicts - increased concurrency

Addressing Byzantine Faults

Byzantine Fault Tolerant (BFT) systems
* Tolerate arbitrary faults
* Good performance (batching, speculation, etc.)

State-machine BFT replication
* Replicate arbitrary deterministic service
* All replicas agree on operation ordering
* All replicas execute one operation at a time

Byzantium Architecture

4 Application

JDBC
Byzantium

~

_ PBFT

4 Application

JDBC
Byzantium

_ PBFT

__,(Byzantium —
———————— P S

. 3f+1
o servers

Byzantium _—

A

T

Mapping transactions and state-
machine BFT

Each DB operation as one BFT operation
* Limitsconcurrency on database servers
* BFT overhead for each operation

Rep 0

Rep 1 - - - -
Ll Ll Ll Ll

Rep 2 (a'a) (aa) (a2} (aa)

ASASARNA

BEGIN READ WRITE COMMIT

Mapping transactions and state-
machine BFT

Our key idea: minimize the number of BFT operations
* Operations execute concurrently
 BFT overhead only for a small fraction of operations

Rep O : l:

Rep 1 - ~ ,"' = -
(N8 I.I.J L. (N

Rep 2 o = o o

— .
[\]\ /\

BEGIN READ WRITE COMMIT

10

Basic solution

Rep O

J
-y
-
~..

I
g
i

Rep 1

-y
-.

!
7

BFT

Rep 2

BFT

/\

BEGIN

A\

READ

e

WRITE COMMIT

Basic solution

Transaction must execute in the same state in all

replicas replicas
create
DB
shapshot
Rep 0 B 2 - B
i i

Rep 1 - > - _

LL 'l 'l LL
Rep 2 0 ; 7 0

i i

=N NN

BEGIN READ WRITE COMMIT

12

Basic solution

Operations execute tentatively in a master replica

replicas master replica
create executes
DB operations
shapshot
Rep 0 B 4 4 .
i i
Rep 1 - > - _
LL ! ! LL
Rep 2 0 3 7 en
i i

BEGIN READ WRITE COMMIT

gﬁsﬂ’/\ AN N

13

Basic solution

Replicas need to confirm tentative execution

replicas master replica replicas

create executes confirm

DB operations correct

shapshot execution
Rep 0] - 2]
i i
Rep 1 - > - _
LL ! ! LL
Rep 2 0 3 7 en
i i

BEGIN READ WRITE COMMIT

ﬁ@/\ AN

Basic solution: normal case

Correct replicas compute the same results

« Execute in the same snapshot
= BEGIN & COMMIT are totally ordered

 Deterministic

Rep 0 '; '; q/
! ! v 4

Rep 1 - ',' ',' : V
™ A

Rep 2 @ ," ," @ V
i 1) "N

V

=0 N NN

BEGIN READ WRITE COMMIT

15

Basic solution: Byzantine replica

With up to f non-master Byzantine replicas, a
quorum of correct replicas will commit

Rep 0 - — ol
Rep 1 . - - - V-

L i LL A
Rep 2 0 - 0 Y-

SN

BEGIN READ WRITE COMMIT

16

Re
Re
Re

Basic solution: Byzantine master

In the presence of a Byzantine master, correct
replicas will abort on incorrect result

e Client sends hash of observed results with COMMIT

0 0 . " '," m.
D 1 - ,' I—%
N 2 (aa] m%

MASTER

/\/

W

BEGIN READ WRITE COMMIT

17

Outline

The devil is in the details

* Avoiding deadlock
* Improving read-only transactions

Final remarks

18

Databases and locks

Most databases use locks to avoid conflicts

Byzantium must avoid deadlocks
BEGIN WRITE OMMIT

WRITE COMMIT

Avoiding deadlocks

Multi-master

* Each transaction/client will select its master
replica

Single master

 All transactions have the same master

20

Multi-master: approach and
challenges

Each transaction/client will select its master
replica

Two conflicting transactions may have different
masters and proceed concurrently

Challenge
* Avoid system deadlocks during commit

21

Multi-master: solution

Non-master replicas must undo local
transactions to avoid deadlocks

BEGIN WRITE COMMIT

o Yo

Re Y. \¢

'\4

A v

WRITE COMMIT

BFT
BFT

22

Multi-master: solution

When commit fails, re-executes local
transaction from savepoint created on begin

WRITE COMMIT

\% \

/Q\ / %

WRITE COMMIT

BFT

23

Single master: approach and
challenges

A single master exists in the system

All transactions share one master, which
manages concurrent transactions

Database server solves deadlocks on master

Challenges

e Execute operation is non-master replicas as soon
as possible

* Avoiding deadlocks in non-master replicas

24

Singe-master: solution

A transaction blocks in the master if it
conflicts with another

BEGIN WRITE

>

Rep O

Rep 1

Rep 2

Re

BEGIN WRITE

25

Singe-master: solution

Non-master replicas execute previous
operation guaranteeing consistent locking

BEGIN WRITE

YA

_@ /

\/

o]

WRITE WRITE

26

Singe-master: solution

On commit, all replicas execute last
operation

A

BEGIN WRITE

r]'!r‘

Rep O

Rep 1

Rep 2

Re

WRITE

WRITE COMMIT

27

Comparing solutions

Single master

* All transactions proceed in all replicas with one-
operation lag

 Faster commits
Multiple masters

 Non-master replicas execute transaction
operations in a burst

28

Evaluation

Byzantium single master

Byzantium multi-master

Proxy: single server accessed through proxy
Full BFT: all operations execute as BFT

Benchmark TPC-C (open source)

Database PostgreSQL 8.3.4

0OS Linux 2.6.30

Processor Single-core 2.6 Ghz Opteron 252
Memory 4GB

Network 1Gbit ethernet

29

Standard TPC-C (92% writes)

Modest overhead compared with non-replicated DB

4000) J J ! J) J J J

Proxy ——

*GSJ 3500 | - —]
-

= 3000 j
o 2500 f

Q

g 2000 }

7 1500 t

S

7))

-

©

|_

1000 | Single master ——
500 } Multi-master —»— _
oL Full BFT

5 10 15 20 25 30 35 40 45

Number of clients

Outline

* Improving read-only transactions

Final remarks

31

Optimizing read-only transactions

Key observations
* In snapshot isolation reads never block
e Reads confirmed by f+1 replicas are correct

Key ideas
* Read operations contact f+1 replicas in parallel
e Commit does not require BFT operation

32

Optimizing read-only transactions

Reads execute tentatively in f+1 read replicas

1

Rep O /i
Rep 1
Rel READ REP —

N\

BEGIN READ

BFT

Optimizing read-only transactions

Commit confirmed locally if all reads confirmed

1

Rep O /i
Rep 1
Rel READ REP —

e N NV

BEGIN READ COMMIT ¥

BFT

Optimizing read-only transactions

Reads from different clients striped to different
replicas => reduced load on each server

READ COMMIT . »

Re READ REP

Rel READ REP

READ COMMIT ¥

35

Read-only workload

Up to 90% improvement over non-replicated DB

Transactions per minute

25000

20000

15000

10000

5000

O .

" Proxy ——
Single master —«—
Multi-master —=—

Full BFT

10 20 30 40 50 60 70 80 90

Number of clients

36

Summary

Middleware solution for tolerating Byzantine
faults in database systems

* No trusted component
* Avoid BFT serialization for improved concurrency

 Striping of read operations among replicas

Two solutions
e Single master — better for read-write transactions
* Multi-master — better for read-only transactions

37

